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Abstract: This paper presents the first complete approach to achieving environmental intelligence
support in the management of vegetation within electrical power transmission corridors. Contrary to
the related studies that focused on the mapping of power lines, together with encroaching vegetation
risk assessment, we realised predictive analytics with vegetation growth simulation. This was
achieved by following the JDL/DFIG data fusion model for complementary feature extraction from
Light Detection and Ranging (LiDAR) derived data products and auxiliary thematic maps that feed an
ensemble regression model. The results indicate that improved vegetation growth prediction accuracy
is obtained by segmenting training samples according to their contextual similarities that relate to their
ecological niches. Furthermore, efficient situation assessment was then performed using a rasterised
parametrically defined funnel-shaped volumetric filter. In this way, RMSE « 1 m was measured when
considering tree growth simulation, while a 0.37 m error was estimated in encroaching vegetation
detection, demonstrating significant improvements over the field observations.

Keywords: LiDAR; vegetation management; digital twin; power-lines; encroaching vegetation
detection; three growth simulation; environmental intelligence

1. Introduction

As electrification is becoming a pillar of social [1,2], economic [3] and environmental
sustainability [2,4,5], power transmission lines are under increasing burden. While their
performance monitoring and management have long been addressed through the concepts
of so-called Smart Grids with the Internet-of-Things [6], benefits of environmental intelli-
gence are still to be explored when addressing their physical safety [7]. As 30% of power
outages are reportedly caused by weather conditions [8], 90% of which are attributed to
tree-related incidents [9], vegetation management in power line corridors maintains a major
challenge [7,8]. While it has already been shown that 6% improvement in reliability and
9% reduction in total costs is possible by only optimising tree trimming tasks [10], utilities
still spend millions of dollars on vegetation management every year, making it one of the
costliest activities in distribution asset management [7]. In addition, new challenges are
now emerging related to mitigation of long-term negative impacts on biodiversity and
ecosystems’ sustainability [11,12]. Accordingly, digitalization in vegetation management
has been explored increasingly in the last decade, within which the use of Light Detection
and Ranging (LiDAR) has gained considerable attention [13].

Early researches into the subject were directed towards the extraction [14–18] and
3D reconstruction [19–23] of power lines from LiDAR data. Milzer and Briese (2004), for
example, proposed minimum linkage clustering for pylons’ extraction, while the extraction
of power lines between them was achieved by using 2D Hough Transform, followed by 3D
line fitting. On the other hand, McLaughlin [15] addressed the classification of transmis-
sion lines, vegetation and surfaces using eigenvalue decomposition. Hough Transforma-
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tion and eigen-related features, together with surface-related, convex hull, echo-related,
density-related and vertical profile-related features were explored by Kim et al. [16] for
feeding a random forest classifier, while Cheng et al. [17] proposed Hough Transformation,
eigenvalue and density features for clustering and 3D line fitting. Alternatively, Jwa and
Sohn [20] proposed Hough Transformation for the definition of seed-points, while they
achieved a reconstruction of power lines by using progressive line fitting combined with
incremental segmentation. Alternatively, Guo et al. proposed Joint Boost-based classifica-
tion of pylons [22] and power lines [21], and their reconstruction was achieved by using
random sample consensus (RANSAC). Finally, Ortega et al. [23] performed a reconstruc-
tion of wires based on the catenary equation using particle swarm optimisation after an
initial classification of pylons and wires, and their segmentation into individual conductors.
Accordingly, while these traditional methods achieved mapping of pylons, followed by
recognition of wires, more recent approaches focused on improving their performances [24]
and extraction of more detailed information, such as, for example, the reconstruction of
bundle conductors [25]. The latter was addressed by analysing single spans’ fitting residu-
als, while each sub-conductor of bundle conductors was extracted by a projected dichotomy
approach on the XOY and XOZ planes, and their reconstruction was performed by using
a double-RANSAC with reported accuracies of above 90%. Contemporary methods can,
thus, provide adequate support in power-line mapping tasks. However, assessment of
power-line corridor clearance has, until recently, been a less frequently addressed research
topic [13]. Despite the early recognised potentials [26], an efficient automatic LiDAR-based
detection of clearance hazards (such as tree encroachment) has been reported only recently,
with clearance measurement accuracy at the decimetre level [27], while over 95% accuracy
of power-line and vegetation recognition for hazard detection was reported recently in [28].
The proposed process was based on dividing the large dataset into small manageable
datasets for the generation of voxel-spaces, where separation of power lines from pylons
and vegetation was achieved. Finally, the height and location of the extracted vegetation
with reference to power lines were estimated for the detection of danger and clearance
zones. Still, as argued in [13], fusion of multiple data sources can provide further benefits
by reducing the monitoring costs, as well as improving temporal resolution (e.g., by fusion
of aerial images [29]). In addition, data fusion can enhance monitoring with prediction ca-
pacities, as explored very recently with statistical predictions of tree-related power outages
based on historical and weather data [30].

While predictive analytics is, thus, emerging as a new trend in effective power-line
corridor management, improved vegetation growth simulations are needed, that are tuned
to the exact ecological niches under inspection. Although many studies were conducted on
the possible use of LiDAR data in vegetation and forest management, their primary focus
remained on mapping the current state of the vegetation rather than using it for automated
regression of vegetation growth. For example, Mongus and Žalik [31] proposed single
tree-crown delineation and extraction of tree attributes by using Locally Fitted Surfaces
(LoFS) and watershed segmentation, while Kolendo et al. [32] used a local maximum filter
with growing region instead of LoFS. Donager et al. [33], on the other hand, proposed
monitoring of forest structure by using eigenvalue and density metrics for the extraction of
individual trees, with statistical analysis for assessing tree-level and stand-level attributes.
Despite the fact that several studies have also indicated the possible use of LiDAR for
predicting tree growth from multi-temporal datasets [34], such as by feeding the extracted
information from LiDAR data into existing prediction engines [35], Random Forest or Linear
Models [36], a complete data fusion stack that allows for vegetation growth simulations
has not yet been introduced.

In this paper, we propose a new approach for achieving Environmental Intelligence in
vegetation management using structured data fusion of LiDAR-generated data products
with complementary thematic maps and administrative data sources, i.e., development of
a digital twin [37]. Accordingly, following are the key scientific contributions of the paper:
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• A complete LiDAR data processing pipeline for fusion of the derived data products
(like digital terrain models, canopy height models and 3D data about power lines),
with cadastral data and other important thematic maps for vegetation management,
such as, for example, distribution of tree spices and soil pH maps,

• An efficient approach for encroaching vegetation detection that enables accurate
assessment of corridor clearance and provides future threat assessment, and

• A new data segmentation approach for learning vegetation growth simulation, with
weak predictors tuned to specific ecological niches.

The rest of the paper is organised as follows: A new methodology for vegetation
management is proposed in Section 2. Its results are presented in Section 3, while Section 4
concludes the paper.

2. Materials and Methods
2.1. Study Area and Data Source Preprocessing

In order to account for various testing conditions, an 18 km long corridor of the
Slovenian national power transmission grid was selected. The corridor extends from the
city of Nova Gorica to the town of Avče, and, thus, spans from the Sub-Mediterranean to
the Alpine climate, and, accordingly, contains diverse forest stands with highly versatile
terrain configurations. The terrain is also characterised by different soil qualities and soil
pH levels, as well as sunlight conditions. In total, the power line corridor contains 104
power cables with a total span of approximately 168 km.

For the purposes of this study, two LiDAR data acquisitions were conducted in the
years 2014 and 2018. As shown in Figure 1, the whole study area was divided into 1ˆ 1 km
tiles, covering the total area of 24 km2, while the protected area of the power-line corridor
covered 2.72 km2. In addition to LiDAR data, the auxiliary data sources used in this study
are reported in Table 1.

Figure 1. Study area.

Table 1. List of auxiliary data sources.

Year(s) of SPATIAL
Data-Source Description Type Acquisition Resolution

Power transmission line axes Geometry 2021 1.5 m
Mean amount of precipitation Geometry 1981–2010 100 m

Mean air temperature Geometry 1981–2010 100 m
Sunshine duration in summer Geometry 1981–2010 100 m
Tree species distribution map Raster 2020 10 m

Soil quality index Raster 2011–2012 250 m
Soil pH Raster 2011–2012 250 m
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During source preprocessing, key LiDAR data products were generated, and their
spatio-temporal data alignment with auxiliary thematic maps was achieved. For this
purpose, a digital terrain model (DTM) and canopy height models (CHM) were generated
from LiDAR data by using ground point and vegetation point classifications, as proposed
in [38,39]. Note, however, that visual inspection and user refinements were necessary
here, in order to correct inevitable inaccuracies introduced by automatic LiDAR data
classification algorithms manually. Sampling of low ground points and high vegetation
points into 1ˆ 1 km tiles was then performed with 0.5 m resolution, while data cleaning
with interpolation of missing data and correction of tree heights was performed according
to [40]. The obtained DTM was then subtracted from the digital surface model, as obtained
from the sampled vegetation points, in order to define CHM. Nevertheless, due to the
traditionally infrequent LiDAR data acquisitions, temporal alignment of the DTM and
ground-truth CHM was achieved by considering the following additionally:

• Forest management activities conducted after LiDAR data were recorded;
• Vegetation growth up to the current date.

While the history of management activities was maintained with a log of the completed
work orders and associated vector layers describing the region, date and type of cleaning
tasks, tree growth predictions were used to estimate vegetation development. Temporal
alignment was, thus, achieved iteratively (with 1 month temporal resolution), where, in
each iteration, CHM and DTM were corrected in accordance with the power-line corridor
management tasks from the previous month, followed by tree growth simulation, in order
to approximate the current status of the vegetation. For this purpose, vegetation growth
simulation was used, as proposed in [41]. Additionally, auxiliary raster data sources were
resampled, according to [42,43], in order to achieve their alignment at 0.5 m resolution.

Finally, a detailed 3D geometry of the power transmission line was extracted from
LiDAR data with 1.5 m resolution, as proposed by [24], resulting in a vector layer containing
a little over a million 3D points. In order to provide a simplified assessment of their possible
sagging, segments were also attributed with their distances from the transmission towers,
as well as their voltage levels.

2.2. LiDAR Data Processing Framework for Vegetation Management

In this section, a complete data processing framework is presented for fusion of LiDAR
derived data products (i.e., digital terrain and canopy height models), with auxiliary data
sources (i.e., about forest species’ distribution and environmental conditions), needed
for ensuring accurate vegetation growth prediction and threat assessment in support
of vegetation management in power-line corridors. For this purpose, we followed the
JDL/DFIG (Joint Directors of Laboratories/Data Fusion Information Group) model, shown
in Figure 2, which is considered to be a de-facto standard reference model for assessing
features from heterogeneous data sources and streams. In addition to data preprocessing
(i.e., Level 0), described in Section 2.1, it prescribes feature modelling over the following
levels [44,45]:

• Level 1—Object assessment dealt with the definition of individual trees, their features,
as well as the features of power-lines;

• Level 2—Situation assessment provided encroaching vegetation detection and risk
assessment features;

• Level 3—Threat assessment integrated tree-growth predictions for the assessment of
risk prognosis features;

• Level 4—Process refinement dealt with the management of other levels, recorded
performance of the system, provided adaptive data acquisition and made decisions
on how to improve the system efficiency;

• Level 5—User refinement dealt with knowledge management and visual analytics to
support decision-making; while

• Level 6—Asset management, in our case, provided task scheduling by also considering
available resources, legal constraints, and other operational factors.
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As follows from the above, level 4 addressed overall system optimisations, while levels
5 and 6 were knowledge and vegetation management levels. Accordingly, we address in
the continuation of this section levels 1 to 3, that provided environmental intelligence in
support of these tasks.

Figure 2. Overall concept of the data fusion framework.

2.2.1. Level 1—Object Assessment

During object assessment, we addressed the extraction of individual trees and fusion of
auxiliary data sources about the environmental conditions relevant for their development.
While the latter were used to provide contextual information for tree-growth prediction
during the threat assessment, described in Section 2.2.3, spatial definition of individual trees
was achieved with sufficient accuracy using single tree-crown delineation on a temporally
aligned CHM. Single tree-crown assessment was then resolved by intersecting the resulting
vector layer with auxiliary thematic maps, by which extraction of essential individual-tree
parameters was brought about.

Formally, let a grid G “ tpiu be given by a set of pixels pi “ pxi, yiq that define the
study area, while a general data layer is given by a mapping function f : px, yq Ñ R acting
on them, such as, for example, CHMppiq, and DTMppiq defines the values of canopy height
and digital terrain models at a given pixel pi. A connected component Ct “ tpiu Ď G
defines a delineation of a single tree-crown t, as obtained by [31]. Accordingly, an object
assessment vector ÝÑApCtq that defines key environmental conditions associated with the
tree Ct is given by the following:

ÝÑApCtq “ x{CHMpCtq,
ÝÑP pCtq, SQpCtq, PHpCtq, PRpCtq, TpCtq, DSpCtq, LoFSpCtqy, (1)

where definitions of its components are provided in Table 2.

Table 2. Individual tree parameters, extracted from spatially aligned auxiliary thematic maps.

Name Notation Description Data source

Tree
{CHM

The highest point within CHMheight the extent of the tree crown.

ÝÑP
Probabilities of the tree Tree species

Tree belonging to one of the three distribution
species most common species in its extent map

SQ
Average soil quality Soil

Soil index within the extent quality
index of the tree crown index

Soil PH Average soil pH within the Soil pH
pH extent of the tree crown factors

Amount
PR

The annual amount of Mean
of precipitation per area amount of

precipitation of the tree crown precipitation

AT
10 years average temperature Mean

Air within the extent air
temperature of the tree crown temperature

SD
10 years average sunshine Sunshine

Sunshine duration in the area of duration
duration the tree crown in summer in summer

LoFS
A slope normal, estimated by Digital

Slope Locally Fitted Surface (LoFS) [38] terrain
direction to the area of the tree crown model
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2.2.2. Level 2—Situation Assessment

Following from the above, encroaching vegetation detection was performed using a
3D filter, defined by swept volume parametrisation [46]. In order to achieve its common
definition regardless of power-line locations and attributes, a funnel-shaped volume gener-
ator was used, with parametrised width, height, and side-angle. While exact definitions
of these may differ in accordance with the legislation, terrain configurations and other
type-specifics of power-transmission lines, the following values were used in our case (see
Figure 3a):

• The width of the filter was defined in accordance with the legislation, where 15 m was
used for 110 kV transmission lines, while 40 m was used for higher voltage 210 kV
and 400 kV power lines;

• The height of the filter was defined in accordance with the 3D shape of the lowest
power-transmission line, ensuring at least 5 m clearance beneath it;

• The angle of the filter was fixed at 45˝ in order to prevent the risk of possible damage
cased by falling high trees.

Accordingly, the volumetric filter definition was achieved by sweeping a generator
along the power-transmission axes and storing it as a raster layer, whiching is given by
a mapping function CHM : px, yq Ñ R that prescribes the maximum allowed vegetation
height at a given pixel pi. Note that CHM was generated with 0.5 m resolution (see
Figure 3b) in order to ensure its spatial alignment with the CHM. Thus, encroaching
vegetation detection, together with the generation of a binary risk assessment function
RAM : px, yq Ñ t0, 1u, was achieved straightforwardly by pixel comparison. Formally, we
have the following.

RAMppiq “

#

1, CHMppiq ě CHMppiq

0, otherwise
, (2)

where pi P G. Finally, vector layers were generated using isoline rendering [47], as shown
in Figure 4.

Figure 3. Filter definition (a) using a parameterized funnel-shaped generator, swept along the power-
transmission line axis in order to obtain (b) a raster layer of the maximum allowed vegetation heights.

As, generally speaking, the growth of vegetation is observed at a much higher rate
than structural changes of the power transmission lines, most of the computationally
expensive tasks of the proposed approach were conducted during the preprocessing step.
This concerns volumetric filter definition and estimation of CHM, while only its pixel-
comparison with CHM, as defined by Equation (2), was actually required during the
processing. This proved to be useful, in particular when considering the predictions of
encroaching vegetation on the simulated CHM and, thus, improving system performances
during the threat assessment under different scenarios.
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Figure 4. Encroaching vegetation detection.

2.2.3. Level 3—Threat Assessment

A new context-based ensemble regression for tree growth prediction is presented in
this section that proved capable of dealing with various growing conditions and, together
with the encroaching vegetation detection, allowed for holistic threat assessment. The
rationale behind the approach was that trees growing within similar ecological niches
behave similarly, and, thus, segmenting the learning data accordingly was expected to
result in an improved prediction accuracy. Moreover, such an approach allowed for using
fuzzy classification of individual trees’ species (as provided traditionally by tree-species
distribution maps), while also accounting for anisotropic tree-crown development (e.g.,
on forest-edges). This was achieved by considering parameters of individual trees from
Table 2 as contextual features for segmentation of the learning data, while learning the
regression model at the level of each individual CHM pixel (see Figure 5).

Figure 5. A flowchart of the proposed context-based ensemble regression.

Respectively, given a set of learning pixels pi “ pxi, yiqwith associated context vectors
Cppiq “

ÝÑApCtq, such that pi P Ct, as defined by Equation (1), the context of a testing pixel pt
was defined by a subset Ckrpts Ď C of k context vectors that are closest toÝÑc rpts according to
some distance measurement. While an arbitrary mapping function d : pÝÑc rpis,ÝÑc rptsq Ñ R
could be used for this purpose, contextual features were, in our case, of significantly
different types and scales, and, thus, the L1—norm was applied on ranked differences in
feature-values rather than applying it on the feature-values themselves. Let a mapping
function rank f : pÝÑc ppiqr f s,ÝÑc ppjqr f sq Ñ N define a standard competition ranking of the
difference between ÝÑc ppiq and ÝÑc ppjq according to the feature f , the used distance function
d was defined formally as

dpÝÑc ppiq,ÝÑc ppjqq “
ÿ

f

rank f p
ÝÑc ppiqr f s,ÝÑc ppjqr f sq. (3)

Note that dpÝÑc ppiq,ÝÑc ppjqq ‰ dpÝÑc ppjq,ÝÑc ppiqq, while the regular difference between
categorical (e.g., pH and soil quality levels), as well as numerical features (e.g., tree heights
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and air temperature), was used for their ranking. On the contrary, ranking of vector-type
features was achieved using angular distance.

Finally, regression model R “ tRptuwas defined by a set of weak regression models
Rpt , each associated with a testing pixel pt. Two types of explanatory variables were used for
this purpose, namely, a pixel and tree heights that related to the estimated increase in CHM
due to the growth of the tree itself, and the heights of the neighbouring pixels that account
for possible overgrowing of its surroundings. By defining the neighbourhood of pi P Ckpptq

using Cartesian product WS “ txi´S, . . . , xi, . . . , xi`Suˆtyi´S, . . . , yi, . . . , yi`Su, where
S ě 0 specifies its size, a feature vector ÝÑv ppiq is given formally by an ordered set of CHM
values as

ÝÑv ppiq “

˜

CHMrpis, max
pjPW1zW0

CHMrpjs, . . . , max
pjPWSzWS´1

CHMrpjs

¸

, (4)

where WSzWS´1 refers to a set difference between two neighbourhoods WS and WS´1, as
shown in Figure 6. Note, however, that by selecting the maximal CHM value within a given
WSzWS´1, orientation independent definition of weak regression models was achieved,
while the terrain slope orientation and corresponding tree heights, together with fuzzy
tree species classification and other contextual features, was already addressed during the
learning data segmentation.

Figure 6. Definition of regression features.

In a sense, the developed prediction model can, thus, be considered as a KNN regres-
sion. This is an efficient lazy learning algorithm that, rather than providing a generalised
model, uses all the training data for predicting the outcome of the target variable of testing
samples. However, contrary to the traditional approach, the KNN search was achieved
only on contextual features. Thus, although the implementation followed the optimisations
proposed in [48], an arbitrary regression model could be applied for the actual predictions.
As confirmed by the results (see Section 3), straightforward linear regression, applied on
the K “ 100 contextually most similar pixels, turned out to be the most efficient in our case.

3. Results

The proposed environmental intelligence system for vegetation management in power-
line corridors (i.e., a digital twin) was implemented following high-performance monolithic
architecture in the C++ programming language and deployed on three different test systems,
specified in Table 3.

Table 3. Test systems.

Number Cache Main
Type CPU of Cores [MB] Memory [GB]

Work- AMD® Ryzen™ 12 39.1 64station Threadripper™ 1920X

Server Intel® Xeon® E5-2650 v3 6 25 16

Laptop Intel® Core® i7-9750HX 6 14 64
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System validation was carried out on a test dataset P, containing |P| « 100 million
pixels (as described in Section 2.1) from the following perspectives:

• Vegetation growth simulation accuracy was evaluated first, where Level 3 Threat
assessment of data fusion was validated by pixel-comparison between the predicted
CHM1 and actual CHM using the root-mean-square error (RMSE) metric, defined as

RMSE “

d

ř

piPPpCHMrpis ´ CHM1rpisq
2

|P|
, (5)

where CHM1rpis was estimated by learning a weak regression model on K “ 100
contextually closest pixels P100

pi
Ă pPztpiuq to a pixel pi amongst all the pixels from the

set Pztpiu;
• Encroaching vegetation detection validation was then achieved in order to validate

data fusion Level 2 situation assessment by comparing the areas of detected risks with
the history of the performed power-line corridor cleaning tasks; and

• System performances’ assessment was finally carried out, where data preprocessing
and object assessment, i.e., data fusion Levels 0 and 1, were evaluated additionally,
and the overall data processing times are provided.

A detailed report of the obtained results is given in the continuation of this section.

3.1. Vegetation Growth Simulation Assessment

The validation of the vegetation growth simulation was carried out by comparing
the accuracies and execution times achieved using three traditional regression approaches,
namely, linear regression, KNN regression and artificial neural networks, with and without
using learning data segmentation based on contextual features.

As follows from Table 4, notably higher execution times were measured when applying
the proposed contextual segmentation of learning data, while this resulted in a decrease of
RMSE of all tested regression models, with an average improvement of over 10%. Figure 7
provides further details about the error distribution in comparison to the distribution of the
measured vegetation growths. In all the cases, contextual segmentation managed to reduce
error variance, as well as its range. However, as the majority of measured errors were within
the r´1, 1s range, while significantly larger RMSE was measured, the presence of outliers
was apparent. As linear regression with contextual segmentation of learning samples
turned out to be the most accurate, showing little to no over-fitting, spatial distribution of
errors obtained in this way is discussed further.

Table 4. Comparison of vegetation growth simulation accuracy and execution times on a test
dataset, achieved by linear, KNN, and artificial neural network regressions, with and without using
segmentation based on contextual features.

Execution Times [s]
Regression Method Segmentation Workstation Server Laptop RMSE

Linear regression No 170.3 293.5 188.3 1.16

KNN regression No 179.6 306.4 198.6 1.38

Artificial neural network No 342.7 586.7 379.0 1.36

Linear regression Yes 602.6 1032.2 666.4 1.04

KNN regression Yes 604.5 1035.2 668.1 1.29

Artificial neural network Yes 774.2 1325.5 856.3 1.16

AVG No 230.1 395.5 255.3 1.30

AVG Yes 660.4 1130.1 730.3 1.16
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Figure 7. Distribution of measured errors achieved by the tested regression models with (C) and with-
out (NC) using contextual segmentation of the learning data in comparison to measured tree growth.

A comparison, shown in Figure 8, shows that the simulated and ground-truth CHMs
matched to a large extent (i.e., the yellow and orange colours in Figure 8d). However, a
notable pattern of high error values is apparent, in particular, when considering forest
edges. In cases of north and west edges, the proposed method overestimated the tree
growth, while underestimations are more noticeable on the south and east edges. As
similar, although less obvious, patterns can be noticed when considering the contours of
dominant trees, larger errors were attributed to the predicted tree-crown expansion rather
than to the predictions in vegetation growth.

Figure 8. Spatial distribution of errors, where (a) shows an input CHM, (b) ground-truth, (c) simulated
CHM and (d) the difference between the latter, where blue colours indicate low values, while red
colours are used to display high values.

3.2. Encroaching Vegetation Detection

Encroaching vegetation risk assessment was conducted on a total of 168.5 km (as
reported in Section 2.1) of power cables, modelled at 1.5 m resolution with exactly 1,000,325
points. The accuracy of the proposed approach was validated by comparing the detected
risks with the field observations carried out by the asset management at the Slovenian
national electricity transmission company (Eles d.o.o.). During the 2014–2017 period, 10
corridor clearances were carried out, covering a total area of approximately 1.9 km2, with
the largest covering the area of 7341 m2 and the smallest related to an individual tree with
the area of 22 m2. Within these regions, the proposed method identified approximately 132
areas of encroaching vegetation with a total area of 0.5 km2, with the area of individual
regions ranging from 1415 m2 to 0.25 m2 (i.e., an individual pixel). As follows from the
example shown in Figure 9, the reason for this lay in the fact that corridor clearances were
carried out over the entire inner area of the power line corridor, not selectively on the
detected encroaching vegetation.
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Figure 9. Overlap between the areas of detected encroaching vegetation (red) and the clearance
areas (green).

On the contrary, as indicated by the gray areas in Figure 10, the proposed method
identified a number of threats to the safety of the power transmission lines outside of the
clearance areas. In total, 449 such regions were detected, ranging in area from 228 m2 to
0.25 m2, with a total area of 1.8 km2. Among these, 396 were smaller than 10 m2 and can,
thus, be attributed to the individual branches or their clusters rather than the actual trees.
Providing these do not pose significant threats to the safety of the power transmission line,
they can be thresholded straightforwardly during the post-processing. On the other hand, a
large majority, namely 34 of the remaining 53 over-detected regions larger than 10 m2, were
detected on the forest edges, with individual branches posing a significant threat to the
safety of the power transmission line, while the tree-tops themselves had not been detected
as threatening. Their over-detection may, therefore, in a significant part, be attributed to the
threat-assessment on the field, which is generally prone to errors. This was also confirmed
by 16 over-detected trees behind the forest edge, which were, in the most part, not visible
from the centre of the power line corridor. Finally, the remaining 3 over-detections were
related to the misclassified LiDAR points.
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Figure 9. Overlap between the areas of detected encroaching vegetation (red) and the clearance
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On the contrary, as indicated by the gray areas in Figure 10, the proposed method
identified a number of threats to the safety of the power transmission lines outside of the
clearance areas. In total, 449 such regions were detected, ranging in area from 228 m2 to
0.25 m2, with a total area of 1.8 km2. Among these, 396 were smaller than 10 m2 and can,
thus, be attributed to the individual branches or their clusters rather than the actual trees.
Providing these do not pose significant threats to the safety of the power transmission line,
they can be thresholded straightforwardly during the post-processing. On the other hand, a
large majority, namely 34 of the remaining 53 over-detected regions larger than 10 m2, were
detected on the forest edges, with individual branches posing a significant threat to the
safety of the power transmission line, while the tree-tops themselves had not been detected
as threatening. Their over-detection may, therefore, in a significant part, be attributed to the
threat-assessment on the field, which is generally prone to errors. This was also confirmed
by 16 over-detected trees behind the forest edge, which were, in the most part, not visible
from the centre of the power line corridor. Finally, the remaining 3 over-detections were
related to the misclassified LiDAR points.

Figure 10. Over-detected encroaching vegetation (grey) outside of the clearance areas (green) with
risk-areas (red).

Due to the reported uncertainty in the results, clearance measurement accuracy was
additionally assessed on 5 individual trees, as described by [27]. Here, the average absolute
accuracy of the detected encroaching vegetation equal to 19 cm was measured, with
maximal error equal to 37 cm. While this is notably lower than reported in [27], where
unmanned aerial vehicle LiDAR data acquisition was used, the LiDAR data were, in our
case, recorded at a higher altitude (from a helicopter) and were, thus, of lower density.

In terms of data processing, on the other hand, the proposed approach consisted of
a preprocessing step that included volumetric filter definition and its rasterisation, and
the actual runtime processing with definition of situation assessment vector layer using
ISO-lines. Accordingly, the experiments were conducted by running the whole encroaching
vegetation risk assessment procedure 50 times, and measuring the system processing times
during these steps.

Note that the reported time complexity of the proposed stages in Table 5 was derived
by dividing the test power line into randomly defined segments and estimating the execu-

Figure 10. Over-detected encroaching vegetation (grey) outside of the clearance areas (green) with
risk-areas (red).

Due to the reported uncertainty in the results, clearance measurement accuracy was
additionally assessed on 5 individual trees, as described by [27]. Here, the average absolute
accuracy of the detected encroaching vegetation equal to 19 cm was measured, with
maximal error equal to 37 cm. While this is notably lower than reported in [27], where
unmanned aerial vehicle LiDAR data acquisition was used, the LiDAR data were, in our
case, recorded at a higher altitude (from a helicopter) and were, thus, of lower density.

In terms of data processing, on the other hand, the proposed approach consisted of
a preprocessing step that included volumetric filter definition and its rasterisation, and
the actual runtime processing with definition of situation assessment vector layer using
ISO-lines. Accordingly, the experiments were conducted by running the whole encroaching
vegetation risk assessment procedure 50 times, and measuring the system processing times
during these steps.

Note that the reported time complexity of the proposed stages in Table 5 was derived
by dividing the test power line into randomly defined segments and estimating the execu-
tion time per number of pixels used for encroaching vegetation detection. This procedure
was repeated 50-times.



Remote Sens. 2022, 13, 5159 12 of 15

Table 5. Per-step time complexity analysis of encroaching vegetation detection per number of pixels N.

Average Execution Time [s] Time
Step Workstation Server Laptop Complexity

Volumetric filter definition 3.56 5.21 3.71 OpN log Nq

Filter rasterisation 2.51 7.23 2.48 OpNq

Encroaching vegetation detection 0.86 1.42 0.39 OpNq

Definition of ISO-lines 0.25 0.37 0.19 OpNq

Preprocessing (total) 6.07 12.44 6.19 OpN log Nq

Runtime (total) 1.11 1.79 0.58 OpNq

Total 7.18 14.23 6.77 OpN log Nq

3.3. System Performances

In addition to vegetation growth simulation and encroaching vegetation detection, the
proposed approach considers source preprocessing and object assessment, conducted at
data fusion Levels 0 and 1, accordingly. As these were achieved on the basis of previous
studies, only their execution times are reported here, in order to provide a holistic valida-
tion of the proposed data fusion stack, while their accuracies, as reported in the original
papers, were more or less confirmed during this study. The measured results, shown in
Table 6, include the following:

• DTM generation, together with LiDAR ground point labelling, achieved during pre-
processing as proposed by Mongus, Lukač, and Žalik in [38];

• CHM generation, including labelling of vegetation points, achieved during prepro-
cessing as proposed by Horvat, Mongus, and Žalik in [39];

• Delineation of single tree-crowns, achieved during object assessment in accordance
with the methodology proposed by Mongus and Žlik in [31];

• Calculation of slope direction, based on Locally Fitted Surfaces (LoFS), proposed by
Mongus, Lukač, and Žalik in [38], achieved during the object assessment;

• Other processing steps, such as resampling of raster data used during preprocessing
and estimations of intersections between different layers for extraction of contextual
features during object assessment.

Table 6. Per-step time complexity analysis of data source preprocessing and object assessments’ steps
number of pixels N.

Average Execution Time [s]
Step Workstation Server Laptop

DTM generation 2.79 5.21 3.08

CHM generation 6.45 10.77 7.22

Delineation of single tree-crowns 2.41 4.17 2.82

Calculation of slope direction 8.58 14.53 9.21

Other 1.02 1.78 1.16

Total 21.25 36.46 23.49

Together with vegetation growth simulations (see execution times in Table 4) and
encroaching vegetation detection (see execution times in Table 5), the entire process of
threat assessment on a 24 km2 area was realised «10 min. On the workstation, that turned
out to be the fastest, which was «20 min. On the server, that turned out to be the slowest
amongst the tested computer systems. While the ranking of a test system was expected
due to the computational power of their CPUs, the measured results clearly indicate that
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the proposed approach can also be executed on less capable computer systems, such as, for
example, data servers.

4. Discussion

As confirmed by the results, the proposed approach brings about an efficient envi-
ronmental intelligence for improved vegetation management in power line corridors. By
vegetation growth prediction and situation assessment, it enables predictive analytics to
be achieved over the structured data fusion LiDAR derived data products with auxiliary
thematic maps that followed the JDL/DFIG data fusion model. In this context:

• Spatio-temporal data alignment was achieved by data sub-sampling to a common
resolution, while composing the current state CHM by adjusting it according to past
clearance task and predicted vegetation growth from the time the LiDAR data were
recorded. As previous studies have focused exclusively on mapping the state of power
line corridors, the proposed approach offers improved monitoring capacities that
prolong the relevance of the acquired data.

• Situation assessment based on parametric definition of a funnel-shaped volumetric
filter can be achieved in preprocessing, which allows for fast encroaching vegetation
detection. While the results achieved on higher high-altitude airborne LiDAR, showed
slightly lower, yet comparable, accuracy to the related study performed on UAV
acquired data, significant improvements in comparison to the field-based encroaching
vegetation detection have been demonstrated.

• Threat assessment, enabled by vegetation growth prediction that utilises contextual
segmentation of learning data for tuning weak regression models to specific ecological
niches. While this improved prediction accuracy, the proposed approach provides the
first attempt towards establishing a digital twin of the power line corridor ecosystem.

Despite the reported benefits of the proposed approach, the reported study provides
only experimental validation, while additional test areas need to be included during system
operation in order to achieve its demonstration in an operational environment. Moreover,
despite RMSE « 1 m was achieved on all test systems, proving the reliability of the
proposed data fusion stack, it still leaves room for improvement. Notably, significantly
lower accuracy in the predictions of tree-crowns’ expansions were measured in comparison
to the predictions of tree growth, with spatial distribution of errors indicating its subjection
to sunlight conditions. As typically overestimations occur on the north and west forest
edges, underestimations were more characteristic on the south and east sides. While this can
be compensated straightforwardly by an asymmetric filter definition that imposes stricter
conditions on one side than the other, accordingly, the actual solution to this issues may
require introduction of orientation depended regression features, or additional contextual
features. As this requires an in-depth analysis of the impacts of tree-crown delineation and
extraction of individual features on prediction accuracy by using possible feature learning,
together with the assessment of the method’s sensitivity to the parameter K, it is considered
to be beyond the scope of this paper, and will be addressed in our future work. Furthermore,
as the behaviour of each individual pixel was modelled with a dedicated weak prediction
model, clustering of samples based on their contextual features may significantly speed-up
the simulation’s learning process. However, its impact on the accuracy should be studied.
Finally, while the accuracy of encroaching vegetation detection is expected to improve with
higher resolution datasets, an appropriate post-processing of the detected hazards is still
required. In order to meet asset management requirements (i.e., data fusion Level 6), this
should account for legal restrictions and cost requirements of power line corridor clearance
tasks that will enable their optimal grouping, prioritising, and scheduling.
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