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Abstract: Heat and drought stress, which often occur together, are the main environmental factors
limiting the survival and growth of vegetation. Studies on the response of gross primary production
(GPP) to extreme climate events such as heat and drought are highly significant for the identification of
ecologically vulnerable regions, ecological risk assessments, and ecological environmental protection.
We got 1982–2017 climatic data from the University of East Anglia Climatic Research Unit, Norwich,
England, and GPP data from National Earth System Science Data Sharing Service Platform, Beijing,
China. Using Theil–Sen median trend analysis and the Mann–Kendall test, we analyzed trends
in temperature and the standardized precipitation/standardized precipitation evapotranspiration
indices in the eight vegetation regions of China. Additionally, the response of GPP to the single and
combined impacts of heat and drought were analyzed using multidimensional copula functions, and
GPP reduction probabilities were estimated under different drought levels and heat intensities. The
results showed that the probability of a drastic GPP reduction increases with increasing drought levels
and heat intensities. The combined impacts of heat and drought on vegetation productivity is greater
than the impacts of either drought or heat alone and presents a nonlinear superposition of the two
extremes. The impact of heat on GPP is not evident when the drought level is high. The temperate
grassland and warm temperate deciduous broad-leaved forest regions are the most sensitive regions
to drought and heat in China. This study provides a scientific basis for the comprehensive evaluation
of the risk of GPP reduction under the single and combined impacts of heat stress and drought stress.

Keywords: GPP; heat; SPI; SPEI; copula function

1. Introduction

Gross primary production (GPP) refers to the total carbon amount fixed by green
vegetation per unit area per unit time through photosynthesis and is the material basis
for the survival and development of human society; changes in GPP affect the entire
terrestrial carbon cycle [1,2]. CO2 fertilization and extensions of the growing season are
expected to enhance vegetation growth because of ongoing global warming [2], and there is
evidence of increased vegetation coverage worldwide, even in some semiarid regions [3,4].
However, the frequency, persistence, and magnitude of extreme climate events such as
droughts, storms, floods, heat, heat waves, extremely low temperatures, and heavy rains
are projected to further increase in the mid-to-late 21st century [1,2,5–7] and may pose
potential threats to vegetation growth and terrestrial carbon uptake [8–10]. Understanding
the responses of terrestrial GPP to extreme climate events such as heat and drought in
the context of the potential aggravation of climatic extremes is of great significance for
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predicting the responses of global terrestrial ecosystems to future climatic changes with
confidence [11–15].

Drought stress is the main environmental factor limiting the productivity of terrestrial
ecosystems [16], and heat stress causes physiological damage to vegetation and reduces
vegetation productivity (including crop yield) [17]. Scholars have used GPP, net primary
productivity, net ecosystem productivity, and vegetation indices to characterize ecosystem
productivity in response to these two main climate anomalies, heat and drought, and have
performed a series of related studies on the impacts of drought and heat on terrestrial
ecosystem productivity on global and regional scales [1,18–21]. Several global studies
have shown that from 2000 to 2010, droughts caused declines in vegetation productivity
in most parts of the world [18,22,23]. On a regional scale, frequent drought events in
Africa in the past few decades have led to different degrees of famine, causing high
life and economic losses and seriously impeding the economic development of some
African countries [24–26]. In addition, due to global warming and drought, Australia
has recently experienced bushfires of unprecedented severity and scale [27]. Moreover,
droughts with different intensities and droughts occurring in different seasons have diverse
impacts on different ecosystems (grasslands, forests, farmland, etc.) and vegetation types
(broad-leaved forests, coniferous forests, etc.) [19,28–31]. Regarding heat, a study by
Ciais et al. [32] showed that insufficient precipitation and an extreme increase in summer
heat caused a decrease in vegetation productivity in Eastern and Western Europe in 2003.
Wohlfahrt et al. [33] found that GPP decreased linearly under short-term intense heat.
Studies focused on grain yield loss under high-temperature conditions have also been
performed [34,35].

The sensitivities of vegetation and adverse ecological effects to temperature rising are
particularly concerning [36,37], especially as the coincidence of temperature rising with
drought intensifies the physiological stress and mortality of global vegetation [38,39]. The
impact of the interaction between water availability and temperature on plant physiology
is strongly complex. Extremely warm conditions at the beginning of a growing season
may compensate for ecosystem carbon losses later during a water deficit; meanwhile,
early vegetation activity caused by extremely warm conditions likely also contributes to
exacerbating the impacts of drought through reduced initial soil moisture [15]. Moreover,
heat and drought often occur at the same time and interact with each other. Heat exac-
erbates water stress, which in turn increases heat damage. Dong et al. [36] found that
the sensitivity of climate warming regions to drought increased significantly in Southern
California, indicating that temperature played an important role in increasing vulnerability.
Buttlar et al. [15] studied the combination of heat and drought and found that compared
with any single-factor extreme, combined heat and drought events led to the strongest
observed carbon sink reduction.

At present, researchers often use two kinds of methods to study the impacts of extreme
climate events on GPP. One method is to compare and analyze GPP values obtained before
and after the occurrence of extreme climate events [32,40,41], and the other method is to
first extract the extreme climate events and extreme GPPs and then study the relationship
between them through correlation analysis [2,14,15]. Very few studies have utilized copula
functions to analyze the impacts of extreme climate events on vegetation GPP. The copula is
a probability model that represents a multivariate uniform distribution, and it can be used
to examine the association or dependence between many variables [42,43]. It is widely used
in statistics, finance, risk management, and other fields [44–46]. Therefore, based on climate
(temperature and precipitation) data, GPP data from 1982 to 2017, and China’s vegetation
zoning vector boundary data, this study analyzed the trends of GPP, temperature, and
the drought index (standardized precipitation index (SPI) and standardized precipitation
evapotranspiration index (SPEI)) in China over the past 36 years and estimated the proba-
bilities of extreme negative GPP anomalies under different heat and drought conditions by
using multidimensional copula functions. This study contributes to the understanding of
the possible distribution of GPP under specific climatic conditions, to making appropriate
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agricultural production decisions, and to understanding the biochemical dynamics of the
global ecosystem carbon cycle.

2. Study Region and Data
2.1. Study Region

China, 18◦10′N–53◦33′N, was the study area used in this research with the exclusion
of China’s South Sea area (Figure 1). There are obvious spatial differences in terrestrial
ecosystem GPP in China. High annual GPP values are mainly distributed in the eastern
region where there is high vegetation coverage, while low annual GPP values are dis-
tributed in the western region where there is low vegetation coverage. Due to differences in
vegetation phenology, GPP generally increases from northwest to southeast. The study area
was divided into eight subregions according to China’s vegetation zoning data. It should
be noted that the eight subareas are used for geographical zoning rather than vegetation
type zoning. The temperate desert region (R1), the temperate grassland region (R2), and
the climatic range of the alpine vegetation region on the Qinghai–Tibet Plateau (R3) are
restricted by insufficient precipitation or low temperatures and have sparse vegetation and
low GPP levels [47–49]. Precipitation in the temperate coniferous and deciduous forest
mixed forest region (R7) and the cold temperate coniferous forest region (R8) is abundant;
vegetation growth in these regions is mainly restricted by temperature and radiation, and
the vegetation coverage and GPP are relatively high [50]. The warm temperate deciduous
broad-leaved forest region (R6) is an agricultural grain-producing area in North China,
and the GPP level in this region is higher than that in the surrounding area [51]. The
vegetation productivity levels of the subtropical evergreen broad-leaved forest region (R4)
and the tropical monsoon forest and rainforest region (R5) are vigorous. Temperature,
precipitation, and light are all conducive to vegetation growth, and these factors contribute
to the GPP of R5 being the highest among all zones. In addition, GPP in China presents
obvious seasonality [51]. The seasonal dynamics of GPP among the different ecological
zones present a single-peak type, with the maximum values occurring in summer [52]. The
negative impacts of climate change on China’s natural ecosystems and agriculture have
been widely reported [53–55].

Figure 1. Eight vegetation regions in China.
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2.2. Data

Three main types of data were utilized in this study. First, monthly potential evapotran-
spiration, near-surface average daily maximum and mean temperature, and precipitation
data from 1979 to 2017 were derived from the University of East Anglia Climatic Research
Unit (CRU) Time-Series (TS) version 4.04 dataset (https://catalogue.ceda.ac.uk/uuid/
89e1e34ec3554dc98594a5732622bce9) with a 0.5◦ resolution [56]. To be consistent with
the resolution of the GPP dataset, the nearest neighbor method was used to resample
the climate data from a resolution of 0.5◦ to a resolution of 0.05◦. CRU TS data have
been widely used to explore the possible impacts of climate change in different fields of
study. Many studies have also verified the accuracy of the CRU TS dataset, including
studies on potential evapotranspiration [57], precipitation [57–59] and temperature [58],
and proved the efficiency of the dataset in climate change studies and extreme climate
event analyses. Second, GPP data were obtained from the National Science and Technology
Basic Conditions Platform-National Earth System Science Data Sharing Service Platform
(http://www.geodata.cn), which provides GPP data with a resolution of 0.05◦ from 1982
to 2017 on a time scale of 8 d. This data set was estimated by the EC-LUEEC-LUE (Eddy
Covariance Light Use Efficiency) model developed by Yuan et al. [60], and the results of
a verification of the dataset showed that its simulation capability exceeded that of the
MODIS (Moderate Resolution Imaging Spectroradiometer) GPP product. MODIS GPP was
produced by National Aeronautics and Space Administration (NASA), Washington, DC,
USA. Third, China’s vegetation zoning vector boundary data were obtained from the 1:1
million vegetation coverage map of China from the Data Sharing Center of the Institute
of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
Beijing, China (http://www.resdc.cn/). The zoning data reflect the detailed regional distri-
bution and zonal differentiation of vegetation in 36 subareas of the 8 vegetation regions
of China.

3. Method

Figure 2 is a technical flowchart of this study that mainly includes four steps: the
calculations of the drought index, annual average GPP, annual GPP anomaly, yearly average
of the near-surface daily mean temperature (hereinafter referred to as T), and the maximum
of the monthly average daily maximum temperature of each year (hereinafter referred to as
Tmax); trend analyses of annual average GPP, T, and the drought index; the construction of
joint probability distribution models for GPP anomalies, Tmax, and the drought index; and
the probability estimation of extreme negative anomalies of GPP (ENAG) under different
drought and heat levels.

3.1. GPP and Extreme Negative Anomalies

An anomaly reflects fluctuations in the sample data, and positive and negative
anomalies represent increases or decreases in the sample, respectively, in response to
the long-term general condition of the data. According to the method proposed by
Papagiannopoulou et al. [61], the removal of the linear trend of the annual average GPP
time series (Equations (1) and (2)) was performed pixel by pixel as follows:

yt ≈ yt
Tr = α0 + α1t (1)

yt
D = yt − yt

Tr, (2)

where yt is the original time series of GPP, yt
Tr is the trend series during the study period,

yt
D is the series data without a linear trend, t is the time series data during the study period,

and α0 and α1 are the intercept and slope of the linear fit between GPP and the time series,
respectively.

After de-trending, we got the de-trended average annual GPP time series (that is the
GPP anomaly time series). Then, according to the method developed by Wang et al. [14],

https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9
https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9
http://www.geodata.cn
http://www.resdc.cn/
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ENAG was defined as GPP anomaly at least −1.5 times standard deviation (σ) lower than
the mean value based on the GPP anomaly time series.

Figure 2. Technical flowchart of the study. CRU TS: University of East Anglia Climatic Research Unit (CRU) Time-Series (TS);
GPP: gross primary production; SPI: standardized precipitation index; SPEI: standardized precipitation evapotranspiration
index; T: yearly average of the near-surface daily mean temperature; Tmax: the maximum of the monthly average daily
maximum temperature of each year.

3.2. Heat Intensities

Based on previous studies [2,15], a threshold method was utilized to define heat
events. The temperature thresholds were defined as the 99th, 95th, and 90th percentiles of
all Tmax values, which corresponded to severe, moderate, and mild heat, respectively. For
a given year, Tmax is maximum of monthly near-surface average daily maximum.

3.3. Drought Indices and Levels

A large number of indices have been developed to quantify and analyze drought [62–64].
The SPI [65] and SPEI [66] are two commonly used drought indices with multiscale charac-
teristics that are suitable for different periods and regions [67,68]. The SPI value refers to
the number of standard deviations by which the observed precipitation anomaly deviates
from the long-term mean precipitation [65]. The raw precipitation data are firstly fitted to
a gamma or a Pearson Type III distribution, and then they are transformed to a normal
distribution. Therefore, the mean SPI for the location and desired period is zero. Positive
SPI values indicate rainfall surplus, whereas negative SPI values represent rainfall deficit.
The SPI is based on precipitation alone and does not deal with the evapotranspiration. SPEI
is an extension of the SPI and takes both precipitation and potential evapotranspiration into
account when determining drought [69,70]. Thus, SPEI can capture the impact of increased
temperatures on water demand. In this study, we used both SPI and SPEI. To match the
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time scales of GPP and temperature series, 12-month time scale SPI and SPEI (hereinafter
referred to as the SPI and SPEI) were calculated. A 12-month scale of the SPI/SPEI indicates
the meteorological dryness (or wetness) of the previous 12 months as compared to historical
observations. The potential evapotranspiration in the SPEI was calculated according to
the FAO (Food and Agriculture Organization of the United Nations)-56 Penman–Monteith
method [71]. According to the SPI/SPEI drought classification standard, the value ranges
of mild, moderate, severe, and extreme drought are (−1, −0.5], (−1.5, −1], (−2, −1.5], and
(−∞, −2], respectively.

3.4. Trend Analysis

A combination of the Theil–Sen median trend analysis and the Mann–Kendall test
was used to analyze the annual average GPP, drought index, and T trends. The Theil–Sen
median can be used to calculate the median slope value of a time series, which can reduce
the influence of noise on the slope and has minimal discrete data and measurement errors.
The Mann–Kendall test can calculate the significance of time series changes that are not
affected by outliers and is suitable for the trend testing and analysis of long time series.
The Mann–Kendall test is a nonparametric statistical method that is recommended by
the World Meteorological Organization and has been widely used [72]. One thing to be
noted here is that hydrological and ecological time series are always affected by lag-1 serial
correlation, which may overestimate the probability of detecting a significant trend [73].
Therefore, the lag-1 serial correlation was removed before using Mann–Kendall test.

3.5. Copula Function

Copula is a very convenient tool for constructing joint distribution and nonlinear
correlation analyses with known marginal distributions [42]. It is also called the connection
function. Any multivariate joint distribution can be written in terms of univariate marginal
distribution functions and a copula that describes the dependence structure among vari-
ables. Suppose x1, x2, ··· , xn are N random variables, their marginal distributions are
Fx1(x1), Fx2(x2), ··· , Fxn(xn), and their joint distributions are H(x1, x2, ··· , xn); then
there is a function C(u1, u2, ··· , un) to connect the marginal distribution and the joint
distribution, such that H(x1, x2, ··· , xn) = C[Fx1(x1), Fx2(x2), ··· , Fxn(xn)]. In this study,
the overall joint distribution was obtained from the marginal distribution of each element.
When calculating the marginal distribution of variables, it is often difficult to assume the
distribution of a sequence per pixel; therefore, the kernel density estimation method [24]
was used in this study to calculate the marginal distributions of the annual GPP anomaly,
Tmax, and drought index for each pixel.

Copula functions are categorized into many types according to their construction
methods and specific uses. The bivariate normal copula function and the bivariate t-
copula function have wide ranges of applications for correlation analysis. Single-parameter
Archimedes-type copula functions have simple structures and are easy to solve. Commonly
used single-parameter Archimedes-type copula functions include the Frank, Clayton, and
Gumbel copula functions, among which the Clayton and Gumbel copula functions can only
be used to calculate the joint distribution between positively correlated variables, while
the Frank copula function is applicable to both positive and negative correlations. In this
study, bivariate normal, t-, and Frank copula functions of the Archimedes type were used
to construct 2D joint distributions between the annual GPP anomaly and drought index
and between the annual GPP anomaly and Tmax. The Euclidean distance (D2) between
the empirical and theoretical copula, Akaike and Bayesian information criteria was used to
evaluate the accuracy of the model’s fit and to select the optimal model. Smaller D2 values
and Akaike and Bayesian information criterion values indicate better model fits than larger
values. The three-element normal and t-copula functions were used to construct the 3D
joint distribution between the annual GPP anomaly, drought indices, and Tmax, and the
optimal model was selected according to the D2 value.
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4. Results and Analysis
4.1. Trend and Trend Persistence Analysis of GPP, Temperature, and Drought Indices

According to the Theil–Sen median trend analysis and the Mann–Kendall test, the
change trends of the annual average GPP, T, and drought indices from 1982 to 2017 were
calculated pixel by pixel (p < 0.05). The results are shown in Figure 3.

Figure 3. Temperature and standardized precipitation index (SPI)/standardized precipitation evapotranspiration index
(SPEI) trends from 1982 to 2017. (a,c,e) represent the spatial distributions of the temperature, SPI, and SPEI trends,
respectively; (b,d,f) represent the proportion of pixels with different temperature, SPI, and SPEI trends, respectively, to the
total number of pixels in the eight vegetation regions of China.

In terms of the effect of global warming on temperature, except for in the northernmost
parts of northeast China and southern parts of the subtropical evergreen broad-leaved forest
region (R4), the temperature in all other vegetation regions showed an overall warming
trend over the past 36 years (Figure 3a,b). In terms of drought, the SPI (Figure 3c) and SPEI
(Figure 3e) indicated that 41.4% and 77.7% of the total pixels, respectively, contained drying
trends. The pixels with significant wetting trends, derived from both the SPI and SPEI,
were mainly distributed in the alpine vegetation region on the Qinghai–Tibet Plateau (R3);
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however, compared with the results of the SPEI, the SPI detected more wetting pixels in the
alpine vegetation region on the Qinghai–Tibet Plateau (R3) and the temperate desert region
(R1) (Figure 3d,f). Additionally, compared with the results of the SPI, the SPEI detected
more drying pixels, particularly in the arid and semiarid areas of central and western China
(Figure 3c,e).

4.2. Impact of Drought on GPP

A 2D joint distribution of the annual GPP anomaly and drought index (SPI/SPEI)
sequences was constructed utilizing the 2D copula function pixel by pixel, and then the
ENAG probability was calculated under different drought levels for each pixel.

The ENAG probability in each vegetation region decreased with decreasing SPI
drought levels (Figure 4a,c,e,g). Under extreme drought conditions, the ENAG proba-
bility reached 87.1%, and pixels with a probability greater than 60% accounted for 7.3%
of the entire study area, mainly located in the temperate grassland region (R2), the sub-
tropical evergreen broad-leaved forest region (R4), and the warm temperate deciduous
broad-leaved forest region (R6). Under severe drought conditions, the areas with high
ENAG probabilities were significantly reduced and mainly occurred in small portions of
the temperate grassland region (R2) and the warm temperate deciduous broad-leaved
forest region (R6). When a moderate drought occurred, all pixels in the study area had an
ENAG probability below 40%, and when a mild drought occurred, the ENAG probability
was less than 20% in all regions.

The spatial distributions of pixels representing the ENAG probabilities calculated
from the SPEI (Figure 4b,d,f,h) were similar to those calculated from the SPI. Under SPEI-
derived extreme drought conditions, the number of pixels with an ENAG probability
occurrence greater than 80% was reduced. Pixels with high ENAG occurrence probabilities
(>60%) only occurred in a few portions of the temperate grassland region (R2), the warm
temperate deciduous broad-leaved forest region (R6), and the temperate coniferous and
deciduous forest mixed forest region (R7); the highest occurrence probability was 83.4%.
Under severe drought conditions, the highest ENAG probability was 65.2%. There was
no obvious difference between the SPI and SPEI results when moderate or mild drought
events occurred, but the ENAG probabilities calculated in terms of the SPI were generally
higher than those calculated in terms of the SPEI.

As the drought level increased, the drought impact gradually increased in each veg-
etation region, and the higher the drought level was, the more evidently the ENAG
probabilities increased (Figure 5). According to the total average probabilities of ENAG
under different drought levels, the impacts of SPI-derived drought on GPP in different
vegetation regions were determined in order from highest to lowest as follows: the temper-
ate grassland region (R2, 68.22%) > the warm temperate deciduous broad-leaved forest
region (R6, 65.56%) > the subtropical evergreen broad-leaved forest region (R4, 49.04%) >
the tropical monsoon forest and rainforest region (R5, 48.13%) > the temperate coniferous
and deciduous forest mixed forest region (R7, 44.87%) > the cold temperate coniferous
forest region (R8, 43.20%) > the alpine vegetation region on the Qinghai–Tibet Plateau (R3,
24.99%) > the temperate desert region (R1, 23.47%). The impacts of SPEI-derived drought
were determined in order from highest to lowest as follows: the warm temperate deciduous
broad-leaved forest region (R6, 59.68%) > the temperate grassland region (R2, 51.71%) >
the subtropical evergreen broad-leaved forest region (R4, 47.27%) > the tropical monsoon
forest and rainforest region (R5, 46.00%) > the temperate coniferous and deciduous forest
mixed forest region (R7, 43.03%) > the cold temperate coniferous forest region (R8, 42.28%)
> the alpine vegetation region on the Qinghai–Tibet Plateau (R3, 21.16%) > the temperate
desert region (R1, 20.78%).
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Figure 4. Spatial distribution of the probabilities of ENAG under different drought levels. (a,c,e,g)
represent extreme, severe, moderate, and mild droughts classified in terms of the SPI, respectively;
(b,d,f,h) represent extreme, severe, moderate, and mild drought classified in terms of the SPEI,
respectively. (Note: The copula function cannot be built in the pixels where the GPP data are missing
or the GPP value is constant in all years. Those pixels were removed and are shown as white).
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Figure 5. Boxplots of ENAG probabilities in each vegetation region under different drought levels.
(a,c,e,g) represent extreme, severe, moderate, and mild drought classified in terms of the SPI, respec-
tively; (b,d,f,h) represent extreme, severe, moderate, and mild drought classified in terms of the SPEI,
respectively.

4.3. Impact of Heat on GPP

A 2D joint distribution of the annual GPP anomaly and Tmax sequences was con-
structed utilizing the 2D copula function pixel by pixel, and the ENAG probability (dra-
matic decrease in GPP) under different heat intensities was calculated for each pixel. The
results are shown in Figure 6.
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Figure 6. ENAG probabilities under different heat intensities. (a,c,e) represent the spatial distributions of the probabilities
under severe, moderate, and mild heat, respectively; (b,d,f) represent the boxplots of ENAG probabilities in each vegetation
region under severe, moderate, and mild heat, respectively (Note: the pixels displayed in white have the same meaning as
Figure 4).

Generally, the ENAG probabilities under high-temperature conditions were less than
those under drought conditions. Under severe heat, the maximum ENAG probability was
66.6% (Figure 6a). Pixels with ENAG probabilities greater than 40% sporadically appeared
in the temperate grassland region (R2) and the subtropical evergreen broad-leaved forest
region (R4), and pixels with ENAG probabilities between 20% and 40% mainly occurred
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in the temperate grassland region (R2), the subtropical evergreen broad-leaved forest
region (R4), and the warm temperate deciduous broad-leaved forest region (R6). When the
temperature intensity was reduced from high to moderate or mild (Figure 6c,e), ENAG
probabilities greater than 40% only occurred in a few pixels, mainly located in the eastern
part of the subtropical evergreen broad-leaved forest region (R4). In other areas, the ENAG
probabilities were generally less than 20%.

When heat intensities increased, the ENAG probabilities in each vegetation region
increased, and the higher the heat intensity was, the greater the increase in the ENAG
probability was (Figure 6b,d,f). In terms of the total average ENAG probability, the impact
of heat on GPP in the different vegetation regions was calculated in order from highest
to lowest as follows: the temperate grassland region (R2, 39.66%) > the warm temperate
deciduous broad-leaved forest region (R6, 38.20%) > the subtropical evergreen broad-leaved
forest region (R4, 37.28%) > the tropical monsoon forest and rainforest region (R5, 35.88%)
> the cold temperate coniferous forest region (R8, 34.56%) > the temperate coniferous
and deciduous forest mixed forest region (R7, 30.28%) > the temperate desert region (R1,
14.94%) > the alpine vegetation region on the Qinghai–Tibet Plateau (R3, 14.64%).

4.4. Comprehensive Impact of Drought and Heat on GPP

The conditional ENAG probability of each pixel under different drought levels and
heat intensities was calculated by constructing a 3D joint distribution of the annual GPP
anomaly, SPI/SPEI, and Tmax. The results are shown in Figures 7 and 8.

The spatial distribution of ENAG probabilities under conditions of extreme drought
and severe heat (Figures 7a and 8a) is more similar to the distribution of ENAG probabilities
under extreme drought (Figure 4a,b) than to the distribution of ENAG probabilities under
severe heat (Figure 6a). Overall, when heat and drought occur simultaneously, the ENAG
probabilities are higher and the number of pixels with high ENAG probabilities increases.

When the drought level and heat intensity weaken, the ENAG probability in each
vegetation region decreases. In the SPI scenario, the maximum ENAG probability was
reduced from 90.5% (under simultaneous extreme drought and severe heat conditions)
to 33.3% (under simultaneous mild drought and mild heat conditions), and in the SPEI
scenario, the maximum ENAG probability is reduced from 84.3% (under simultaneous
extreme drought and severe heat conditions) to 32.9% (under simultaneous mild drought
and mild heat conditions). Generally, the ENAG probability decreased as the drought level
decreased, and the higher the drought level was, the less the ENAG probability changed
with a change in the heat intensity. The difference in the average ENAG probability range
between severe and mild heat among the eight vegetation regions under SPI-derived (SPEI-
derived) extreme drought conditions was 5.99% (9.22%); however, there was no discernible
difference in the ENAG probability distributions. Under SPI-derived (SPEI-derived) mild
drought conditions (Figures 7 and 8j–l), the difference in the average ENAG probability
range between severe and mild heat of the eight vegetation regions was 16.01% (15.89%),
and the ENAG probability distribution showed an apparent difference with a decrease in
the heat intensity.



Remote Sens. 2021, 13, 378 13 of 21

Figure 7. Spatial distributions of ENAG probabilities under different drought levels and different heat intensities. From left
to right, the heat intensities decrease from severe to mild, and from top to bottom, the drought levels decrease from extreme
to mild (Note: the pixels displayed in white have the same meaning as Figure 4).
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Figure 8. Spatial distributions of ENAG probabilities under different drought levels (SPEI) and different heat intensities.
From left to right, the heat intensities decrease from severe to mild, and from top to bottom, the drought levels decrease
from extreme to mild (Note: the pixels displayed in white have the same meaning as Figure 4).

5. Discussion
5.1. Comparison of the SPEI and SPI

The SPEI trend was more evident than the SPI trend. The SPEI and SPI showed
that pixels with significant change trends (including wetting trends and drying trends)
accounted for 24.5% and 9.6% of the total number of pixels, respectively. Compared to the
SPI, the SPEI detected a drying trend in the western arid regions, particularly in the tem-
perate desert region (R1). The main reason for this result might be that the SPEI considers
the impacts of precipitation and evapotranspiration on drought simultaneously. The SPEI
is very sensitive to the potential evapotranspiration calculation model and overestimates
the contributions of temperature changes to drought. A previous study also indicated that
the contributions of temperature anomalies to drought are often overestimated by the SPEI
in arid and semiarid regions [70], whereas the SPI ignores the contributions of temperature
anomalies. It is easy to cause wetness in arid and semiarid areas and dryness in humid
areas. Generally, both the SPI and SPEI mainly showed drying trends in northeast China
and wetting trends in the central portion of the Qinghai–Tibet Plateau. The SPI showed
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stronger trends in areas with tendencies to become wet, and the SPEI indicated stronger
trends in areas with tendencies to become dry.

Additionally, the difference in the average ENAG probability between the SPI and
SPEI was small under mild drought conditions and gradually increased with increasing
drought levels. (Figure 5). The ENAG probabilities calculated by the SPI were generally
higher than those calculated by the SPEI, which indicates that GPP was affected more by
changes in SPI-derived drought levels than by changes in SPEI-derived drought levels.
This was possibly caused by the positive correlation between temperature and vegetation
growth. All the vegetation regions in China showed significant warming trends. The
positive contribution of temperature partially offsets the negative effect of drought on GPP.
This reduces the ENAG probability when drought occurs so that the ENAG probabilities
based on the SPEI are lower than those based on the SPI.

5.2. Impacts of Heat and Drought on Different Vegetation Regions

Both heat and drought can cause ENAG, but the degrees of the responses of different
vegetation regions to heat and drought differ. According to the total average probability
of ENAG under different drought levels (Figure 5), the temperate grassland region (R2)
and the warm temperate deciduous broad-leaved forest region (R6) are the most sensitive
regions to drought; in these regions, the average ENAG probability is highest under
drought conditions. The main reason for this result is probably that most of the temperate
grassland region (R2) is located in the semiarid zone of northern China where precipitation
has a great impact on vegetation coverage. Due to the overall temperature increase,
meteorological drought events have caused soil aridification. Natural water shortages
have become a limiting factor restricting grassland productivity [74]. The warm temperate
deciduous broad-leaved forest region (R6) is the major crop-producing region in China, and
the recognized primary limiting factor for crop production in this region is drought due
to low annual precipitation [75,76]. As one of important agricultural drought mitigation
measures, irrigation is popular among farmers in R6 [77]. Irrigation relieves the impact of
extreme climate on crops. In theory, without the mitigation effect of irrigation, the ENAG
probability would be higher.

The most sensitive region to heat is also the temperate grassland region (R2), which
has a simple ecosystem structure and a weak self-regulation ability. Heat intensities cause
excessive transpiration and water loss in grasslands, resulting in metabolic imbalance. The
subtropical evergreen broad-leaved forest region (R4) and the tropical monsoon forest and
rainforest region (R5) in southern China are also sensitive to heat because these regions
are located in subtropical and tropical monsoon climate zones with adequate water and
heat resources. When heat occurs, the stomata of vegetation are closed to prevent excessive
transpiration of water, resulting in a decrease in the photosynthetic rate, which directly
causes the light reaction to be inhibited. The carbon dioxide absorbed by leaves is also
reduced under heat, and the dark reaction is inhibited. Heat at night accelerates organic
matter decomposition, which is not conducive to organic matter preservation. All these
factors contribute to the reduction in photosynthesis efficiency under high-temperature
conditions and affect vegetation growth. Chen et al. [2] studied the effects and drivers of
negative extreme events on gross primary productivity and pointed out that extreme GPP
events in southern China were mostly associated with temperature extremes, including
extreme heat.

Both heat and drought have the smallest impacts on the alpine vegetation region on
the Qinghai–Tibet Plateau (R3) and the temperate desert region (R1). Alpine vegetation has
high altitudes and low temperatures all year, both of which severely limit the productivity
of most alpine grasslands at all growth stages, and, appropriately, heat is conducive to
vegetation growth in this area. The latest research of You et al. [49] showed that GPP
was positively correlated with temperature across most parts of the grasslands of R3
during both the entire growing season and different growth stages. Precipitation that
affects vegetation growth mainly occurs in warm weather periods [78,79]. Additionally,
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the R3 region shows a significant wetting trend, and the drought impact in this region
is relatively restricted compared with that in the other regions. The R1 region has a
temperate, extremely arid climate with sparse rainfall. The typical vegetation in this region
is temperate desert vegetation, which generally exhibits heat resistance and xerophytic
characteristics; therefore, R1 is not sensitive to heat and drought.

In all the vegetation regions, the ENAG probability caused by heat is much smaller
than that caused by drought. The impact of extremely heat on GPP is negligible without a
long-term duration or drought stress (a water shortage) [15]. When heat and drought occur
simultaneously, the ENAG probability increases in most vegetation regions compared to
that under the impact of either heat or drought alone. The temperate grassland region (R2),
the subtropical evergreen broad-leaved forest region (R4), and the warm temperate decidu-
ous broad-leaved forest region (R6) have the highest ENAG probabilities (Figures 7 and 8),
which may cause fragile ecological environments and continuous ENAG occurrences. In
addition, the combined effects of heat and drought are not simply superimposed. When a
strong drought occurs, vegetation productivity is severely reduced; therefore, heat stress
will not cause further GPP loss. When the drought level is reduced to a moderate or mild
drought, the heat stress impact on the GPP is enhanced (Figures 7 and 8).

5.3. Research Contributions

First, this study introduced copula functions into the analysis of the impacts of drought
and heat on GPP. By constructing a 2D joint distribution of GPP and heat/drought and a 3D
joint distribution of GPP, heat, and drought, ENAG probabilities under different drought
levels and heat intensities were obtained. Generally, previous research on the impacts
of extreme climate events on GPP has been divided into two methodologies. In the first
method, drought or heat events that occurred in a certain period and region were selected
with which to monitor dynamic GPP changes under extreme climate conditions in the given
period compared with changes in other periods. In the second method, extreme events,
including extreme climatic events (heat, heat waves, extreme precipitation, extreme cold,
etc.) and extreme GPP events were first identified, and the relationship between extreme
climate events and extreme GPP was then analyzed by correlation analysis, regression
analysis, or other methods. Neither of the above methods consider interactions between
climate variables. The research method utilized in this study analyzed the influence
of drought and heat stress on GPP more intuitively from the perspective of probability
and considered the combined influence and synergistic effect of these two influences
on GPP. This methodology is conducive to understanding the possible results of the
distribution of GPP losses under extreme climate conditions and to providing a reference
for future research.

Second, this study reveals the nonlinear impacts of drought and heat on GPP. Accord-
ing to the 2D copula model of GPP and drought/heat, this study found that when the
drought level/heat intensity increases, the ENAG probability in each vegetation region
increases, and the higher the drought level/heat intensity is, the more the probability
increases. According to the 3D copula model, it was determined that the combined impact
of drought and heat on vegetation growth is not a simple linear accumulation. When the
drought level is low, heat has a big impact on GPP; however, when the drought level is
high, the impact of heat on GPP is limited, which is of great significance for future research
on the responses of vegetation to heat and drought.

Third, to study the interaction between vegetation and climate and to evaluate the
impact of climate change on vegetation, vegetation models have been rapidly developed.
A dynamic global vegetation model is a standard vegetation simulation model that mainly
uses climate data and CO2 concentrations as inputs to simulate the physiological processes
of vegetation and to allow for the quantitative understanding of the interaction between
vegetation and climate through coupling with climate models [80]. However, the climate
data utilized in this vegetation model mostly consist of precipitation and temperature
data that are transformed into environmentally limiting factors through functions that
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eventually become model parameters. This method often ignores interactions between
factors, such as between drought and heat, and results in the limiting effect of drought on
heat being overlooked, thus causing additional uncertainties in the simulation results if
they are considered separately. Therefore, future developments in vegetation simulation
models and improvements in simulation accuracy should focus on the synergistic effects
and potential nonlinear relationships between different stresses (such as drought and heat).

5.4. Limitations and Research Prospects

This study divided the research area into eight vegetation regions for analysis; how-
ever, the responses of vegetation to heat and drought are very different in each region
due to factors such as climate conditions, topographic differences, and vegetation types.
Furthermore, this study only focused on the impact of two types of extreme climate events,
heat and drought, which have universal coupling effects on GPP anomalies. However,
vegetation growth can be influenced by many other extreme climatic conditions, such as
flooding [81], low temperatures, and cold damage [82].

Additionally, at present, there is no unified definition of heat. Academia generally
believes that heat means that the temperature exceeds a certain threshold (including abso-
lute thresholds and relative thresholds), and the absolute threshold defines heat events in
terms of specific temperatures. Heat defined by absolute thresholds has more direct and
obvious influence on vegetation and increases the comparability between the responses of
different vegetation types to heat. However, it is difficult to obtain accurate heat threshold
data for different vegetation types due to the rich vegetation types in different vegetation
regions. Therefore, this study applied the 99th, 95th, and 90th percentile threshold values
of temperature anomaly sequences to define the heat intensities. This method conveniently
provides an adaptive heat definition that requires a long temperature time series without
frequent small climatic changes. Otherwise, the use of this method may cause uncer-
tainty in experimental results. Therefore, the influence of different definitions of heat on
research results and comparisons between different definitions should be considered in
future studies.

Finally, this study used copula functions to estimate ENAG probabilities under dif-
ferent heat intensities and drought levels; this method is more objective than traditional
nonprobabilistic evaluation methods. However, copula functions are difficult to use in
higher-dimensional research, such as in studies on the synergistic effects of heat, freezing,
heavy rain, and drought on GPP. In addition, different vegetation types have different re-
sponses to the time of occurrence of extreme climate events, and the responses of vegetation
to extreme climate events have certain hysteresis effects. This study did not identify the
time of occurrence of extreme climate events, nor did it distinguish between the growing
seasons and nongrowing seasons of vegetation. Considering the following three points,
our study was conducted on an annual scale. First, if analyzing the GPP of the growing
season, we must first determine the start and end time of the growing season of vegetation
in different regions (or even each pixel). The growing season of different vegetation in the
same area is different. For a given vegetation type and in the same region, its growing
season also varies in different years. There are also errors in determining the growing sea-
son. Second, the responses of vegetation to extreme climate events have certain hysteresis
effects. The drought before the growing season will affect the surface water storage, and
then it will affect the growth and development of vegetation [83,84]. Third, a drought index
with a 12-month time scale is often used in studies on the relationship between drought and
vegetation response [85–88]. However, future studies that comprehensively consider these
factors and conduct more detailed analyses, such as identifying various extreme climate
events within a vegetation region and analyzing their impacts on vegetation productivity
within a certain time window, are necessary.
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6. Conclusions

In this study, based on GPP data from the EC-LUE model and CRU TS 4.04 climatic
(temperature and precipitation) data, we analyzed the trends of temperatures and drought
indices (SPI/SPEI) in China and investigated the impacts of extreme climatic conditions
(drought and heat) on GPP by constructing multidimensional copula functions between
GPP and climate variables. The results showed that the SPI/SPEI showed an increasing
drought trend in 41.4%/77.7% of the total pixels, and the temperatures in each vegetation
region increased significantly. The impact of drought on GPP is greater than that of heat,
and their combined impact is greater than the impact of either single stress factor alone.
When the drought level is high, drought will limit the effects of heat on vegetation. Our
results implied that policymakers could pay more attention to GPP deficits in the temperate
grassland region (R2) and the warm temperate deciduous broad-leaved forest region (R6)
because they are most vulnerable to extreme events, including drought and heat, to mitigate
the potential impacts of future climate extreme events.
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