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Abstract: High throughput phenotyping (HTP) for wheat (Triticum aestivum L.) stay green (SG) is
expected in field breeding as SG is a beneficial phenotype for wheat high yield and environment
adaptability. The RGB and multispectral imaging based on the unmanned aerial vehicle (UAV) are
widely popular multi-purpose HTP platforms for crops in the field. The purpose of this study was to
compare the potential of UAV RGB and multispectral images (MSI) in SG phenotyping of diversified
wheat germplasm. The multi-temporal images of 450 samples (406 wheat genotypes) were obtained
and the color indices (CIs) from RGB and MSI and spectral indices (SIs) from MSI were extracted,
respectively. The four indices (CIs in RGB, CIs in MSI, SIs in MSI, and CIs + SIs in MSI) were used
to detect four SG stages, respectively, by machine learning classifiers. Then, all indices’ dynamics
were analyzed and the indices that varied monotonously and significantly were chosen to calculate
wheat temporal stay green rates (SGR) to quantify the SG in diverse genotypes. The correlations
between indices’ SGR and wheat yield were assessed and the dynamics of some indices’ SGR with
different yield correlations were tracked in three visual observed SG grades samples. In SG stage
detection, classifiers best average accuracy reached 93.20–98.60% and 93.80–98.80% in train and test
set, respectively, and the SIs containing red edge or near-infrared band were more effective than
the CIs calculated only by visible bands. Indices’ temporal SGR could quantify SG changes on a
population level, but showed some differences in the correlation with yield and in tracking visual
SG grades samples. In SIs, the SGR of Normalized Difference Red-edge Index (NDRE), Red-edge
Chlorophyll Index (CIRE), and Normalized Difference Vegetation Index (NDVI) in MSI showed high
correlations with yield and could track visual SG grades at an earlier stage of grain filling. In CIs, the
SGR of Normalized Green Red Difference Index (NGRDI), the Green Leaf Index (GLI) in RGB and
MSI showed low correlations with yield and could only track visual SG grades at late grain filling
stage and that of Norm Red (NormR) in RGB images failed to track visual SG grades. This study
preliminarily confirms the MSI is more available and reliable than RGB in phenotyping for wheat
SG. The index-based SGR in this study could act as HTP reference solutions for SG in diversified
wheat genotypes.

Keywords: high throughput phenotyping; stay green; wheat; RGB; multispectral imaging; UAV
remote sensing

1. Introduction

Wheat (Triticum aestivum L.) is a widely cultivated and consumed cereal crop globally
and breeding varieties with high and stable yields could reduce population growth and
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climate changes pressure [1,2]. Wheat yield mainly comes from canopy organ (leaf and
spike) photosynthesis during the grain filling stage. It is generally considered an effective
way to improve wheat yield by delaying wheat canopy organ senescence to maintain strong
photosynthetic capacity and provide more assimilates. The trait of delaying senescence and
prolonging canopy vigor in the late growth stage is called stay green (SG) [3–5]. In addition,
SG is a beneficial phenotype to wheat adaptability to abiotic stresses such as drought, heat,
salinity, and other environmental factors [6–8]. Therefore, breeding new wheat varieties
with excellent SG is an approved target, and phenotyping for SG is also an indispensable
task in high-yield and stress-resistance breeding. Wheat SG changes mainly occur from
the anthesis to the maturity stage, followed by stem and leaf greenness fading and spike
and grain maturity. However, wheat stay green is a complex biological phenomenon or dy-
namic quantitative trait, which is affected by multiple environmental factors, complicated
genetic mechanisms, diversified senescence patterns, and changes in microscopic biochem-
ical components during late development [9–11]. For wheat SG, precision screening and
identification are difficult to achieve by traditional phenotyping methods (visual scoring,
physiological and biochemical trait measurement, etc.) with great subjective influence
and disadvantages of being time consuming and laborious in natural populations in the
field. In this case, a large number of diversified genotypes are usually planted in hundreds
of plots. Furthermore, high throughput gene sequencing technology has made it easy to
obtain high-density gene markers. However, the lack of matched high-throughput phe-
notype data is still a bottleneck for natural population genome-wide association analysis
(GWAS) to mining excellent genes [12,13]. High throughput phenotyping technologies,
which aim to obtain crop phenotypes quickly and repeatedly, have received more attention
and have been applied to bridge the gap between genotypes and phenotypes [14–16]. For
field crops, unmanned aerial vehicle (UAV) multispectral and low-cost RGB (red, green,
blue) imaging platforms are considered promising high throughput field phenotyping
tools and have been widely verified in crops phenotyping [17–19]. Vegetation indices
(spectral indices) or color indices derived from multispectral or RGB imagery are widely
used in crop diversified phenotyping, such as pigments (chlorophyll, carotenoids, antho-
cyanins) content detection [20], phenology determination [21–24], canopy greenness, or
vigor assessment [25,26], yield prediction [27–29], and stress monitoring [30,31].

Furthermore, some relevant works concerned spectral index-based phenotyping for
crops stay green [32–35]. The vegetation indices calculated by specific spectral bands,
such as Normalized Difference Vegetation Index (NDVI) and Green Normalized Differ-
ence Vegetation Index (GNDVI), were tested to be promising alternative tools for visual
assessment in tracking wheat senescence or SG dynamic [3,36,37] and providing high-
throughput phenotype data for gene association analysis [38,39]. More enlighteningly,
Liedtke et al. [32] used sorghum temporal NDVI to construct secondary phenotypes (indi-
cators for canopy development rate, senescence rate, variances of maximum greenness at
flowering, etc.) for stay green phenotyping and initially verified their effectiveness in some
sorghum genotype samples. There are various spectral indices, and indices constructed by
different wavelength spectrums or calculation methods can usually be used as probes for
different phenotypes (micro or macro traits) of crops. It is meaningful for crop populations
with diverse genotypes to construct multi-throughput phenotypes with novel analytical
methods for SG from macro and micro traits to provide more options for applications at
different levels. Additionally, the potential of affordable and easier to use platforms in crop
phenotyping are also expected to be considered and explored to provide more cost-effective
alternatives options [40–42]. So, it is also necessary to adopt and compare consumer-grade
and professional-grade techniques for stay green phenotyping in diverse wheat genotypes.

Here, we collected canopy multi-temporal RGB and multispectral images of natural
wheat populations grown in the field using UAV and analyzed the time series of color
or spectral indices extracted from wheat images to explore high-throughput reference
solutions for SG phenotyping. Specifically, the aims of this study were to: determine
the availability of RGB and multispectral indices in SG phenotyping preliminarily by
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comparing their potential in distinguishing multiple key SG stages; select indices with
monotonic dynamics and different variation forms to calculate wheat temporal stay green
rates (SGR) and evaluate the potential of indices’ SGR in revealing the population SG
dynamics and their explanatory power for yield formation; and select some indices’ SGR
with different yield correlations to track their dynamics in different visual SG grades
samples and compare their applicability differences in SG phenotyping.

2. Materials and Methods
2.1. Experimental Site and Materials

This study was carried out on Cao Xinzhuang experimental farm (34◦18′15′′ N,
108◦5′40.77′′ E) in Yangling, Shaanxi, China (Figure 1) from April to June 2021. The test area
belongs to a warm temperate zone and is semi-humid and semi-arid region of east Asia.
The average annual temperature and precipitation in this area is about 13.0 ◦C and 630 mm,
respectively, and the rainfall in recent years is mainly concentrated from August to October.
There were 565 wheat (Triticum aestivum L.)genotypes in this study, including the main
domestic varieties, core germplasm, local farm varieties, backbone parents, representative
varieties of different periods in China, and critical materials introduced from abroad. The
experiment adopted a nonreplicated augmented design with five replicated check varieties
(‘Zhoumai18’, ‘Jimai22’, ‘Bainong207’, ‘Xinong511’, and ‘Yanzhan4110’) and plots of 6 m2

(1.2 m wide × 5 m long) with six rows spaced 0.20 m apart. A total of 640 sample plots
were planted in 18 October 2020 with a planting density of 270 plants/m2. The organic
matter, pH value, NH+

4 -N, NO−3 -N, available phosphorus, and available potassium of the
soil (0–40 cm) in this experimental field were 13.66–15.25 g/kg, 7.89–8.10, 0.38–0.51 mg/kg,
27.70–35.60 mg/kg, 9.96–14.41 mg/kg, and 137.72–153.03 mg/kg, respectively. Wheat
samples were protected from weeds, pests, and diseases during growth. For follow-up
analysis, we selected 450 samples (including 406 genotypes) with a slight phenological
difference and without lodging in a late growth period.
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Figure 1. Experimental site; (A) Shaanxi Province, China; (B) Cao Xinzhuang Farm in Yangling Zone.

2.2. Rainfall and Air Temperature Records

It was known from the National General Weather Station in Yangling, China that there
were three rainfalls during the test period, specifically about 41 mm from April 23 to 25,
15 mm from May 2 to 3, and 32 mm from May 14 to 15. A field weather station recorded
the daily air maximum, minimum and average temperature during the test period in this
experimental field (Figure 2).
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2.3. Data Acquisition

Two high-throughput platforms were used to collect data in this study. One was
DJI Phantom 4 Real-Time Kinematic (RTK) (DJI Technology, Shenzhen, China) integrated
with a low-cost digital camera (COMOS sensor) to record RGB images (spatial resolution:
5472 × 3648 pixels) containing geographic location information. Another was Matrice 200
V2 UAV (DJI Technology, Shenzhen, China) equipped with a Micasense Altum (AL08)
multispectral camera (Micasense, Seattle, WA, USA). The multispectral platform could
record five spectral band images (spatial resolution: 2064 × 1544 pixels) with geographic
location information at the same time and these bands and their respective central wave-
length (band width) were specifically Blue (B), 475(32) nm; Green (G), 560(27) nm; Red (R),
668(16) nm; Red Edge (RE), 717(12) nm; and Near Infrared (NIR), 840(57) nm. In addition,
the downwelling light sensor (DLS) was used to correct for ambient light and solar angle
changes during flight, and the calibrated reflectance panel (CRP) was used to calibrate the
bands’ reflectance in a multispectral platform, and these were not available in the RGB
platform. From wheat heading to maturity, multi temporal data was acquired at the sunny
midday with light cloud, low wind and appropriate sun angles to ensure the ambient light
was relatively consistent and there was no UAV shadow in each acquired image during the
flight. We investigated and recorded the development or phenology stages of the wheat
population with the Feekes Scale [2] method (more details were given in Table 1).

Table 1. Timeline and parameters of data acquisition and wheat phenology.

Date
Altitude (m) Ground Resolution

(cm/pixel) Speed (m/s) Overlap
Phenology

RGB MSI RGB MSI RGB MSI RGB MSI

22 April 25 26 0.683 1.11 1.9–2.1 1.5–1.7 75–85% 85–90% Heading Stage
30 April 25 26 0.686 1.20 1.9–2.1 1.5–1.7 75–85% 85–90% Anthesis Stage
4 May 25 26 0.688 1.12 1.9–2.1 1.5–1.7 75–85% 85–90% Watery Ripe Stage
8 May 25 26 0.687 1.15 1.9–2.1 1.5–1.7 75–85% 85–90% Watery Ripe Stage

12 May 25 26 0.687 1.15 1.9–2.1 1.5–1.7 75–85% 85–90% Watery Ripe Stage
17 May 25 26 0.685 1.15 1.9–2.1 1.5–1.7 75–85% 85–90% Watery Ripe Stage
20 May 25 26 0.684 1.23 1.9–2.1 1.5–1.7 75–85% 85–90% /
24 May 25 26 0.684 1.20 1.9–2.1 1.5–1.7 75–85% 85–90% Mealy ripe stage
26 May 25 26 0.684 1.29 1.9–2.1 1.5–1.7 75–85% 85–90% Mealy ripe stage
28 May 25 26 0.684 1.23 1.9–2.1 1.5–1.7 75–85% 85–90% Mealy ripe stage
30 May 25 26 0.686 1.22 1.9–2.1 1.5–1.7 75–85% 85–90% Kernel Hard Stage
1 June 25 26 0.686 1.17 1.9–2.1 1.5–1.7 75–85% 85–90% Kernel Hard Stage
4 June 25 26 0.684 0.98 1.9–2.1 1.5–1.7 75–85% 85–90% /
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2.4. Data Processing and Indices Extraction

Firstly, the original single RGB and multispectral images of wheat canopy with con-
tinuous geographical position obtained by UAV were mosaicked by Pix4D mapper 4.5.6
software (https://www.pix4d.com/, accessed date: 1 October 2021) to generate the or-
thophoto maps of each channel in the RGB space and five spectral bands in multispec-
tral imaging. For multispectral images, irradiance compensation and radiometric and
reflectance calibration were performed with the irradiance data recorded by DLS and
reflectivity calibration coefficients in CRP during image mosaic pre-processing. Then, the
geographic correction of orthophoto maps was executed based on ground control points
(GCPs) through Quantum GIS (QGIS) 3.10.10 software (https://www.qgis.org/en/site/,
accessed date: 1 October 2021) to calibrate the geographical position deviation of different
stages of images. We made the shapefile of each plot and cropped the plots based on
their respective shapefile in QGIS and the Green Leaf Index (GLI) map in RGB, and the
normalized difference vegetation index (NDVI) map in the MSI of the wheat heading
stage were segmented using the threshold method (the threshold was set to 0.1 in GLI and
0.5 in NDVI) to generate mask images for removing the background. Finally, diversified
indices constructed from visible or near-infrared bands in RGB and MSI were calculated in
MATLAB2020a software (https://ww2.mathworks.cn/, accessed date: 6 October 2021).
The definition and formulas of the indices applied in this study were shown in Table 2,
and indices were divided into the following types: 10 visible color indices (CIs) of RGB
(RGB_CIs), 10 visible CIs of MSI (MSI_CIs), and 11 visible and near-infrared (Vis/Nir)
spectral indices(SIs) of MSI (MSI_SIs).

Table 2. List of indices extracted in this study.

Type INDEX NAME Acronym Formula Reference

SIs in MSI

Normalized difference red edge index NDRE (Rnir − Rre)/(Rnir + Rre) [43]
Normalized difference vegetation index NDVI (Rnir − Rr)/(Rnir + Rr) [32]

Green normalized difference vegetation index GNDVI (Rnir − Rg)/(Rnir + Rg) [44]
Blue normalized difference vegetation index BNDVI (Rnir − Rb)/(Rnir + Rb) [44]

Normalized difference red edge red index NDREI (Rre − Rr)/(Rre + Rr) [44]
Normalized difference red edge green index GNDREI (Rre − Rg)/(Rre + Rg) /
Normalized difference red edge blue index BNDREI (Rre − Rb)/(Rre + Rb) /

Red edge chlorophyll Index CIRE (Rnir/Rre) − 1 [45]
Anthocyanin reflectance index1 ARI1 (1/Rg) − (1/Rnir) [46]
Anthocyanin reflectance index2 ARI2 [(1/Rg) − (1/Rnir)] × Rnir [46]

Optimized soil adjusted vegetation index OSAVI 1.16 × (Rnir − Rr)/(Rnir + Rr + 0.16) [47]

CIs in RGB, MSI

Normalized green red difference index NGRDI (Rg − Rr)/(Rg + Rr) [48]
Normalized green blue difference index NGBDI (Rg − Rb)/(Rg + Rb) [49]

Norm red NormR Rr/(Rg + Rr + Rb) [44]
Norm green NormG Rg/(Rg + Rr + Rb) [44]
Norm blue NormB Rb/(Rg + Rr + Rb) [48]

Green leaf index GLI (2 × Rg − Rr − Rb)/(2*Rg + Rr + Rb) [48]
Green red ratio GR Rg/Rr /

Excess green index ExG 2 × Rg − Rr − Rb [43]
Visible atmospherically resistant index VARI (Rg − Rr)/(Rg + Rr − Rb) [48]

Excess red index ExR 1.4 × Rr − Rg [48]

Note: Rb, Rg, Rr, Rre, Rnir, represented the reflectance (0–1) of images at NIR, RE, R, G and B band, respectively, in MSI; Rb, Rg, Rr,
represented gray values (0–255) of R, G, B channel in RGB, respectively.

2.5. Data Analysis Methods

Firstly, four types of indices, namely RGB_CIs, MSI_CIs, MSI_SIs and MSI_CIs + SIs
(MSI_CIs + MSI_SIs) were respectively used to classify four key stay green stages by
machine learning classifiers to determine RGB and MSI feasibility preliminarily in SG
phenotyping. The stages were the anthesis stage (S1), watery ripe stage (S2), mealy ripe
stage (S3), and kernel hard stage (S4), and their data was correspondingly obtained on
30 April, 12 May, 24 May, and 1 June. Here, Support Vector Machine (SVM), Quadratic
Discriminant Analysis (QDA), K-Nearest Neighbor (KNN), and Ensemble Learning (EL)
classifiers were taken for stage classification, and these supervised algorithms had been
widely used in state detection and featured analysis in plant science [50–53]. We used
classifier classification accuracy and confusion matrix to assess the validity of input indices
and tools’ phenotyping potential.

https://www.pix4d.com/
https://www.qgis.org/en/site/
https://ww2.mathworks.cn/
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Secondly, all indices’ change trends during SG decay were analyzed with high tempo-
ral resolution data for selecting the indices with a monotonous variation on the whole and
obvious relative change ratios in the heading stage and maturity stage. To quantitatively
compare the SG between genotypes, the wheat sample’s relative stay green rates (SGR)
were proposed and calculated based on the relationship between senescense and stay green
with the time series of selected indices. Here, index SGR was abbreviated as SG_Index;
for example, NDRE SGR was abbreviated as SG_NDRE, while the SGR of GLI in RGB
and MSI was abbreviated as SG_ GLI_ RGB and SG_GLI_MSI. The state of wheat at the
heading stage was used as the maximum SGR reference (100%), and the index at this stage
was labeled as Index_S0, and the index of the i stage (such as anthesis stage, water ripe
stage, and mealy ripe stage) was labeled as Index_Si. Wheat senescence rate at i stage
(SenR_Index_Si) was calculated according to Equation (1) and stay green rate at i stage
(SG_Index_Si) was calculated according to Equation (2).

SenR_Index_Si = 100%× | Index_S0− Index_Si|
|Index_S0| (1)

SG_Index_Si = 100%− SenR_Index_Si (2)

Thirdly, we substituted the time series data of each selected index into the above
two equations to calculate its temporal SGR. Moreover, the dynamics of selected indices
SGR from flowering to maturity stages were analyzed and their correlations with samples’
yield were evaluated and compared using Multiple Linear Regression (MLR), and linear
Support Vector Regression (SVR). To explore the index SGR feasibility as an alternative
to visual assessment, the dynamics of some indices’ SGR with different yield correlations
were compared in tracking three stay green grade samples identified by manual visual
scoring at late growth stages.

3. Results
3.1. Stay Green Stages Classification Results

The 450 samples in the wheat population at each stage were divided into the train-
ing set (350 samples) and test set (100 samples) by the Kennard–Stone [54] algorithm,
and all training samples (1400 samples) and test samples (400 samples) were used for
classifier training and testing, respectively. SVM (cubic polynomial as kernel function),
QDA, KNN (10 neighbors and Euclidean distance measure), and EL (Adaboost method
with 1000 discriminant learners) models with 10-fold cross-validation were built by scale-
adjusted indices of each type. All indices obtained acceptable results, and their best average
classification accuracy in training and test sets attained 93.20–98.60% and 93.80–98.80%,
respectively (Table 3). They indicated that RGB and MSI could detect different stay green
stages of the wheat population to a certain extent. Specifically, RGB_CIs obtained better
results than MSI_CIs, but not than MSI_SIs, and MSI_CIs + SIs contained nearly twice
as many indices as MSI_Vis/Nir_11indices, but its results were only slightly improved.
Classifier confusion matrices of S1, S2, S3, and S4 presented the visualization results in more
detail and showed the same comparison results as above (Figure 3), and the misclassified
samples were mainly concentrated in adjacent stages.

3.2. Indices Dynamics Analysis Results

The time series curves of image-based indices were indirect tools to describe crop
growth, and we screened indices with such monotonous variations as SG unidirectional de-
cay during grain filling. Moreover, index correlations and relative average variation ratios
in heading and maturity stages were also used to simplify the number of analyzed indices.

Index trends were recorded (Tables 4 and 5), and their dynamics generally showed
three types from heading to maturity. The first type was a monotonous decline with two
modes. One mode was a slow decline in the early and middle stage, the fast decline in
late-stage and indices of this mode included NDRE, NDVI, NDREI, OSAVI (Figure 4A),
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GNDVI, BNDVI, GNDREI, and BNDREI in MSI and GLI, NGRDI (Figure 4C), NormG and
GR in both sensors. The other mode was a fast decline in the early and middle stage, slow
decline in late-stage, and CIRE, ARI2 (Figure 4B), and ARI1 belonged to this mode. The
second type was a monotonic rise and rose slowly in the early and middle stage and fast in
the late stage, and NromR (Figure 4D) and ExR in both sensors were this type. The third
type was nonmonotonic as NGBDI (Figure 4D) and NormB in two sensors and the ExG
in MSI.

In color indices, decline-type indices (NGRDI, GLI, GR, VARI) had high correlations
with rising-type indices (NormR and ExR) and low correlations with fluctuating-type
indices (NormB and NGBDI) (Figure 5A,B). In MSI_SIs, there were high correlations
(0.95–0.99) between NDRE, NDVI, GNDVI, BNDVI, NDREI, and OSAVI and the corre-
lations (0.92–0.98) between CIRE, ARI1 and ARI2 were also high, but the correlations
(0.38–0.79) between GNDREI and BNDREI and other indices were low (Figure 5C). In RGB
monotonic indices, the relative average variation ratios in heading and maturity of NormR,
NGRDI, GLI, GR, VARI, ExG, and ExR (47.96–463.38%) were greater than NormG and
NormB (18.76% and 21.84%). In MSI monotonic indices, the relative variation ratios of
NDVI, OSAVI, ARI1, NDREI, NDRE, GR, ARI2, CIRE, GLI, NormR, VARI, NGRDI, and
ExR (55.99–615.19%) were also greater than BNDREI, GNREI, BNDVI, NormB, NormG,
and GNDVI (13.09–38.13%). The above results selected NDRE, NDVI, NDREI, CIRE, ARI2
in MSI and NormR, NGRDI, GLI, GR, VARI in RGB and MSI.

Table 3. Accuracy of classifiers for S1, S2, S3 and S4 stages.

Feature Stage
SVM QDA KNN EL

Train Test Train Test Train Test Train Test

RGB_CIs

S1 95.10% 94.00% 93.70% 91.00% 96.90% 94.00% 93.70% 93.00%
S2 95.10% 100.00% 93.70% 100.00% 88.30% 96.00% 92.30% 100%
S3 92.00% 92.00% 96.90% 98.00% 84.60% 92.00% 90.60% 96.00%
S4 96.90% 98.00% 96.30% 98.00% 96.00% 98.00% 96.60% 98.00%

AVE 94.80% 96.00% 95.10% 96.80% 91.40% 95.00% 93.30% 96.80%

MSI_CIs

S1 90.90% 87.00% 75.10% 73.00% 85.40% 68.00% 80.60% 73.00%
S2 92.60% 95.00% 92.90% 99.00% 79.70% 78.00% 81.70% 90.00%
S3 94.00% 97.00% 92.00% 97.00% 89.70% 92.00% 88.90% 92.00%
S4 95.40% 96.00% 93.40% 96.00% 94.00% 97.00% 94.30% 95.00%

AVE 93.20% 93.80% 88.40% 91.30% 87.20% 83.80% 86.40% 87.50%

MSI_SIs

S1 100% 100% 99.40% 99.00% 97.10% 99.00% 98.60% 100%
S2 98.30% 98.00% 95.70% 98.00% 92.60% 95.00% 96.60% 100%
S3 96.60% 97.00% 94.60% 96.00% 91.70% 94.00% 92.60% 96.00%
S4 97.40% 98.00% 95.10% 97.00% 93.40% 93.00% 96.60% 97.00%

AVE 98.10% 98.30% 96.20% 97.50% 93.70% 95.30% 96.10% 98.30%

MSI_CIs + SIs

S1 99.70% 100% 99.70% 100% 98.60% 97.00% 100.00% 100%
S2 98.90% 99.00% 96.90% 100% 94.30% 97.00% 97.70% 99.00%
S3 98.00% 98.00% 94.90% 96.00% 91.70% 96.00% 94.00% 95.00%
S4 97.70% 98.00% 95.70% 97.00% 94.60% 98.00% 96.60% 98.00%

AVE 98.60% 98.80% 96.80% 98.30% 94.80% 97.00% 97.10% 98.00%
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Table 4. Statistics of time series features derived from RGB images (mean ± standard deviation).

Index
Date

22 April 30 April 4 May 8 May 12 May 17 May 20 May 24 May 26 May 28 May 30 May 1 June 4 June

NormR 0.27 ± 0.013 0.31 ± 0.009 0.31 ± 0.010 0.32 ± 0.010 0.32 ± 0.009 0.33 ± 0.011 0.34 ± 0.012 0.34 ± 0.015 0.36 ± 0.013 0.38 ± 0.013 0.40 ± 0.016 0.40 ± 0.013 0.42 ± 0.014
NormG 0.44 ± 0.014 0.42 ± 0.011 0.41 ± 0.008 0.41 ± 0.009 0.40 ± 0.009 0.40 ± 0.010 0.40 ± 0.011 0.40 ± 0.012 0.39 ± 0.012 0.39 ± 0.011 0.38 ± 0.012 0.36 ± 0.010 0.36 ± 0.009
NormB 0.29 ± 0.010 0.27 ± 0.011 0.28 ± 0.010 0.27 ± 0.010 0.28 ± 0.009 0.27 ± 0.009 0.26 ± 0.011 0.25 ± 0.011 0.25 ± 0.011 0.23 ± 0.012 0.22 ± 0.013 0.23 ± 0.011 0.23 ± 0.011
NGRDI 0.24 ± 0.035 0.16 ± 0.022 0.15 ± 0.022 0.13 ± 0.022 0.11 ± 0.021 0.10 ± 0.026 0.09 ± 0.028 0.073 ± 0.033 0.044 ± 0.030 0.011 ± 0.028 −0.025 ± 0.032 −0.048 ± 0.026 −0.079 ± 0.026
NGBDI 0.20 ± 0.027 0.22 ± 0.028 0.20 ± 0.024 0.20 ± 0.023 0.18 ± 0.023 0.19 ± 0.023 0.22 ± 0.028 0.22 ± 0.027 0.23 ± 0.029 0.25 ± 0.030 0.26 ± 0.032 0.22 ± 0.029 0.22 ± 0.026

GLI 0.22 ± 0.026 0.19 ± 0.021 0.17 ± 0.017 0.16 ± 0.017 0.15 ± 0.017 0.14 ± 0.020 0.15 ± 0.023 0.14 ± 0.024 0.13 ± 0.024 0.11 ± 0.022 0.098 ± 0.024 0.070 ± 0.020 0.048 ± 0.019
GR 1.65 ± 0.13 1.40 ± 0.075 1.35 ± 0.060 1.31 ± 0.059 1.25 ± 0.060 1.23 ± 0.066 1.21 ± 0.068 1.16 ± 0.079 1.10 ± 0.066 1.02 ± 0.057 0.95 ± 0.062 0.91 ± 0.050 0.86 ± 0.047
ExG 90.84 ± 11.25 70.87 ± 9.45 69.61 ± 8.91 53.15 ± 5.90 57.99 ± 5.88 61.28 ± 6.87 59.48 ± 6.42 54.23 ± 6.30 55.16 ± 7.19 49.16 ± 7.34 35.34 ± 7.36 31.65 ± 8.06 21.89 ± 8.00

VARI 0.41 ± 0.062 0.26 ± 0.035 0.24 ± 0.038 0.21 ± 0.037 0.18 ± 0.036 0.16 ± 0.043 0.14 ± 0.044 0.11 ± 0.052 0.065 ± 0.044 0.016 ± 0.040 −0.034 ± 0.045 −0.068 ± 0.037 −0.11 ± 0.037
ExR 13.49 ± 3.28 10.92 ± 2.88 11.95 ± 4.91 12.48 ± 4.84 17.59 ± 6.81 21.48 ± 9.70 23.36 ± 9.14 26.74 ± 10.73 37.20 ± 11.73 47.03 ± 11.87 49.51 ± 11.87 67.57 ± 11.95 76.0 ± 10.39

Table 5. Statistics of time series features derived from multispectral images (mean ± standard deviation).

Index
Date

22 April 30 April 4 May 8 May 12 May 17 May 20 May 24 May 26 May 28 May 30 May 1 June 4 June

NDRE 0.66 ± 0.039 0.60 ± 0.054 0.59 ± 0.057 0.58 ± 0.051 0.57 ± 0.053 0.52 ± 0.062 0.51 ± 0.058 0.42 ± 0.066 0.39 ± 0.064 0.35 ± 0.067 0.29 ± 0.063 0.256 ± 0.055 0.190 ± 0.040
NDVI 0.93 ± 0.015 0.89 ± 0.021 0.89 ± 0.024 0.86 ± 0.027 0.85 ± 0.033 0.83 ± 0.042 0.83 ± 0.043 0.75 ± 0.064 0.73 ± 0.066 0.67 ± 0.079 0.60 ± 0.089 0.532 ± 0.087 0.408 ± 0.084

GNDVI 0.85 ± 0.022 0.82 ± 0.031 0.81 ± 0.035 0.79 ± 0.032 0.78 ± 0.035 0.75 ± 0.044 0.75 ± 0.040 0.68 ± 0.050 0.66 ± 0.048 0.63 ± 0.053 0.60 ± 0.051 0.576 ± 0.044 0.524 ± 0.040
BNDVI 0.93 ± 0.010 0.91 ± 0.014 0.91 ± 0.015 0.89 ± 0.016 0.89 ± 0.019 0.88 ± 0.024 0.88 ± 0.023 0.84 ± 0.031 0.84 ± 0.030 0.82 ± 0.034 0.79 ± 0.038 0.776 ± 0.036 0.730 ± 0.037
NDREI 0.73 ± 0.029 0.66 ± 0.031 0.66 ± 0.029 0.60 ± 0.032 0.58 ± 0.036 0.58 ± 0.042 0.58 ± 0.047 0.51 ± 0.055 0.49 ± 0.055 0.44 ± 0.061 0.39 ± 0.067 0.331 ± 0.066 0.242 ± 0.065

GNDREI 0.44 ± 0.015 0.44 ± 0.015 0.42 ± 0.015 0.41 ± 0.015 0.39 ± 0.015 0.39 ± 0.018 0.39 ± 0.018 0.37 ± 0.018 0.37 ± 0.019 0.37 ± 0.020 0.38 ± 0.021 0.379 ± 0.022 0.374 ± 0.023
BNDREI 0.73 ± 0.022 0.70 ± 0.026 0.69 ± 0.022 0.66 ± 0.024 0.65 ± 0.023 0.66 ± 0.023 0.68 ± 0.024 0.66 ± 0.025 0.67 ± 0.026 0.67 ± 0.028 0.66 ± 0.031 0.655 ± 0.033 0.631 ± 0.031

CIRE 4.22 ± 0.76 3.22 ± 0.73 3.22 ± 0.73 2.93 ± 0.61 2.89 ± 0.62 2.30 ± 0.56 2.22 ± 0.51 1.52 ± 0.41 1.39 ± 0.37 1.14 ± 0.35 0.85 ± 0.28 0.720 ± 0.236 0.484 ± 0.142
ARI1 19.25 ± 4.11 16.75 ± 3.38 16.30 ± 3.17 13.21 ± 2.44 13.35 ± 2.29 10.73 ± 2.32 11.68 ± 2.32 8.57 ± 1.68 8.32 ± 1.57 8.34 ± 1.59 7.79 ± 1.40 7.143 ± 1.249 7.027 ± 1.295
ARI2 8.50 ± 1.68 6.90 ± 1.47 6.33 ± 1.39 5.59 ± 1.10 5.11 ± 1.08 4.28 ± 1.01 4.39 ± 0.98 3.06 ± 0.70 2.91 ± 0.63 2.61 ± 0.59 2.37 ± 0.49 2.15 ± 0.377 1.82 ± 0.290

OSAVI 0.79 ± 0.019 0.76 ± 0.025 0.74 ± 0.030 0.74 ± 0.030 0.71 ± 0.037 0.71 ± 0.048 0.69 ± 0.046 0.63 ± 0.065 0.61 ± 0.064 0.55 ± 0.071 0.49 ± 0.079 0.441 ± 0.073 0.332 ± 0.069
NormR 0.22 ± 0.014 0.26 ± 0.014 0.25 ± 0.013 0.28 ± 0.014 0.28 ± 0.016 0.29 ± 0.018 0.30 ± 0.022 0.33 ± 0.025 0.34 ± 0.027 0.37 ± 0.030 0.40 ± 0.032 0.432 ± 0.034 0.472 ± 0.030
NormG 0.56 ± 0.019 0.51 ± 0.019 0.52 ± 0.016 0.48 ± 0.015 0.49 ± 0.015 0.49 ± 0.016 0.49 ± 0.020 0.47 ± 0.022 0.46 ± 0.023 0.44 ± 0.026 0.41 ± 0.028 0.390 ± 0.028 0.354 ± 0.026
NormB 0.22 ± 0.011 0.23 ± 0.013 0.23 ± 0.012 0.23 ± 0.011 0.23 ± 0.010 0.22 ± 0.010 0.21 ± 0.010 0.21 ± 0.010 0.20 ± 0.011 0.19 ± 0.011 0.18 ± 0.011 0.178 ± 0.012 0.174 ± 0.009
NGRDI 0.44 ± 0.039 0.32 ± 0.037 0.35 ± 0.034 0.26 ± 0.035 0.26 ± 0.038 0.26 ± 0.043 0.25 ± 0.052 0.17 ± 0.059 0.15 ± 0.062 0.094 ± 0.067 0.013 ± 0.072 −0.051 ± 0.074 -0.142 ± 0.067
NGBDI 0.43 ± 0.031 0.38 ± 0.037 0.39 ± 0.031 0.36 ± 0.030 0.36 ± 0.024 0.38 ± 0.025 0.39 ± 0.027 0.39 ± 0.026 0.40 ± 0.028 0.40 ± 0.031 0.38 ± 0.035 0.370 ± 0.036 0.340 ± 0.031

GLI 0.43 ± 0.032 0.35 ± 0.034 0.37 ± 0.028 0.31 ± 0.028 0.31 ± 0.027 0.31 ± 0.030 0.31 ± 0.036 0.27 ± 0.041 0.26 ± 0.044 0.23 ± 0.050 0.17 ± 0.056 0.119 ± 0.058 0.044 ± 0.055
GR 2.73 ± 0.28 2.04 ± 0.18 2.14 ± 0.17 1.77 ± 0.14 1.78 ± 0.15 1.75 ± 0.16 1.69 ± 0.18 1.47 ± 0.17 1.39 ± 0.17 1.24 ± 0.16 1.05 ± 0.15 0.923 ± 0.143 0.764 ± 0.116

100 × ExG 4.27 ± 0.90 4.25 ± 1.05 4.40 ± 0.95 4.45 ± 0.84 4.19 ± 0.58 5.68 ± 1.13 5.21 ± 0.89 5.97 ± 1.19 5.87 ± 1.20 5.33 ± 1.26 4.36 ± 1.43 3.443 ± 1.566 1.349 ± 1.685
VARI 0.62 ± 0.050 0.46 ± 0.050 0.49 ± 0.048 0.38 ± 0.050 0.38 ± 0.056 0.37 ± 0.063 0.34 ± 0.074 0.24 ± 0.081 0.20 ± 0.084 0.12 ± 0.088 0.018 ± 0.094 −0.063 ± 0.095 −0.179 ± 0.085

100 × ExR −1.57 ± 0.35 −1.09 ± 0.40 −1.23 ± 0.34 −0.65 ± 0.33 −0.60 ± 0.30 −0.93 ± 0.44 −0.71 ± 0.50 0.13 ± 0.94 0.47 ± 1.08 1.46 ± 1.35 3.36 ± 1.82 5.106 ± 2.203 8.073 ± 2.358
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3.3. Stay Green Rates Dynamics Results

It is crucial in high-throughput phenotyping for wheat stay green to construct inter-
pretable secondary phenotypes that cloud, distinguish, and quantify stay green based on
image indices curves. We used the time series of selected indices to calculate wheat sam-
ples’ relative stay green rates (SGR) and summarize their overall change trends (mean/sd)
and they generally declined with populations’ SG decay and showed various decline
characteristics in different stages (Table 6). SG_NDRE, SG_CIRE, SG_ARI2, SG_NGRDI,
and SG_VARI saturation effects were smaller than other index rates, such as SG_NDVI,
SG_NDREI, and SG_NormR in the initial grain filling stage. We further verify these indices’
SGR validity by counting the numerical interval of about the top 90% samples in Pareto
distribution histograms at the anthesis stage (S1), watery ripe stage (S2), mealy ripe stage
(S3), and kernel hard stage (S4) (Table 7). It could be seen that these indices’ SGR in most
samples had interval separations in different stages, especially in the S1, S3, and S4 stages.
Moreover, SG_NDREI, SG_CIRE, SG_ARI2, SG_NGRDI, SG_GLI interval overlap were less
than SG_NDRE, SG_NDVI, SG_NormR, etc between S1 and S2. These results suggested
that SGR indices may be alternative tools to reveal the dynamic changes of stay green in
wheat populations.

3.4. Yield Regression Results

We used MLR and linear SVR to compare indices’ temporal SGR correlations with
sample yields, considering that the dynamics of wheat stay green were mainly concen-
trated in the yield formation stage. The 435 samples (eliminating some yield outliers
from 450 samples) were divided into a calibration set (335 samples) and prediction set
(100 samples) using sample set partitioning based on a Joint X-Y Distance [54] algorithm
for regression calibration and prediction. All samples’ yield mean and standard devia-
tion were 7.23 t/ha and 2.24 t/ha, respectively, and the yield distribution range of the
prediction set (3.45–11.70 t/ha) was within the range of the calibration set (1.65–12.15 t/ha)
(Figure 6). For yield regression, MLR models were generally better than linear SVR models
with higher correlation coefficients of the calibration and prediction set (Rc and Rp) and
lower root mean square error of the calibration and prediction set (RMSEC and RMSEP)
(Table 8). Among MLR results, SG_NDRE, SG_CIRE, SG_NDVI and SG_NormR_RGB
obtained a high correlation (Rc >0.85 and Rp > 0.8) and low error (RMSEC < 1.17 t/ha and
RMSEP < 1.12 t/ha) and SG_NGRDI and SG_VARI in MSI and RGB had low correlation
(Rc < 0.80 and Rp < 0.72) and high error (RMSEC > 1.38 t/ha and RMSEP > 1.39 t/ha). Other
indices’ SGRs, such as SG_NormR and SG_GLI in MSI, obtained medium correlations
with sample yield. In MLR models, the measured and predicted yields were closer to each
other in scatter plots of high correlation (SG_NDRE, SG_CIRE and SG_NormR_RGB) than
medium (SG_NormR_MSI) and low (SG_NGRDI_MSI and SG_NGRDI_RGB) correlations
(Figure 7).
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Table 6. Stay green rates of selected indices (mean/sd) in multispectral and RGB images.

SGR (%) 30 April 4 May 8 May 12 May 17 May 20 May 24 May 26 May 28 May 30 May 1 June 4 June

MSI
SG_NDRE 90.37/4.30 90.18/4.63 87.13/4.05 86.23/4.32 78.19/6.36 76.76/6.31 62.73/7.89 59.19/8.50 52.51/9.19 43.40/8.95 38.77/8.64 27.14/5.66
SG_NDVI 96.01/1.55 96.06/1.90 92.80/2.18 91.86/2.68 89.94/3.87 89.26/4.20 80.73/6.28 77.72/7.33 72.28/8.36 64.21/9.25 57.20/9.33 43.98/8.99

SG_NDREI 90.66/3.11 90.87/2.92 82.09/3.45 80.27/3.55 79.84/4.49 79.28/5.31 69.63/6.29 66.60/6.70 60.58/7.70 53.66/8.15 45.55/8.54 33.44/8.71
SG_CIRE 75.96/7.25 75.77/7.47 69.40/6.32 68.20/6.69 54.37/7.76 52.61/7.91 35.87/6.94 33.08/7.24 27.13/7.15 20.39/6.43 17.56/6.65 11.81/4.20
SG_ARI2 81.30/7.76 74.39/7.39 66.06/6.65 60.18/5.82 50.40/7.15 51.79/7.56 36.22/5.77 34.49/5.97 31.02/5.71 28.27/5.58 25.91/5.57 22.01/4.75

SG_NormR 83.05/4.39 85.66/4.54 76.27/4.48 76.52/3.89 75.39/4.36 73.25/4.35 66.45/4.19 63.93/4.20 59.15/4.18 54.04/4.18 50.50/4.59 46.14/4.14
SG_NGRDI 73.06/6.78 78.57/6.35 59.43/6.85 60.01/6.63 58.91/8.05 54.97/10.14 39.66/11.94 32.94/13.28 20.92/14.67 1.95/15.41 −11.91/17.51 −32.65/16.30

SG_GLI 80.26/5.57 85.20/4.91 70.80/5.23 71.55/4.90 72.91/6.00 72.98/7.29 62.98/8.63 60.04/9.21 52.73/10.74 38.59/12.28 27.57/12.99 10.05/12.67
SG_GR 74.94/6.39 78.81/6.23 65.11/5.79 65.29/5.00 64.30/5.27 62.15/5.45 53.90/5.22 50.79/5.18 45.34/5.16 38.55/5.03 33.93/5.24 28.15/4.62

SG_VARI 74.37/6.54 79.14/6.18 60.63/6.91 61.03/6.68 58.73/7.91 54.20/9.44 38.14/11.44 31.87/12.23 19.24/13.58 2.19/15.22 −10.70/15.86 −29.24/14.39
RGB

SG_NormR 88.48/2.60 87.76/2.45 85.20/2.70 83.87/2.77 82.42/2.50 80.00/2.85 78.35/2.97 74.79/3.19 71.25/3.65 68.15/4.10 67.33/4.34 64.90/4.47
SG_NGRDI 69.33/5.26 62.55/5.50 55.01/6.03 46.44/5.65 41.99/7.48 37.59/8.70 30.05/11.57 17.73/11.29 3.68/11.88 −11.32/14.65 −21.06/12.27 −33.94/12.15

SG_GLI 88.69/5.34 79.35/5.49 76.96/5.63 67.42/5.06 66.51/6.49 70.12/7.34 65.82/8.16 60.47/8.31 53.74/8.09 45.30/9.55 32.46/8.61 22.13/8.75
SG_GR 85.40/3.93 82.48/3.88 79.64 ± 4.00 76.44/4.26 74.86/3.57 73.38/3.63 70.72/3.71 66.83/3.80 62.49/4.16 58.06/4.61 55.35/4.78 52.33/5.15

SG_VARI 64.44/5.05 59.60/5.14 51.34/5.63 44.08/5.38 39.20/6.81 33.72/7.77 26.73/10.37 15.30/9.81 3.13/10.09 −9.15/12.11 −17.52/10.35 −27.92/10.01
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Table 7. Stay green rate ranges of about the top 90% samples in Pareto histograms at key SG stages.

SGR S1 (30 April) S2 (12 May) S3 (24 May) S4 (1 June)

MSI
SG_NDRE 85.48–97.75% 80.22–94.49% 51.40–78.48% 22.46–47.52%
SG_NDVI 93.46–98.49% 85.62–95.69% 71.47–89.95% 46.17–71.33%

SG_NDREI 84.70–95.01% 72.23–85.75% 59.41–78.61% 31.84–56.76%
SG_CIRE 67.64–86.32% 57.84–73.85% 25.99–49.23% 7.24–28.90%
SG_ARI2 69.00–89.51% 49.01–66.66% 25.39–39.98% 15.50–32.69%

SG_NormR 76.36–89.93% 70.57–82.41% 58.26–74.99% 42.02–56.35%
SG_NGRDI 59.79–82.60% 46.64–73.62% 24.63–62.80% −38.91–9.23%

SG_GLI 73.83–91.20% 62.40–81.00% 51.11–81.60% 12.57–50.34%
SG_GR 65.48–84.36% 56.72–73.53% 44.17–64.99% 23.24–41.64%

SG_VARI 61.50–84.22% 48.50–77.00% 15.43–53.46% −34.96–9.34%
RGB

SG_NormR 83.74–91.40% 78.90–88.19% 72.30–81.70% 60.97–73.42%
SG_NGRDI 58.63–76.92% 34.21–53.04% 4.84–46.21% −44.27–−5.27%

SG_GLI 81.32–96.82% 58.62–78.56% 45.91–79.39% 20.13–47.65%
SG_GR 72.84–93.06% 59.40–87.73% 63.28–77.81% 46.24–60.07%
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SGR
MLR SVR

Rc RMSEC (t/ha) Rp RMSEP (t/ha) Rc RMSEC (t/ha) Rp RMSEP (t/ha)

MSI
SG_NDRE 0.885 1.05 0.856 0.97 0.881 1.07 0.858 0.96
SG_NDVI 0.857 1.16 0.802 1.12 0.851 1.19 0.798 1.13

SG_NDREI 0.796 1.37 0.731 1.28 0.789 1.39 0.710 1.32
SG_CIRE 0.860 1.15 0.838 1.03 0.856 1.17 0.831 1.06
SG_ARI2 0.797 1.36 0.780 1.18 0.793 1.38 0.766 1.22

SG_NormR 0.814 1.31 0.720 1.31 0.799 1.36 0.684 1.39
SG_NGRDI 0.790 1.38 0.668 1.43 0.781 1.41 0.647 1.47

SG_GLI 0.813 1.31 0.744 1.30 0.806 1.34 0.734 1.31
SG_GR 0.797 1.36 0.698 1.37 0.785 1.40 0.656 1.45

SG_VARI 0.787 1.39 0.666 1.41 0.773 1.43 0.623 1.50
RGB

SG_NormR 0.857 1.16 0.835 1.08 0.843 1.22 0.818 1.13
SG_NGRDI 0.733 1.53 0.710 1.42 0.703 1.61 0.607 1.60

SG_GLI 0.794 1.37 0.789 1.19 0.778 1.42 0.774 1.23
SG_GR 0.803 1.34 0.782 1.22 0.795 1.37 0.756 1.28

SG_VARI 0.749 1.50 0.716 1.41 0.721 1.57 0.632 1.52
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Figure 7. Scatter plots of measured and predicted yield in MLR models of some indices’ SGR.
(A) SG_NDRE-MLR; (B) SG_CIRE-MLR; (C) SG_NormR_MSI-MLR; (D) SG_NormR_RGB-MLR; (E)
SG_NGRDI_MSI-MLR; (F) SG_NGRDI_RGB-MLR.

3.5. SGR Dynamics in Visual Stay Green Grades

According to the guidances of [3] and [37], we visually identified the stay green
grade of the samples by visually scoring whole plant senescence and the portion of green
leaf area in the flag leaf at the middle and later grain filling stages. Moreover, three stay
green grades of genotypes, namely good stay green, moderate stay green, and bad stay
green, were preliminarily identified. We selected 90 samples of each grade with obvious
visual grade differences and analyzed their dynamics (mean and 95% confidence interval)
of some indices’ SGRs with high, medium and low yield correlations in three grade
samples (Figure 8). There were good distinctions for three grade samples in SG_NDRE,
SG_NDVI and SG_CIRE dynamics at the early, middle and late stage. Additionally, there
were also grade samples distinctions in the dynamics of SG_NDREI, SG_NormR_MSI,
SG_NGRDI_MSI, SG_NGRDI_RGB, SG_GLI_MSI, and SG_GLI_RGB at the middle and late
stage. However, there was no good distinction for three grade samples all the time in the
SG_NormR_RGB dynamic. Moreover, we compared the indices’ SGR curves in Figure 8 in
six samples (labeled Ta1031, Ta1102, Ta0433, Ta1013, Ta0200, and Ta1105) selected from three
grade samples (Figure 9). Similarly, SG_NDRE and SG_NDVI could potentially distinguish
the late senescent (Ta1031, Ta0200, and Ta1105), middle senescent (Ta1102, Ta1013), and
the early senescent (Ta0433) samples at the early, middle or late stage, and SG_NDREI,
SG_CIRE and SG_NormR_MSI, SG_NGRDI and SG_GLI of MSI and RGB could distinguish
different senescent types at the late stage (Figure 10), while SG_NormR_RGB did not have
differentiation potential. Moreover, SG_NDREI and SG_NormR_MSI, SG_NGRDI and
SG_GLI were more susceptible to rainfall and temperature changes (2–3 May and 14–15)
than SG_NDRE, and SG_NDVI in MSI. This indicated that indices’ SGRs derived from
RGB and MSI could replace manual visual evaluation to a certain extent.
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4. Discussion

This study compared the availability of UAV-based RGB and MSI for stay green phe-
notyping in the wheat population and attempted to develop high-throughput phenotyping
methods for wheat stay green with two tools to improve the phenotyping efficiency and
accuracy in the field breeding.

4.1. Stay Green Stages Detection

It is a premise for wheat stay green phenotyping to distinguish different stay green
stages effectively. The color index classification performances in RGB were better than
in MSI in this study, which might mean that RGB provided more color information than
MSI. RGB camera used a single camera lens with prismatic decomposition to record R, G,
and B channel images. In contrast, multispectral cameras used multi lens with multiple
narrowband optical bandpass filters to record specific band images and this made the
spectral range of R, G, and B channels in a RGB camera wider than in multispectral camera,
as mentioned in [24]. The color indices in MSI could reveal more detailed color information,
and they were also more vulnerable to rainfall than RGB color indices. Although RGB color
indices in this study obtained an acceptable classification result, it could not be ignored that
the quality of RGB data is easily affected by illumination changes (changes in illumination
strength or sudden clouds) in the field [55–58]. Therefore, it needs to develop more targeted
frameworks to calibrate these uncontrollable factors to obtain stable and reliable data for a
low-cost RGB imaging platform. MSI_SIs and MSI_Cis + SIs obtained similar and better
results than color indices, and this indicated the red edge and near-infrared reflection
spectrum have greater potential in revealing more details (like micro phenotype response).
It is understandable that the vegetation visible reflection spectrum mainly reflects crops’
external color traits and rarely contains internal biochemical information. Red edge and
near-infrared reflection spectrum are mainly related to plants’ internal cell structures
(nitrogen, protein, chlorophyll, etc.) [37,59]. In most cases, the change in plant external
color or visible traits would lag behind the internal invisible biochemical phenotype
response. So, the multispectral imaging technique has more application potential than RGB
imaging in revealing wheat senescence or stay green states.

4.2. Indices Dynamic Analysis

Wheat senescence is a programmed death process, and SG is also a complex dynamic
trait, which is difficult to determine by an isolated developmental state, especially in pop-
ulation samples with diversified genotypes. Temporal image indices have been used to
describe and reveal crop growth dynamics in many studies and there were various dy-
namics for image indices in this study. Wheat senescence is mainly due to the competition
for assimilates of sinks from sources and it generally includes slow and rapid senescent
periods. In the slow senescent period, canopy greenness or vigor decay were slow as
there was not much competition. The grains were mainly kernel length in establishment
in the early stage (rapid increase in grain size with little dry matter accumulation). In
the rapid senescent period, canopy greenness or vigor decay were fast as the competition
became fierce in the middle and late stage (milky ripe stage) due to grains requiring many
photosynthates to accumulate solid content until the kernels achieve maximum dry weight
and physical maturity [9,11]. For canopy greenness, vigor or green leaf area, they showed
a slow decline in the early stage and rapid decline in the middle and late stages during
wheat senescence [60]. The dynamics of NDRE, NDVI, NDREI, NGRDI, GLI, NormR, and
VARI in RGB or MSI traced the trend of slow first and then fast in the same or opposite
ways in this study and these indices could be used as the integrative measurements of the
overall amount and quality of photosynthetic material in plants or the combined effects
of leaf chlorophyll content, canopy leaf area or architecture. Chlorophyll is a common
indicator of stay green and its degradation marks the start of senescence and it is the leaves
in the middle and lower part of wheat rather than the flag leaves that turn on senescence
first. The Red Edge Chlorophyll Index (CIRE) was designed with NIR and red edge (RE)
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bands to estimate leaf chlorophyll content [45] and the red edge (690–740 nm) was caused
by the transition from chlorophyll absorption and NIR leaf scattering, and NIR had greater
penetration depth in the plant canopy. Indices combined by RE and NIR bands are more
sensitive to smaller plant changes and responses in deeper vertical canopy directions. ARI1
and ARI2 are used to reflect the changes in stress-related pigments, which are present in
higher concentrations in weakened plants (mainly anthocyanins, the pigments abundant
in newly forming and undergoing senescence leaves). Weakening crops contain higher
concentrations of anthocyanins, and this index is one measure of stressed crops [46]. So,
the multispectral sensor could provide more monotonically varying indices, and the phe-
notypes associated with these indices are richer than RGB color indices. The time series
curves of color and spectral indices derived from RGB and multispectral images could
describe the development of wheat senescence from a macro or micro phenotype.

4.3. Indices SGR Dynamic Analysis

The relative stay green rates (SGR) were proposed and derived from index curves
as secondary phenotypes to quantify the stay green differences in diversified genotypes.
From the results of yield regression, indices’ temporal SGRs showed potential to predict
yield and might provide a new perspective for yield prediction. In recent years, some
studies directly used temporal color or spectral indices (NDRE, NDVI, NGRDI, GLI, VARI,
ExG, etc.) to establish crop yield prediction models and showed indices’ validity in yield
evaluation and revealing the contribution of different stages to yield [27,29,36]. However,
there would be temporal and spatial differences in indices obtained in different seasons
or environments, and that could affect yield model robustness. Here, SGR was a relative
secondary trait derived from color or spectral index time series curves, which took the
sample itself as the reference, so this might provide a calibration reference for image-based
indices in multiple environments.

At the anthesis stage, the SGR of color indices (especially NGRDI, and VARI), ARI2
and CIRE were lower, and this might imply that these indices were more sensitive to
short-term heat stress (>30 ◦C, shown in Figure 2) between heading and flowering stages
than other indices such as NDRE, NDVI and NDREI. Moreover, these indices SGR showed
a similar difference in short-term heat stress from May 4 to May 8. The short-term heat
stress could induce cell dehydration, leaf water loss or wilt, and color change, and damage
leaves’ chloroplast structure and alter canopy photosynthetic pigments (chlorophyll and
carotenoids) and stress-related pigments concentrations [61,62]. So, the SGR of these
sensitive indices could be used to analyze the response of populations to heat stress, which
is a common environmental stress at the wheat growth anaphase.

The time series of index SGRs could effectively discriminate SG changes from the
population level, but they were different in tracking the dynamics of samples with different
visual green grades. SG_NDRE, SG_CIRE, and SG_NDVI obtained good results in tracking
visually observed stay green grades in diversified genotypes, and they could be alternative
tools for visual assessment, which showed that the red edge and near infrared reflection
spectrum may be more effective once again. For color indices, SG_GLI and SG_NGRDI
in RGB and MSI and SG_NormR_MSI could track visual stay green grades in later grain
filling stages but could not capture the phenotype response of visual grade samples at
the early stage, and this indicated that the canopy color response of different stay green
grade samples was lagging behind their biochemical phenotype response. Moreover, the
color phenotype was easily affected by external environmental factors such as rainfall.
SG_NormR_RGB failed to track visual grade samples, in which the spectral ranges might
cause overlap of the R, G, and B channels in the RGB camera, as mentioned in [24]. In
addition, the potential of these secondary phenotypes in assisting genome-wide analysis
could be considered, and we hoped to verify their differences and effectiveness in the
mapping of SG-associated genes by genome-wide association analysis in the next work.
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5. Conclusions

The efficiency of SG phenotyping in wheat field breeding can be significantly in-
creased using appropriate HTP platforms and reliable analysis methods. The study initially
demonstrated the potential of the indices derived from RGB and 5-band multispectral
images in the SG phenotyping of diversified wheat genotypes. The temporal indices could
track the phenology of wheat in the late growth stage with different variation forms, and
indices containing the red edge or near-infrared band could reveal more microscopic details
than indices containing only visible bands. Based on the dynamic curves of monotonic in-
dices, the proposed SGR can serve as interpretable secondary phenotypes to quantitatively
compare the SG differences in wheat genotypes. The SGR of MSI indices (NDRE, CIRE
and NDVI) showed higher correlations with samples’ yield and more timely potential to
distinguish different SG grades samples than that of color indices in RGB and MSI. The
SGR of the color indices (NGRDI, GLI) in MSI were more specific in revealing changes in
color phenotypes than in RGB. All in all, the performance of the multispectral imaging
platform in this study is better than the low-cost RGB imaging platform in SG phenotyping
of diversified wheat germplasm.
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