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Abstract: Mining can provide necessary mineral resources for humans. However, mining activities
may cause damage to the surrounding ecology and environment. Vegetation change analysis is a key
tool for evaluating damage to ecology and the environment. Liaoning is one of the major mining
provinces in China, with rich mineral resources and long-term, high-intensity mining activities.
Taking Liaoning Province as an example, vegetation change in six mining areas was investigated
using multisource remote sensing data to evaluate ecological and environmental changes. Based on
MODIS NDVI series data from 2000 to 2019, change trends of vegetation were evaluated using linear
regression. According to the results, there are large highly degraded vegetation areas in the Anshan,
Benxi, and Yingkou mining areas, which indicates that mining activities have seriously damaged
the vegetation in these areas. In contrast, there are considerable areas with improved vegetation
in the Anshan, Fushun, and Fuxin mining areas, which indicates that ecological reclamation has
played a positive role in these areas. Based on Sentinel-2A data, leaf chlorophyll content was inferred
by using the vegetation index MERIS Terrestrial Chlorophyll Index (MTCI) after measurement of
leaf spectra and chlorophyll content were carried out on the ground to validate the performance of
MTCI. According to the results, the leaf chlorophyll content in the mines is generally lower than in
adjacent areas in these mining areas with individual differences. In the Yingkou mining area, the
chlorophyll content in adjacent areas is close to the magnesite mines, which means the spillover effect
of environmental pollution in mines should be considerable. In the Anshan, Benxi, and Diaobingshan
mining areas, the environmental stress on adjacent areas is slight. All in all, iron and magnesite
open-pit mines should be monitored closely for vegetation destruction and stress due to the high
intensity of mining activities and serious pollution. In contrast, the disturbance to vegetation is
limited in resource-exhausted open-pit coal mines and underground coal mines. It is suggested that
land reclamation should be enhanced to improve the vegetation in active open-pit mining areas, such
as the Anshan, Benxi, and Yingkou mining areas. Additionally, environmental protection measures
should be enhanced to relieve vegetation stress in the Yingkou mining area.

Keywords: mining area; vegetation change; MODIS NDVI; Sentinel-2A; driving force

1. Introduction

Vegetation is a topic of interest among scientists and researchers because it plays an
important role in the interconnected systems of life on Earth. One important function
of vegetation is soil stabilization and enrichment [1–3]. Vegetation degradation and de-
sertification could contribute to broader environmental and ecological problems, such as
loss of topsoil, increase in temperature, and diminished food resources for humans and
wildlife [4,5].
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Mining is the extraction of valuable minerals or other geological materials from the
Earth, particularly from an ore, lode, vein, (coal) seam, or reef, which constitute the
mineralized horizon and are the package of economic interest to miners. Mining activities
have recently reached a high intensity in China due to the huge demand for mineral
resources [6]. Liaoning is one of the major mining provinces in China, with many types of
mineral resources, abundant resource reserves, high development intensity, and a large
scale. The dominant minerals are iron ore, magnesite, boron, diamond, oil, and natural gas.
The mineral resources in Liaoning are mostly centrally distributed with shallow burial and
are therefore suitable for open-pit mining. For example, the Anshan and Benxi regions are
well-known iron open-pit mining areas, and Yingkou is a well-known magnesite open-pit
mining area. In addition, there are several coal-exhausted mining areas such as Fuxin and
Fushun. The nature of mining activities creates a negative impact on the surrounding
ecology and environment during mining operations, and this negative impact can continue
even after a mine is closed [7]. For example, open-pit mining can completely eliminate
existing vegetation, destroy the soil ecological profile, and alter land use [8–11]. Through
the movement, storage, and redistribution of soil, the community of microorganisms
and nutrient-cycling processes are then disrupted [12]. In addition to direct impacts on
vegetation, there are important indirect impacts from stress factors caused by mining
activities such as dust pollution, water pollution, and others [13,14]. However, few studies
have focused on the change in vegetation in different mining areas.

Effective monitoring is necessary for environmental and ecological protection in min-
ing areas. Remote sensing is the most useful technology in vegetation monitoring at the re-
gional scale because of its sufficient area coverage and frequent temporal coverage [15–17].
The spectral properties of vegetation derived from remotely sensed data can provide a
range of biophysical and biochemical measurements, such as vegetation cover and chloro-
phyll content [18]. Thus, remote sensing is widely used in the detection of vegetation
change [19–22]. The most common method to measure biophysical characteristics of vege-
tation is the vegetation index (VI) [23]. The normalized difference vegetation index (NDVI)
is one of the most widely used VIs and is based on the difference in reflectance of the
near-infrared and red bands [24]. NDVI has two major advantages: (1) it is highly related
to the vegetation coverage and the fraction of photosynthetically active radiation absorbed
by vegetation [25,26], and (2) it is more sensitive to sparse vegetation than to dense vege-
tation [27]. To date, three kinds of sensors have been used to produce NDVI time series
data: Advanced Very High Resolution Radiometer (AVHRR), SPOT Vegetation (VGT), and
Moderate Resolution Imaging Spectroradiometer (MODIS) [15,28]. MODIS NDVI time
series data are usually selected to monitor vegetation change trends at a regional scale due
to a relatively high spatial resolution of 250 m.

In addition to vegetation coverage, some biochemical parameters are also important
for vegetation monitoring. Among them, chlorophyll is the basis of photosynthesis, and
chlorophyll content is an important parameter that reflects vegetation growth and stress
conditions [29]. However, the widely used NDVI is not well suited to measure chlorophyll
content [30]. With the help of sensors with red-edge bands, chlorophyll can be inferred
using some VIs [31,32]. Sentinel-2A can provide images with these effective bands and
10 m spatial resolution to estimate the chlorophyll content of vegetation [33]. Moreover,
Sentinel-2A images were also used for monitoring soil pollution [34], identifying acid
mine drainage [35], and mapping mine type in some mining areas [36], which showed the
potential application of the Sentinel-2A data.

To monitor vegetation changes in six main mining areas in Liaoning Province of China
over the last 20 years, a remote sensing approach was employed based on multisource data
including MODIS NDVI series data and Sentinel-2A data. Furthermore, the differences
between the mining areas were compared and analyzed.
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2. Study Area and Data
2.1. Study Area

Liaoning Province is located in the south of Northeast China. The climate of Liaoning
Province is temperate and monsoonal with annual precipitation between 600 mm and
1100 mm. It is an important mining province in China. By of the end of 2015, 122 types
of minerals had been discovered there, and there were 3096 mines with resource reserves.
The reserves of iron and magnesite in Liaoning Province rank first in China. Within the
province, 93% of iron ore is distributed in Anshan, Benxi, and Liaoyang, and magnesite is
mainly in Yingkou and Haicheng. Coal mines were developed more than 100 years ago
in the province. However, the coal resources in Fushun and Fuxin were exhausted in the
beginning of the 21st century due to high intensity development. Two huge abandoned
open pits are located in Fushun and Fuxin. Now, active coal mines are mainly distributed
in Diaobingshan as underground mines. In this study, six major mining areas in Liaoning
Province, Anshan, Benxi, Diaobingshan, Fushun, Fuxin, and Yingkou, were set as the study
areas to investigate vegetation changes using remote sensing (Table 1, Figure 1).
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Figure 1. The location of six mining areas in Liaoning Province, China: (A) is Anshan mining area, (B) is Benxi mining area,
(C) is Diaobingshan mining area, (D) is Fushun mining area, (E) is Fuxin mining area, and (F) is Yingkou mining area. The
images are RGB with band 11, 8 and 4 of Sentinel-2A images.

Table 1. The mine type and mining method used in six mining areas in Liaoning Province.

Mining Area Mine Type Mining Method Alphabet Code

Anshan Iron Open pit A
Benxi Iron Open pit B

Diaobingshan Coal Underground C
Fushun Coal Open pit D
Fuxin Coal Open pit E

Yingkou Magnesite Open pit F
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2.2. Remotely Sensed Data
2.2.1. MODIS NDVI Series Data

MODIS is a key instrument aboard the Terra and Aqua satellites, which view the entire
surface of the earth every one to two days. In this study, MODIS Terra 16-day composite
250 m time-series NDVI products (MOD13Q1) spanning a 20-year period from 2000 to
2019 were acquired (https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 15 March
2020). The tiled NDVI data were reprojected to the Universal Transverse Mercator (UTM)
coordinate system.

2.2.2. Sentinel-2A Data

Sentinel-2A images contain 13 bands with spatial resolution ranging from 10 m to
60 m. The image data acquired on 2 and 10 August 2018, were downloaded (https://
earthexplorer.usgs.gov/, accessed on 15 March 2020) and then atmospherically corrected
using SNAP software. The images were resampled to 10 m.

2.2.3. High-Resolution Data

GeoEye data were downloaded from Google Earth for validation (http://kh.google.
com, accessed on 27 April 2020).

2.3. Other Data

The climate data (monthly averaged temperature and precipitation from 2000 to 2019)
were from the corresponding nearest weather stations to these mining sites, provided
by National Meteorological Information Center of China. The yearly total precipitation
and yearly averaged temperature were derived from these monthly data. Ore production
data were also collected for the driving force analysis (http://tjj.ln.gov.cn/tjsj/sjcx/ndsj/,
accessed on 27 April 2020).

3. Method
3.1. Composing the Method for Analysis of MODIS NDVI Yearly Data

Considering that the yearly NDVI is a reliable indicator reflecting the state of vegeta-
tion cover, the time series made up of the 16-day composite NDVI maps were combined
to produce a NDVI map for each year through the maximum value composite (MVC)
method [37]. The composition period of yearly NDVI varied covered the vegetation grow-
ing period from May to September [38–40]. The yearly maximum NDVI was calculated
as follows:

MNDVI = Max(NDVIi) (1)

where MNDVI is the yearly maximum NDVI in one year, and i is the sequence number of
the 10 NDVI maps from May to September in one year, from 1 to 10.

3.2. Changing Trend Analysis Based on Yearly NDVI

Based on the composed yearly MODIS NDVI data, the slope of the linear regression
was used to simulate the trend of vegetation in the mining areas. The slope was calculated
as follows:

SLOPE =
20 × ∑20

j =1 j × MNDVIj −
(

∑20
j=1 j

)(
∑20

j=1 MNDVIj

)
20 × ∑20

j =1 j2 −
(

∑20
j =1 j

)2 (2)

where j is the sequence number of the 20 years, from 1 to 20, and SLOPE refers to the slope
of linear regression. For each pixel, the slope of the fitted line shows the trend of vegetation.
A positive slope indicates vegetation in good condition, whereas a negative slope indicates
damaged vegetation. In this study, the NDVI series data were used to divide the degree of
vegetation changes into seven levels according to the slope of the fitted line (Table 2) [41].

https://ladsweb.modaps.eosdis.nasa.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://kh.google.com
http://kh.google.com
http://tjj.ln.gov.cn/tjsj/sjcx/ndsj/
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Table 2. Gradation for the changing trend of NDVI.

Slope of the Fitted Line of Yearly NDVI Changing Trend

<−0.01 Greatly degraded
−0.01~−0.005 Moderately degraded
−0.005~−0.001 Slightly degraded
−0.001~0.001 Unchanged
0.001~0.005 Slightly improved
0.005~0.01 Moderately improved

>0.01 Greatly improved

3.3. Chlorophyll Content Estimation Based on Sentinel Data and Difference Analysis

Based on Sentinel-2A images, some indices consisting of red-edge bands can be
derived, from which the MERIS Terrestrial Chlorophyll Index (MTCI) could estimate leaf
chlorophyll content with good performance [42]. Additionally, MTCI is simple to calculate,
and its formula is as follows [43]:

MTCI =
R753.75 − R708.75

R708.75 − R681.25
(3)

where R is the reflectance, and its subscript is the wavelength (nm). To validate the
performance of MTCI, measurement of spectra and chlorophyll content were carried out
on the ground. Boston ivy leaves in the Anshan and Diaobingshan mining area were
selected as the leaf samples for the experiment. Leaf chlorophyll content was measured
using SPAD-502 (Minolta Camera, Osaka, Japan). Five to seven points were measured
evenly on each leaf, and the mean value SPAD was set as the chlorophyll content of the
leaf. The SVC HR-1024 spectrometer (Spectra Vista Corporation, Poughkeepsie, NY, USA)
was then used to collect the spectra data of the leaves. The spectral resolution of the SVC
HR-1024 spectrometer was 3.5 nm in the range of 350 to 1000 nm, 9.5 nm in the range of
1000 to 1850 nm, and 6.5 nm in the range of 1850 to 2500 nm. The experimental light source
was a halogen lamp with 60◦ elevation angle and 50 cm distance from the target. After
the spectral curves of 32 leaf samples were measured, MTCI and NDVI were calculated,
respectively, to study their relationship with chlorophyll content.

The MTCI was selected to estimate chlorophyll content of vegetation based on their
statistical relationship. The existing relationship for global chlorophyll content estimation
was used to estimate the leaf chlorophyll content [44]. The formula is as follows:

y = (x − 1.41) ∗ 25 (4)

where y is leaf chlorophyll content (µg/cm2), and x is MTCI value in the image. To avoid
the interference of non-vegetation pixels, the pixel of chlorophyll content would not be
counted when the MTCI was lower than 1.41. To facilitate the analysis of spatial differences
of chlorophyll content, each mining area was divided into mine and adjacent area. The
chlorophyll content in mines (including stopes, waste dumps, and tailings ponds) was then
compared with that in adjacent areas. The difference of chlorophyll content among the
mines and adjacent areas was analyzed over the six mining areas.

4. Results
4.1. Change in Trend of Vegetation from 2000 to 2019

The trend of vegetation indices in each mining area was generated through linear
regression analysis based on the mean MNDVI in the whole area (Figure 2, Table 3). The
results showed that the fitted change slopes were 0.0021/y, 0.0016/y, 0.0031/y, 0.0024/y,
0.0029/y, and 0.0006/y for the Anshan, Benxi, Diaobingshan, Fushun, Fuxin, and Yingkou
mining areas, respectively, over the past 20 years. In the Yingkou, Benxi, and Anshan
mining areas, the slope was relatively low, indicating that the increasing trend of vegetation
was slight. Furthermore, the coefficient of determination (0.066) was so low that it could not
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pass the significance test in the Yingkou, which means that the rate of vegetation change
fluctuated greatly. However, the fitted slope and determination coefficient of the overall
vegetation level in Liaoning Province were 0.0037 and 0.854, which were both larger than
those of the six mining areas.
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Figure 2. The trend of vegetation indices over in the entire Liaoning Province and six mining areas
from 2000 to 2019.

Table 3. The pixel-level change trend of vegetation from 2000 to 2019.

Area Fitted Slope Coefficient of
Determination NDVImax NDVImin

Greatly
Improved

(km2)

Greatly
Degraded

(km2)

Liaoning
province 0.0037/y 0.854 *** 0.6580 0.575 / /

Anshan 0.0021/y 0.296 ** 0.558 0.471 21.571 16.783
Benxi 0.0016/y 0.214 ** 0.667 0.608 0.741 22.083

Diaobingshan 0.0031/y 0.364 *** 0.596 0.482 0.824 1.479
Fushun 0.0024/y 0.591 *** 0.515 0.449 20.489 7.126
Fuxin 0.0029/y 0.276 ** 0.462 0.351 16.098 5.997

Yingkou 0.0006/y 0.066 0.579 0.531 2.136 23.203
* p < 0.1, ** p < 0.05, *** p < 0.01.

The spatial distribution map of vegetation change showed that the greatly degraded
areas were mainly located in stopes, waste dumps, and tailings ponds (Figure 3). However,
greatly improved areas were also mainly located in some waste dumps. The greatly
degraded area was large in the Benxi, Yingkou, and Anshan mining areas, covering
22.083 km2, 23.203 km2, and 16.783 km2, respectively. In the Diaobingshan, Fuxin, and
Fushun mining areas, the greatly degraded area was relatively small. The greatly improved
area was large in the Anshan, Fushun, and Fuxin mining areas, covering 21.571 km2,
20.489 km2, and 16.098 km2, respectively. In the Benxi, Diaobingshan, and Yingkou mining
areas, the greatly improved area was relatively small (Table 3).

4.2. Chlorophyll Content Distribution in Mining Areas

Based on the ground experiment, the relationship between MTCI, NDVI, and leaf
chlorophyll content was derived. The correlation coefficient between MTCI and chloro-
phyll content is 0.956 (p < 0.01). However, the correlation coefficient between NDVI and
chlorophyll content is −0.268, and it could not pass the significance test (Figure 4). The per-
formance of MTCI and NDVI was in accordance with the results of the literature [44]. Thus,
MTCI could be set as an index for estimating chlorophyll content. The leaf chlorophyll
content was then estimated by using MTCI according to Equation (4). The leaf chlorophyll
content for each mining area is shown in Figure 5.
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In each mining area, the chlorophyll content in mines (including stope, waste dump,
and tailings pond) was compared with that in adjacent areas. The statistical results showed
that the chlorophyll value of the pixels in the mines was generally lower than that in
adjacent areas, and the histogram of the pixels presented a “left bias” shape (Figure 6). In
contrast, the chlorophyll value in adjacent areas was generally higher, and the histogram of
the pixels presented an approximate normal distribution. However, there were differences
among these mining areas. In Fushun and Fuxin, the peak value of the histogram of mines
shifted to right, and the histogram shape was more similar to adjacent areas. It indicated
that the chlorophyll content of vegetation in mines was close to adjacent areas. Furthermore,
the ratio of average chlorophyll content in mines to adjacent areas was selected to describe
the differences (Figure 7). It was found that the ratio in Fushun, Fuxin, and Yingkou was
greater than that in the other three mining areas. In Fushun and Fuxin, the ration was
consistent with above histogram results. In Yingkou, the ratio was greater because the peak
value of the histogram of the adjacent area shifted to the left, which meant that the average
chlorophyll content in the adjacent area was relatively low in Yingkou.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 6. Histogram of chlorophyll content pixel for mine and adjacent areas in the mining area. 

 
Figure 7. Chlorophyll content ratio of mines to adjacent areas in each mining area. 

5. Discussion 
5.1. Natural Factors for Vegetation Change in These Mining Areas 

The driving forces that lead to vegetation change include natural and human factors. 
Precipitation and temperature are considered as the main limiting natural factors for veg-
etation growth [45]. For Liaoning Province as a whole, the MNDVI change is highly cor-
related with precipitation (r = 0.420, p < 0.1) but weakly correlated with temperature (r = 
−0.014) (Table 4). For the six mining areas, the correlation between vegetation change and 

Figure 6. Cont.



Remote Sens. 2021, 13, 5168 9 of 14

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 6. Histogram of chlorophyll content pixel for mine and adjacent areas in the mining area. 

 
Figure 7. Chlorophyll content ratio of mines to adjacent areas in each mining area. 

5. Discussion 
5.1. Natural Factors for Vegetation Change in These Mining Areas 

The driving forces that lead to vegetation change include natural and human factors. 
Precipitation and temperature are considered as the main limiting natural factors for veg-
etation growth [45]. For Liaoning Province as a whole, the MNDVI change is highly cor-
related with precipitation (r = 0.420, p < 0.1) but weakly correlated with temperature (r = 
−0.014) (Table 4). For the six mining areas, the correlation between vegetation change and 

Figure 6. Histogram of chlorophyll content pixel for mine and adjacent areas in the mining area.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 6. Histogram of chlorophyll content pixel for mine and adjacent areas in the mining area. 

 
Figure 7. Chlorophyll content ratio of mines to adjacent areas in each mining area. 

5. Discussion 
5.1. Natural Factors for Vegetation Change in These Mining Areas 

The driving forces that lead to vegetation change include natural and human factors. 
Precipitation and temperature are considered as the main limiting natural factors for veg-
etation growth [45]. For Liaoning Province as a whole, the MNDVI change is highly cor-
related with precipitation (r = 0.420, p < 0.1) but weakly correlated with temperature (r = 
−0.014) (Table 4). For the six mining areas, the correlation between vegetation change and 

Figure 7. Chlorophyll content ratio of mines to adjacent areas in each mining area.

5. Discussion
5.1. Natural Factors for Vegetation Change in These Mining Areas

The driving forces that lead to vegetation change include natural and human factors.
Precipitation and temperature are considered as the main limiting natural factors for
vegetation growth [45]. For Liaoning Province as a whole, the MNDVI change is highly
correlated with precipitation (r = 0.420, p < 0.1) but weakly correlated with temperature
(r = −0.014) (Table 4). For the six mining areas, the correlation between vegetation change
and precipitation is strong in the Fuxin (p < 0.01) and Diaobingshan (p < 0.05) mining areas.
This indicates that vegetation is affected by precipitation in those two mining areas. In
other words, mining activities have a weak effect on the vegetation there. In the Fuxin
mining area, the coal resources are exhausted, and the mining activities are no longer
intensive, so the vegetation is not affected by mining activities. In the Diaobingshan mining
area, underground mining has a weak effect on vegetation.

Table 4. Correlation between precipitation and annual maximum NDVI in different mining areas.

Mining Area
Correlation Coefficient

between Precipitation and
NDVI

Correlation Coefficient
between Temperature and

NDVI

Liaoning province 0.420 * −0.014
Anshan 0.208 0.136
Benxi −0.070 0.376

Diaobingshan 0.464 ** −0.427
Fushun 0.320 0.042
Fuxin 0.686 *** −0.445

Yingkou −0.186 0.118
* p < 0.1, ** p < 0.05, *** p < 0.01.
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The correlation between vegetation change trend and precipitation was weak in
the Anshan, Benxi, and Yingkou mining areas, which indicates that precipitation has a
slight effect on the vegetation change in those three areas. Moreover, the relationship
between vegetation and precipitation is consistent with a greatly degraded vegetation
area (Tables 3 and 4). The smaller the area of degraded vegetation is, the stronger the
relationship with precipitation.

5.2. Ecological Restoration for Vegetation Change in These Mining Areas

According to the results of vegetation change, the greatly improved vegetation area
is 21.571, 20.489, and 16.098 km2 in Anshan, Fushun, and Fuxin mining areas, respec-
tively. It is mainly due to ecological restoration for these areas. Coal began to be mined
approximately one hundred years ago in Fuxin and Fushun. At the end of the last century,
coal resources were exhausted in these areas. As a result of long-term, high-intensity,
and open-pit mining, huge pits and coal gangue dumps were formed in these areas. For
example, the open pit is 4 km long and 2 km wide, and area of the coal gangue dump
is 16 km2 in Haizhou Surface Mine in Fuxin; and the open pit is 6.6 km long and 2.2 km
wide, and area of the coal gangue dumps is 12.9 km2 in Xilutian Mine in Fushun. Since the
beginning of this century, large-scale reclamation activities have been carried out in these
areas. After reclamation, the abandoned pits and dumps were covered by woods (such as
Ulmus pumila, Robinia pseudoacacia, Amorpha fruticosa) and grass (such as Vitex Chinensis,
Ostryopsis davidiana, Imperatacy lindrical, Themeda japonica, Arrndinella hirta).

Similar to coal mining in Fuxin and Fushun, iron ore mining has a long history with
more than 100 years in Anshan. At present, there are approximately 8.8 km2 pits and
38.9 km2 tailings ponds and dumps around Anshan City. In the last 10 years, some efforts
were made to cover these mining sites with vegetation. The Green Mine Programme (GMP),
which aims to restore vegetation for mined mountains, was initiated in 2011 in Liaoning
Province. From 2012 to 2015, 846 mines were managed with a total area of 48.33 km2. Due
to these efforts, in this study, greatly improved vegetation was found in waste dumps
(Figure 8). In addition, the greatly improved vegetation area is 2.136, 0.824, and 0.741 km2

in Yingkou, Diaobingshan, and Benxi mining areas, respectively. The mines are in service
in these areas and less reclamation activities were carried out.

5.3. Destruction and Pollution of Vegetation by Mining Activities

Mining activities are the main cause of vegetation degradation in these mining areas.
In the stopes of open-pit mines, vegetation is destroyed by mining ore. In waste dumps,
vegetation is occupied by waste and tailings. Among the six mining areas, Fushun and
Fuxin are coal-exhausted. Due to low-intensity mining activities, the greatly degraded
vegetation area is 7.126 km2 in Fushun and 5.997 km2 in Fuxin. Diaobingshan is a coal
mining area with underground mining, and vegetation there is not obviously affected by
mining activities aside from some coal gangues. Thus, the greatly degraded vegetation area
is only 1.479 km2 in Diaobingshan. On the contrary, mining activities are high-intensity in
Anshan, Benxi, and Yingkou mining areas, where the annual output of iron ore is more
than 1.7 × 108 t and magnesite ore is more than 1.3 × 107 t. Thus, the greatly degraded
area is larger in these three mining areas, with 16.783 km2 in Anshan, 22.083 km2 in Benxi,
and 23.203 km2 in Yingkou.

Aside from direct effects of mining, vegetation around mines may be stressed by
pollution that enters the environment from mining activities. There are some stress factors
in active mining areas, such as dust pollution and water pollution (Figure 9). This phe-
nomenon is obvious in the active, open-pit mining areas, such as Yingkou, Anshan, and
Benxi. Deposited dust would cause soil hardening, pollution, and blockage of leaf stomata,
and then the leaf chlorophyll content would be reduced for the reclaimed vegetation. Thus,
the corresponding histogram of the pixels presented a “left bias” shape in mines in Anshan,
Benxi, and Yingkou (Figure 6). Furthermore, the impact would extend to adjacent areas
with the spread of pollutants in some mining areas. For example, in Yingkou mining
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area, 1.4 × 105 t dust is emitted during the mining and sintering process each year, and it
contains much magnesium carbonate and magnesium oxide [46]. The vegetation in the
adjacent areas would be disturbed by the diffused dust. Compared with Anshan and Benxi,
the average chlorophyll content in adjacent area was relatively low in Yingkou for this
reason (Figures 6 and 7).

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 8. Vegetation improvement in open-pit mines based on MODIS NDVI and GeoEye image: 
(a) is in Anshan area, (b) is in Fushun area, and (c) is in Fuxin area. 

5.3. Destruction and Pollution of Vegetation by Mining Activities 
Mining activities are the main cause of vegetation degradation in these mining areas. 

In the stopes of open-pit mines, vegetation is destroyed by mining ore. In waste dumps, 
vegetation is occupied by waste and tailings. Among the six mining areas, Fushun and 
Fuxin are coal-exhausted. Due to low-intensity mining activities, the greatly degraded 
vegetation area is 7.126 km2 in Fushun and 5.997 km2 in Fuxin. Diaobingshan is a coal 
mining area with underground mining, and vegetation there is not obviously affected by 
mining activities aside from some coal gangues. Thus, the greatly degraded vegetation 
area is only 1.479 km2 in Diaobingshan. On the contrary, mining activities are high-inten-
sity in Anshan, Benxi, and Yingkou mining areas, where the annual output of iron ore is 
more than 1.7 × 108 t and magnesite ore is more than 1.3 × 107 t. Thus, the greatly degraded 
area is larger in these three mining areas, with 16.783 km2 in Anshan, 22.083 km2 in Benxi, 
and 23.203 km2 in Yingkou. 

Aside from direct effects of mining, vegetation around mines may be stressed by pol-
lution that enters the environment from mining activities. There are some stress factors in 
active mining areas, such as dust pollution and water pollution (Figure 9). This phenom-
enon is obvious in the active, open-pit mining areas, such as Yingkou, Anshan, and Benxi. 
Deposited dust would cause soil hardening, pollution, and blockage of leaf stomata, and 
then the leaf chlorophyll content would be reduced for the reclaimed vegetation. Thus, 
the corresponding histogram of the pixels presented a “left bias” shape in mines in An-
shan, Benxi, and Yingkou (Figure 6). Furthermore, the impact would extend to adjacent 
areas with the spread of pollutants in some mining areas. For example, in Yingkou mining 
area, 1.4 × 105 t dust is emitted during the mining and sintering process each year, and it 
contains much magnesium carbonate and magnesium oxide [46]. The vegetation in the 
adjacent areas would be disturbed by the diffused dust. Compared with Anshan and 

Figure 8. Vegetation improvement in open-pit mines based on MODIS NDVI and GeoEye image:
(a) is in Anshan area, (b) is in Fushun area, and (c) is in Fuxin area.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 14 
 

 

Benxi, the average chlorophyll content in adjacent area was relatively low in Yingkou for 
this reason (Figures 6 and 7). 

 
Figure 9. Environmental pollution in mining areas: (a) is water pollution, and (b) is dust pollution. 

6. Conclusions 
Mining activities can affect vegetation directly and indirectly. To quantitatively de-

termine the effect, MODIS NDVI and Sentinel-2A data were used to monitor the vegeta-
tion change in six mining areas in Liaoning Province, North China. The conclusions are 
as follows. 

(1) MODIS NDVI time series data were used to monitor the vegetation from 2000 to 
2019 using a change trend analysis method. Over the full 20 years, the overall trend of 
vegetation in mining areas was positive, but it was lower than the average for all of Liao-
ning Province. Open-pit mining activities have a greater impact on vegetation than un-
derground mining. Vegetation was highly degraded in the Yingkou, Benxi, and Anshan 
mining areas due to intensive mining activities there. Vegetation degradation was much 
less notable in the coal-exhausted Fushun and Fuxin mining areas and was not obvious in 
the Diaobingshan mining area because of underground mining. 

(2) Sentinel-2A data were used to infer leaf chlorophyll content by using MTCI in the 
mining areas. The leaf chlorophyll content in the mines was generally lower than adjacent 
areas in the six mining areas, but there were individual differences among these mining 
areas. In the Yingkou mining area, the chlorophyll content in adjacent areas was close to 
the magnesite mines, which meant the spillover effect of environmental pollution in mines 
should be considerable. In the Anshan, Benxi, and Diaobingshan mining areas, the envi-
ronmental stress on adjacent areas was slight. 

(3) According to the remote sensing results, the disturbance to vegetation was limited 
in the resource-exhausted open-pit coal mines and underground coal mines. Land recla-
mation should be enhanced to improve vegetation in active open-pit mining areas, such 
as Anshan, Benxi, and Yingkou. Furthermore, environmental protection measures should 
be enhanced to relieve the vegetation stress around the mines in the Yingkou mining area. 
Essentially, iron and magnesite open-pit mines should focus on vegetation destruction 
and stress caused by high-intensity mining activities and pollution. 

Author Contributions: Conceptualization, B.M.; Data curation, B.M., X.Y. and Y.Y.; Formal analysis, 
B.M., X.Y. and Y.Y.; Funding acquisition, Y.S. and D.C.; Investigation, B.M.; Methodology, B.M., Y.S. 
and D.C.; Software, B.M., Y.S. and D.C.; Supervision, X.Y.; Writing—original draft, B.M. and Y.Y.; 
Writing—review & editing, B.M. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This work was jointly supported by the Fundamental Research Funds for the Central Uni-
versities (N2124005 and N2001020), and the National Natural Science Foundation of China 
(41871310, 41801249 and 41201359). 

Acknowledgments: We would like to acknowledge the anonymous reviewers for their valuable 
suggestions.  

Figure 9. Environmental pollution in mining areas: (a) is water pollution, and (b) is dust pollution.

6. Conclusions

Mining activities can affect vegetation directly and indirectly. To quantitatively deter-
mine the effect, MODIS NDVI and Sentinel-2A data were used to monitor the vegetation
change in six mining areas in Liaoning Province, North China. The conclusions are as
follows.

(1) MODIS NDVI time series data were used to monitor the vegetation from 2000
to 2019 using a change trend analysis method. Over the full 20 years, the overall trend
of vegetation in mining areas was positive, but it was lower than the average for all of
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Liaoning Province. Open-pit mining activities have a greater impact on vegetation than
underground mining. Vegetation was highly degraded in the Yingkou, Benxi, and Anshan
mining areas due to intensive mining activities there. Vegetation degradation was much
less notable in the coal-exhausted Fushun and Fuxin mining areas and was not obvious in
the Diaobingshan mining area because of underground mining.

(2) Sentinel-2A data were used to infer leaf chlorophyll content by using MTCI in the
mining areas. The leaf chlorophyll content in the mines was generally lower than adjacent
areas in the six mining areas, but there were individual differences among these mining
areas. In the Yingkou mining area, the chlorophyll content in adjacent areas was close
to the magnesite mines, which meant the spillover effect of environmental pollution in
mines should be considerable. In the Anshan, Benxi, and Diaobingshan mining areas, the
environmental stress on adjacent areas was slight.

(3) According to the remote sensing results, the disturbance to vegetation was limited
in the resource-exhausted open-pit coal mines and underground coal mines. Land recla-
mation should be enhanced to improve vegetation in active open-pit mining areas, such
as Anshan, Benxi, and Yingkou. Furthermore, environmental protection measures should
be enhanced to relieve the vegetation stress around the mines in the Yingkou mining area.
Essentially, iron and magnesite open-pit mines should focus on vegetation destruction and
stress caused by high-intensity mining activities and pollution.

Author Contributions: Conceptualization, B.M.; Data curation, B.M., X.Y. and Y.Y.; Formal analysis,
B.M., X.Y. and Y.Y.; Funding acquisition, Y.S. and D.C.; Investigation, B.M.; Methodology, B.M.,
Y.S. and D.C.; Software, B.M., Y.S. and D.C.; Supervision, X.Y.; Writing—original draft, B.M. and
Y.Y.; Writing—review & editing, B.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was jointly supported by the Fundamental Research Funds for the Central
Universities (N2124005 and N2001020), and the National Natural Science Foundation of China
(41871310, 41801249 and 41201359).

Acknowledgments: We would like to acknowledge the anonymous reviewers for their valuable
suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Paniagua, A.; Kammerbauer, J.; Avedillo, M.; Andrews, A.M. Relationship of soil characteristics to vegetation successions on a

sequence of degraded and rehabilitated soils in Honduras. Agric. Ecosyst. Environ. 1999, 72, 215–225. [CrossRef]
2. Zhu, H.H.; He, X.Y.; Wang, K.L.; Su, Y.R.; Wu, J.S. Interactions of vegetation succession, soil bio-chemical properties and microbial

communities in a Karst ecosystem. Eur. J. Soil Biol. 2012, 51, 1–7. [CrossRef]
3. Wan, Q.Z.; Zhu, G.F.; Guo, H.W.; Zhang, Y.; Pan, H.X.; Yong, L.L.; Ma, H.Y. Influence of Vegetation Coverage and Climate

Environment on Soil Organic Carbon in the Qilian Mountains. Sci. Rep. 2019, 9, 9. [CrossRef] [PubMed]
4. Koerner, W.; Dupouey, J.L.; Dambrine, E.; Benoit, M. Influence of past land use on the vegetation and soils of present day forest in

the Vosges mountains, France. J. Ecol. 1997, 85, 351–358. [CrossRef]
5. Zhou, L.M.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in northern vegetation activity

inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res.-Atmos. 2001, 106, 20069–20083. [CrossRef]
6. Li, Z.Y.; Ma, Z.W.; van der Kuijp, T.J.; Yuan, Z.W.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution

and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [CrossRef]
7. Franks, D.M.; Brereton, D.; Moran, C.J. Managing the cumulative impacts of coal mining on regional communities and environ-

ments in Australia. Impact Assess. Proj. Apprais. 2010, 28, 299–312. [CrossRef]
8. Sinha, S.; Bhattacharya, R.N.; Banerjee, R. Surface iron ore mining in eastern India and local level sustainability. Resour. Policy

2007, 32, 57–68. [CrossRef]
9. Fan, X.M.; Ren, F.Y.; Xiao, D.; Mao, Y.C. Opencast to underground iron ore mining method. J. Cent. South Univ. 2018, 25, 1813–1824.

[CrossRef]
10. Cheskidov, V.I.; Bobyl’sky, A.S. Technology and Ecology of Dumping at Open Pit Mines in Kuzbass. J. Min. Sci. 2017, 53, 882–889.

[CrossRef]
11. Wu, Z.H.; Lei, S.G.; Lu, Q.Q.; Bian, Z.F. Impacts of Large-Scale Open-Pit Coal Base on the Landscape Ecological Health of

Semi-Arid Grasslands. Remote Sens. 2019, 11, 1820. [CrossRef]

http://doi.org/10.1016/S0167-8809(98)00183-2
http://doi.org/10.1016/j.ejsobi.2012.03.003
http://doi.org/10.1038/s41598-019-53837-4
http://www.ncbi.nlm.nih.gov/pubmed/31772205
http://doi.org/10.2307/2960507
http://doi.org/10.1029/2000JD000115
http://doi.org/10.1016/j.scitotenv.2013.08.090
http://doi.org/10.3152/146155110X12838715793129
http://doi.org/10.1016/j.resourpol.2007.06.001
http://doi.org/10.1007/s11771-018-3871-z
http://doi.org/10.1134/S106273911705291X
http://doi.org/10.3390/rs11151820


Remote Sens. 2021, 13, 5168 13 of 14

12. Song, J.; Han, C.; Li, P.; Zhang, J.; Liu, D.; Jiang, M.; Zheng, L.; Zhang, J.; Song, J. Quantitative prediction of mining subsidence
and its impact on the environment. Int. J. Min. Sci. Technol. 2012, 22, 69–73. [CrossRef]

13. Olivares, H.G.; Lagos, N.M.; Gutierrez, C.J.; Kittelsen, R.C.; Valenzuela, G.L.; Lillo, M.E.H. Assessment oxidative stress biomarkers
and metal bioaccumulation in macroalgae from coastal areas with mining activities in Chile. Environ. Monit. Assess. 2016, 188, 11.
[CrossRef] [PubMed]

14. Kolodziej, B.; Bryk, M.; Otremba, K. Effect of rockwool and lignite dust on physical state of rehabilitated post-mining soil. Soil
Tillage Res. 2020, 199, 9. [CrossRef]

15. Henchiri, M.; Ali, S.; Essifi, B.; Kalisa, W.; Zhang, S.; Bai, Y. Monitoring land cover change detection with NOAA-AVHRR and
MODIS remotely sensed data in the North and West of Africa from 1982 to 2015. Environ. Sci. Pollut. Res. 2020, 27, 5873–5889.
[CrossRef]

16. Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Estimation and mapping of above-ground biomass of mangrove forests
and their replacement land uses in the Philippines using Sentinel imagery. Isprs J. Photogramm. Remote Sens. 2017, 134, 70–85.
[CrossRef]

17. Lawley, V.; Lewis, M.; Clarke, K.; Ostendorf, B. Site-based and remote sensing methods for monitoring indicators of vegetation
condition: An Australian review. Ecol. Indic. 2016, 60, 1273–1283. [CrossRef]

18. Liang, S. Estimation of land surface biophysical variables. In Quantitative Remote Sensing of Land Surfaces; Kong, J.A., Ed.; John
Wiley & Sons: Hoboken, NJ, USA, 2002; pp. 247–264.

19. Jacquin, A.; Sheeren, D.; Lacombe, J.P. Vegetation cover degradation assessment in Madagascar savanna based on trend analysis
of MODIS NDVI time series. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S3–S10. [CrossRef]

20. Weiss, J.L.; Gutzler, D.S.; Coonrod, J.E.A.; Dahm, C.N. Long-term vegetation monitoring with NDVI in a diverse semi-arid setting,
central New Mexico, USA. J. Arid Environ. 2004, 58, 249–272. [CrossRef]

21. Hansen, M.C.; Roy, D.P.; Lindquist, E.; Adusei, B.; Justice, C.O.; Altstatt, A. A method for integrating MODIS and Landsat data
for systematic monitoring of forest cover and change in the Congo Basin. Remote Sens. Environ. 2008, 112, 2495–2513. [CrossRef]

22. Wessels, K.J.; Prince, S.D.; Frost, P.E.; van Zyl, D. Assessing the effects of human-induced land degradation in the former
homelands of northern South Africa with a 1 km AVHRR NDVI time-series. Remote Sens. Environ. 2004, 91, 47–67. [CrossRef]

23. Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for
predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ.
2004, 90, 337–352. [CrossRef]

24. Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [CrossRef]
25. Fensholt, R.; Sandholt, I.; Rasmussen, M.S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a

semi-arid environment using in situ measurements. Remote Sens. Environ. 2004, 91, 490–507. [CrossRef]
26. Olofsson, P.; Eklundh, L. Estimation of absorbed PAR across Scandinavia from satellite measurements. Part II: Modeling and

evaluating the fractional absorption. Remote Sens. Environ. 2007, 110, 240–251. [CrossRef]
27. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance

of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]
28. Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—

Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data.
Remote Sens. Environ. 2009, 113, 1886–1898. [CrossRef]

29. Ma, B.D.; Li, X.X.; Liang, A.M.; Chen, Y.T.; Che, D.F. Experimental and Numerical Investigation of Dustfall Effect on Remote
Sensing Retrieval Accuracy of Chlorophyll Content. Sensors 2019, 19, 5530. [CrossRef] [PubMed]

30. Sun, Y.H.; Ren, H.Z.; Zhang, T.Y.; Zhang, C.Y.; Qin, Q.M. Crop Leaf Area Index Retrieval Based on Inverted Difference Vegetation
Index and NDVI. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1662–1666. [CrossRef]

31. Pinar, A.; Curran, P.J. Grass chlorophyll and the reflectance red edge. Int. J. Remote Sens. 1996, 17, 351–357. [CrossRef]
32. Jiang, J.B.; Chen, Y.H.; Huang, W.J. Using Hyperspectral Remote Sensing to Estimate Canopy Chlorophyll Density of Wheat

under Yellow Rust Stress. Spectrosc. Spectr. Anal. 2010, 30, 2243–2247. [CrossRef]
33. Zarco-Tejada, P.J.; Hornero, A.; Hernandez-Clemente, R.; Beck, P.S.A. Understanding the temporal dimension of the red-edge

spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery. Isprs J. Photogramm.
Remote Sens. 2018, 137, 134–148. [CrossRef] [PubMed]

34. Khosravi, V.; Ardejani, F.D.; Gholizadeh, A.; Saberioon, M. Satellite Imagery for Monitoring and Mapping Soil Chromium
Pollution in a Mine Waste Dump. Remote Sens. 2021, 13, 1277. [CrossRef]

35. Seifi, A.; Hosseinjanizadeh, M.; Ranjbar, H.; Honarmand, M. Identification of Acid Mine Drainage Potential Using Sentinel 2a
Imagery and Field Data. Mine Water Environ. 2019, 38, 707–717. [CrossRef]

36. Lobo, F.D.; Souza, P.W.M.; Novo, E.; Carlos, F.M.; Barbosa, C.C.F. Mapping Mining Areas in the Brazilian Amazon Using
MSI/Sentinel-2 Imagery (2017). Remote Sens. 2018, 10, 1178. [CrossRef]

37. Holben, B.N. Characteristics of maximum-value composite images from temporal avhrr data. Int. J. Remote Sens. 1986, 7,
1417–1434. [CrossRef]

38. Lasaponara, R. On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from
SPOT/VEGETATION NDVI temporal series. Ecol. Model. 2006, 194, 429–434. [CrossRef]

http://doi.org/10.1016/j.ijmst.2011.07.008
http://doi.org/10.1007/s10661-015-5021-5
http://www.ncbi.nlm.nih.gov/pubmed/26661961
http://doi.org/10.1016/j.still.2020.104603
http://doi.org/10.1007/s11356-019-07216-1
http://doi.org/10.1016/j.isprsjprs.2017.10.016
http://doi.org/10.1016/j.ecolind.2015.03.021
http://doi.org/10.1016/j.jag.2009.11.004
http://doi.org/10.1016/j.jaridenv.2003.07.001
http://doi.org/10.1016/j.rse.2007.11.012
http://doi.org/10.1016/j.rse.2004.02.005
http://doi.org/10.1016/j.rse.2003.12.013
http://doi.org/10.1080/02757259509532298
http://doi.org/10.1016/j.rse.2004.04.009
http://doi.org/10.1016/j.rse.2007.02.020
http://doi.org/10.1016/S0034-4257(02)00096-2
http://doi.org/10.1016/j.rse.2009.04.004
http://doi.org/10.3390/s19245530
http://www.ncbi.nlm.nih.gov/pubmed/31847376
http://doi.org/10.1109/LGRS.2018.2856765
http://doi.org/10.1080/01431169608949010
http://doi.org/10.3964/j.issn.1000-0593(2010)08-2243-05
http://doi.org/10.1016/j.isprsjprs.2018.01.017
http://www.ncbi.nlm.nih.gov/pubmed/29551855
http://doi.org/10.3390/rs13071277
http://doi.org/10.1007/s10230-019-00632-2
http://doi.org/10.3390/rs10081178
http://doi.org/10.1080/01431168608948945
http://doi.org/10.1016/j.ecolmodel.2005.10.035


Remote Sens. 2021, 13, 5168 14 of 14

39. Liu, S.; Wang, T. Climate change and local adaptation strategies in the middle Inner Mongolia, northern China. Environ. Earth Sci.
2012, 66, 1449–1458. [CrossRef]

40. Ma, M.; Frank, V. Interannual variability of vegetation cover in the Chinese Heihe river basin and its relation to meteorological
parameters. Int. J. Remote Sens. 2006, 27, 3473–3486. [CrossRef]

41. Song, Y.; Ma, M. Study on vegetation cover Change in Northwest China based on SPOT VEGETATION data. J. Desert Res. 2007,
27, 6.

42. Su, W.; Zhao, X.F.; Sun, Z.P.; Zhang, M.Z.; Zou, Z.C.; Wang, W.; Shi, Y.L. Estimating the Corn Canopy Chlorophyll Content Using
the Sentinel-2A Image. Spectrosc. Spectr. Anal. 2019, 39, 1535–1542. [CrossRef]

43. Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [CrossRef]
44. Croft, H.; Chen, J.M.; Wang, R.; Mo, G.; Luo, S.; Luo, X.; He, L.; Gonsamo, A.; Arabian, J.; Zhang, Y.; et al. The global distribution

of leaf chlorophyll content. Remote Sens. Environ. 2020, 236, 15. [CrossRef]
45. du Plessis, W.P. Linear regression relationships between NDVI, vegetation and rainfall in Etosha National Park, Namibia. J. Arid

Environ. 1999, 42, 235–260. [CrossRef]
46. Zhu, J.; Gong, Z.; Li, R.; Wang, Z.; Gao, Q.; Li, P. Study on ecological restoration of magnesite mining area in Liaoning Province.

Environ. Prot. Circ. Econ. 2013, 7, 47–51.

http://doi.org/10.1007/s12665-011-1357-5
http://doi.org/10.1080/01431160600593031
http://doi.org/10.3964/j.issn.1000-0593(2019)05-1535-08
http://doi.org/10.1080/0143116042000274015
http://doi.org/10.1016/j.rse.2019.111479
http://doi.org/10.1006/jare.1999.0505

	Introduction 
	Study Area and Data 
	Study Area 
	Remotely Sensed Data 
	MODIS NDVI Series Data 
	Sentinel-2A Data 
	High-Resolution Data 

	Other Data 

	Method 
	Composing the Method for Analysis of MODIS NDVI Yearly Data 
	Changing Trend Analysis Based on Yearly NDVI 
	Chlorophyll Content Estimation Based on Sentinel Data and Difference Analysis 

	Results 
	Change in Trend of Vegetation from 2000 to 2019 
	Chlorophyll Content Distribution in Mining Areas 

	Discussion 
	Natural Factors for Vegetation Change in These Mining Areas 
	Ecological Restoration for Vegetation Change in These Mining Areas 
	Destruction and Pollution of Vegetation by Mining Activities 

	Conclusions 
	References

