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Abstract: In this study, the climatologies of three different satellite cloud products, all based on
passive sensors (CERES Edition 4.1 [EBAF4.1 and SYN4.1] and ISCCP–H), were evaluated against
the CALIPSO-GOCCP (GOCCP) data, which are based on active sensors and, hence, were treated as
the reference. Based on monthly averaged data (ocean + land), the passive sensors underestimated
the total cloud cover (TCC) at lower (TCC < 50%), but, overall, they correlated well with the
GOCCP data (r = 0.97). Over land, the passive sensors underestimated the TCC, with a mean
difference (MD) of −2.6%, followed by the EBAF4.1 and ISCCP-H data with a MD of −2.0%. Over
the ocean, the CERES-based products overestimated the TCC, but the SYN4.1 agreed better with
the GOCCP data. The ISCCP-H data on average underestimated the TCC both over oceanic and
continental regions. The annual mean TCC distribution over the globe revealed that the passive
sensors generally underestimated the TCC over continental dry regions in northern Africa and
southeastern South America as compared to the GOCCP, particularly over the summer hemisphere.
The CERES datasets overestimated the TCC over the Pacific Islands between the Indian and eastern
Pacific Oceans, particularly during the winter hemisphere. The ISCCP-H data also underestimated
the TCC, particularly over the southern hemisphere near 60◦ S where the other datasets showed
a significantly enhanced TCC. The ISCCP data also showed less TCC when compared against the
GOCCP data over the tropical regions, particularly over the southern Pacific and Atlantic Oceans
near the equator and also over the polar regions where the satellite retrieval using the passive sensors
was generally much more challenging. The calculated global mean root meant square deviation
value for the ISCCP-H data was 6%, a factor of 2 higher than the CERES datasets. Based on these
results, overall, the EBAF4.1 agreed better with the GOCCP data.

Keywords: cloud cover 2; active and passive sensors; satellite remote sensing; CERES; CALIPSO;
ISCCP

1. Introduction

Clouds cover a large portion of the Earth’s atmosphere at any given time and play a
significant role in the weather and climate systems of the Earth by regulating its radiative
balance and hydrological cycle. Based on numerous International Plan on Climate Change
(IPCC) reports and modeling studies [1–3], the current general circulation models (GCMs)
suffer from significant uncertainties in predicting the future climate. One of the main
sources of these uncertainties is believed to be related to the representation of clouds [3–7].
As the temperature increases because of global warming, GCMs predict that the cloud cover
will change because of radiative feedback mechanisms [8]. According to most GCMs, this
feedback is positive as a result of rising high level cloud (HLC) and decreasing tropical low
level clouds (LLC) [7,8]. The proper understanding of the change in distribution of clouds
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and cloud types is necessary for an accurate representation of clouds in the current GCMs
and numerical weather prediction (NWP) models for improving the weather and climate
predictions. However, these problems are not adequately addressed using observation data,
largely because of a lack of reliable long-term, global-scale observation datasets. Satellite
observations are increasingly being used for climate studies and evaluation of GCMs and
NWP models because of the continuous near-global coverage that they provide. However,
there are some uncertainties in satellite-based remote sensing of cloud cover because of
the necessity to make certain approximations in the retrieval algorithms being used as
well as other factors, including limitations in the type of sensors used for measuring the
necessary parameters.

There are currently a number of satellite products based on both active and passive
sensors. The products based on passive sensors include the Clouds and the Earth’s Ra-
diant Energy System (CERES)-based products that largely use the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor deployed on Aqua and Terra polar orbiting
satellites and the International Satellite Cloud Climatology Project (ISCCP) data that use
retrievals from multiple satellite platforms. The passive sensors retrieve clouds by sensing
the reflected sunlight or emission of radiation from clouds and surfaces. As a result, they
have some limitations since retrieval of cloud properties is difficult over bright and cold
surfaces, such as near polar regions, and no visible retrievals can be made during the night.
The ISCCP dataset has the longest record, starting from 1983, but attempts at using the
data to study the climate trend in cloud cover have been questioned [9]. However, later the
data were used after some empirical corrections [10]. On the other hand, the active sensors
such as the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)
data have fewer limitations and, hence, can provide more accurate measurement of clouds
and are more appropriate for climate studies as well as providing a reference for the data
collected using the passive sensors [11–14]. The active sensors are particularly useful for
retrieving optically thin cirrus clouds that lead to capturing more high-level clouds, close
to 20% to 30% as compared to the cloud products that are based on passive sensors such as
the ISCCP and MODIS [14]. However, the CALIPSO-based cloud products that employ
different retrieval algorithms also give different results [15,16], indicating some uncer-
tainties. However, regardless of the algorithm used, the CALIPSO-based data generally
capture more optically thin clouds as compared to the passive sensors [14]. There are no
comprehensive comparisons of the CALIPSO data against ground-based measurements
on a global scale, partly because ground-based observations are so sparse, particularly
over the oceans. There are, however, some examples of localized studies that compared
the CALIPSO and some other datasets based on passive satellite sensors against ground
based measurements [17,18], and the results showed that the active sensors provide better
results as compared to the passive sensors. The authors of [17] compared TCC based on
the GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) and ground-based obser-
vations using radar and lidar at Summit, Greenland. According to [17], the GOCCP data
generally agreed with the ground-based observation better than the other passive satellite
sensors, particularly in liquid phase clouds. On average, CALIPSO-GOCCP reported the
TCC by about 6.7% as compared to the passive sensors. The authors of [18] compared the
ISCCP-H data against surface-based measurement using the European Climate Assessment
and Dataset (ECA&D) over Europe and found that the ISCCP-H overestimated the TCC by
5.2%. As is shown below, this is consistent with the finding in this study. These satellite
products are also increasingly being updated, but there are very limited studies that are
aimed at the evaluation of these products in literature.

The main purpose of this study was to evaluate the climatologies of TCC retrieved
using passive sensors with updated algorithms provided by the CERES and ISCCP against
the CALIPSO-GOCCP. The CALIPSO-GOCCP was chosen because it is increasingly being
used for evaluation of GCMs and other satellite products, as discussed earlier, and also it is
fully compatible with the GCM-lidar simulator data produced using the Cloud Feedback
Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP). The
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remainder of the paper is organized as follows. In Section 2, the materials and methods are
described. In Section 3, the annual and seasonal climatologies of four satellite products are
discussed. The summary and conclusions are given in Section 4

2. Materials and Methods

The datasets used in this study are given in Table 1. All the datasets were remapped to
a common grid of the CALIPSO-GOCCP data using a first-order conservative remapping
technique [19]. The brief descriptions of the datasets used in this study are given below.

Table 1. The satellite cloud products used in this.

Edition Time
Period Frequency Resolution Sources

CERES -SYN1DEG 4.1 2000–2019 monthly 1◦ × 1◦ CERES (NASA)
CERES-EBAF 4.1 2000–2019 monthly 1◦ × 1◦ CERES (NASA)

ISCCP H 2000–2017 monthly 1◦ × 1◦ NOAA
CALIPSO-GOCCP 2007–2019 monthly 2◦ × 2◦ CLIMSERV

2.1. Descriptions of the Datasets
2.1.1. ISCCP-H

The ISCCP satellite products include several cloud microphysical and meteorological
parameters including TCC and type, cloud top temperature, cloud top pressure, and cloud
optical thickness. The algorithms used to produce these products are described in several
papers [20,21]. The ISCCP-H cloud properties were produced by using an algorithm [22,23]
that was largely similar to the previous version (ISCCP-D) [20] that involved measured
radiances at near visible (0.65 µm) and infrared (IR) (10.5 µm) wavelengths using the
geostationary satellites within the 55◦S and 55◦N latitudes and the polar-orbiting satellites
poleward of these regions. The cloud detection was performed using two basic steps [23].
First, it determined the radiances of the cloud-free regions using the data measured using
both the IR and visible channels. Second, the cloudy regions were identified based on
deviations from the cloud-free radiance values. By assuming that the presence of clouds
increases and decrease the visible and IR radiances, respectively, thresholds were defined to
identify cloudy pixels at 10-km spatial resolution [23] for various surface conditions [20,23].
The cloud amount was defined as the fraction of cloudy pixels to the total number of
pixels determined within a 1◦ × 1◦ grid. This version of the ISCCP products uses input
data from full-resolution Advanced Very-High-Resolution Radiometer (AVHRR) Global
Area Coverage and higher-resolution geostationary data that can potentially improve the
retrievals as compared to the earlier versions. In this study, the ISCCP-H dataset described
in Table 1 was used.

2.1.2. CAPLISO-GOCCP

These are observation-based cloud products geared towards validating GCM simu-
lated datasets and, hence, normally referred to as GCM-Oriented Cloud CALIPSO Product
(GOCCP) [24]. The data are fully compatible with GCM-lidar simulator data produced
using the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator
Package (COSP) [25,26]. These data sets are derived from CALIPSO products and fully
consistent with the ones simulated by the ensemble GCM + lidar simulator [24]. Based
on [26], the cloud cover data were processed using a Cloud-Aerosol Lidar with Orthogonal
Polarization following the identical steps as would be followed in a lidar simulator aimed
at diagnosing the model cloud cover that CALIPSO would see from space. The steps taken
for determining the cloud cover started with by analyzing the observed lidar backscattered
ratio (SR) of total attenuated backscattered (ATB) signal to gas molecular ATB without
consideration of aerosols at high horizontal resolution of 330 m by keeping the vertical
resolution similar to the current GCMs. The cloudy pixels were identified based on SR
values. The SR values SR > 5, 0.01 > SR < 1.2 and 1.2 < SR < 5 were flagged as cloudy, clear,
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or unclassified, respectively [24,27]. The cloud cover at a given level was defined as the
number of cloudy pixels divided by the total number of pixels by ignoring the pixels that
were associated with the total attenuation of the lidar backscattered signals (SR < 0.01). The
cloud phases were identified based on the relationship between ATB and cross-polarized
ATB (ATB⊥) [24]. Based on this relationship, the cloud cover was classified as liquid, ice, or
unidentified. These undefined clouds are normally found below other highly reflective
clouds (SR > 30) or clouds having horizontally oriented ice crystals [27]. Studies show
that supercooled mixed phase clouds are characterized by highly reflective layers in lidar
imagery and a low depolarization ratio [28]; thus, most of these undefined cloud layers
may be related to mixed phase clouds.

2.1.3. CERES Cloud Products

The TCC data used in this study included cloud products provided as part of the
CERES EBAF (Energy Balanced and Field) and SYN1deg (Synoptic 1 degree) Edition 4.1
(EBAF4.1 and SYN4.1, respectively, from here on). The monthly mean cloud area fraction
in EBAF4.1 was retrieved based on measurements taken using the MODIS instruments
deployed on board the Terra and Aqua satellites flown at sun-synchronous orbit. The
detailed description of this product is given in data-quality summary [29]. From March
2000 to June 2002, the data collected by the Terra satellite and from July onwards the
average of both Terra and Aqua satellite data were used. The cloud cover retrieval process
started with deriving the cloud properties based on a single satellite footprint Edition
4 (SSF4) [30], instantaneous data that uses an improved algorithm, as described in [31].
The instantaneous cloud cover determined based on SSF4 was spatially averaged at a
1◦ × 1◦ region and then linearly interpolated hourly to estimate the cloud cover between
the MODIS observation points. The hourly regional cloud covers were then averaged over
the month. Cloud properties for March 2000 through February 2016 were identical to those
in EBAF Ed4.0. For March 2016 onwards, cloud properties were determined using MODIS
Collection 6.1 (C6.1) radiances. This is because, after a slow degradation of two MODIS
channels of Terra (6.7 µm and 8.6 µm) that got worse in March 2016, the MODIS team
released C6.1 data products that corrected this problem onwards of March 2016.

In the SYN4.1 version of the cloud product, the cloud area fraction is based on both
the CERES MODIS and multiple geostationary satellite (GEO) measurements [32]. Since
the CERES MODIS data have limited time resolution, the addition of the hourly Geo data
allowed the interpolation of the TCC covering the full diurnal cycle [32]. This version of
the CERES data is primarily designed to have a high temporal resolution. As a result, the
globally gridded (at 1◦ × 1◦ resolution) TCC data are available on the bases of monthly,
monthly hourly, daily, 3-hourly, and hourly averages. In this study, only the monthly
averaged version of the data was used.

3. Results
3.1. Comparisons over the Entire Globe (Ocean + Land): 2D Density Plots

Figure 1 shows 2D density plots of the annually averaged TCC obtained based on
EBAF4.1 (a), SYN4.1 (b), and ISCCP-H (c), and determined based on the GOCCP data.
The two CERES products EBAF4.1 and SYN4.1 were also compared in the plot (d). As
revealed in the plots, the correlation coefficient between the GOCCP and CERES data
sets (EBAF4.1 and SYN4.1) was close to 0.97, but the CERES (SYN4.1 and EBAF4.1) on
average underestimated and overestimated by 0.6% and 0.3%, respectively. When the
GOCCP data were compared against the ISCCP-H data, the correlation coefficient was
slightly diminished to 0.93 and underestimated the TCC by a relatively higher value of
−2.3%. Most of the discrepancies between the GOCCP and CERES datasets occurred at
lower cloud covers (TCC < 50%) where the CERES datasets significantly underestimated
the TCC ((a) and (b)). At higher cloud cover values, the agreement was improved but
slightly overestimated the TCC at higher cloud covers (TCC > 70%). The underestimation
of TCC at lower TCC was expected since the active sensors such as lidar used in CALIPSO
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captured more optically thin clouds as compared to the passive sensors normally used for
collecting the CERES data sets. The comparisons of the ISCCP-H and GOCCP data also
showed larger data spread and most of the data were below the 1:1 line as compared to the
CERES products (c). As indicated in the plot (d), the two CERES products, EBAF4.1 and
SYN4.1, showed excellent agreement with each other, with a correlation coefficient of 0.98.
The best fit lines are also shown in the figure.
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Figure 1. The 2D density plots of annually averaged TCC obtained based on EBAF4.1 (a), SYN4.1 (b),
and ISCCP-H (c), and against the TCC obtained from the GOCCP-CALIPSO satellite. Comparison
of the two CERES products, EBAF4.1 and SYN4.1, is shown in the fourth column (d). The red lines
represent the linear fit equations also shown.

3.2. Comparisons over the Land and Oceanic Regions: 2D Density Plots

Figure 2 shows the comparisons of the TCC over land to the CALIPSO data. As
indicated in the figure, over land, on average, all of the passive sensors underestimated the
cloud cover as compared to the GOCCP relative to the combined data shown in Figure 1,
particularly the SYN4.1 version of the CERES data, with a MD of −2.6% (a) followed by
the EBAF4.1 and ISCCP-H data with a MD of near −2.0% ((a) and (b)). On the other hand,
over the ocean, as depicted in Figure 3, the CERES-based passive sensors overestimated the
cloud cover, particularly the EBAF4.1 (b). However, the SYN4.1 agreed with the GOCCP
reasonably well (a). The ISCCP-H data underestimated the cloud cover under all surface
conditions (Figures 1–3). The discrepancy at lower cloud cover appeared to get better when
the satellite data sets were compared over the ocean ((a) and (b)). This could be partly
because most of the clouds over oceanic regions are optically thicker than over land where
the passive sensors normally do better, which is consistent with previous studies [15]. The
two CERES data sets agreed slightly better over land than over oceans.
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3.3. Global Maps

Figure 4 shows global maps of annually averaged GOCCP (a), EBAF4.1 (b), SYN4.1
(c), and ISCC-H (d) TCC data. The area-weighted global mean TCC values were 67.2%,
67.4%, 66.6%, and 66% for GOCCP, EBAF4.1, SYN4.1, and ISCC-H, respectively, indicating
that the values for GOCCP and EBAF4.1 were very similar and the SYN4.1 and ISCCP-H
values were slightly smaller. For the oceanic regions, the mean values were higher, 71.3%,
73.1%, 72%, and 68.9%, and over land the values were smaller, 61.2%, 59.3%, 58.6%, and
59.1% for GOCCP, EBAF4.1, SYN4.1, and ISCC-H, respectively. The mean value based on
the ISCC-H data was comparable to the other datasets over the continental regions, but
smaller over the oceanic regions. The global mean values previously reported by [14] for
the GOCCP data were identical to the values reported in this study. However, the values
included in their report for the older version of the ISCCP data were 64%, 68%, and 56%,
corresponding to over the global, ocean, and land, respectively, indicating relatively lower
values as compared to the current ISCCP-H version of the data.
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The visual inspection of Figure 4 indicates also that all the satellite data sets generally
agreed, showing the typical climatological regions associated with the general atmospheric
circulation by indicating enhanced clouds over the Inter Tropical Convergence Zone (ITCZ)
and mid- and high-latitude storm track regions. There were also some quantitative differ-
ences between the passive (ISCCP-H and CERES products) and GOCCP datasets at certain
geographical regions. The two CERES cloud products, the EBAF 4.1 and SYN4.1 ((b) and
(c)), showed less cloud cover over the dry and dusty Sahelian region of northern Africa
as compared to the GOCCP and ISCCP data. This was consistent with Figure 2, which
showed that EBAF 4.1 and SYN 4.1 underestimated the cloud cover at lower TCC values
(TCC < ~50%). This may be partly associated with some limitations of the passive sensors
to discriminating clouds from dust as well as optically thin clouds. The ISCC-H data also
showed lower TCC, but relatively agreed with the GOCCP data over these regions. On the
other hand, the ISCCP-H data underestimated cloud cover over the southern hemisphere
near 60◦ S, where the other data sets showed a significantly enhanced TCC. As will be
discussed later, this area is dominated by LLC; thus, the ISCCP data appeared to fail at
capturing some of the LLC in this part of the globe. The visual inspection also revealed
that the ISCCP-H data showed relatively lower cloud cover in the tropics.

The differences between the TCC obtained based on the active and passive sensors are
further shown in Figure 5, which shows the global maps of the bias in annually averaged
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TCC as compared to the GOCCP data and associated root mean square deviation (RMSD).
As illustrated in the figure (a), the EBAF4.1 data agreed reasonably well with GOCCP,
with a RMSD of 4.1%. The exceptions are over the Sahelian desert in northern Africa and
southeastern South America, where the EBAF4.1 underestimated the cloud cover (10–20%)
mostly over the continents. Based on this study, there is no evidence of misidentification of
large aerosol particles as clouds over dusty, large, desert areas, as discussed in the data-
quality summary [29]. In fact, EBAF4.1 overestimated the TCC (5–20%) over the Pacific
Islands between the Indian and Western Pacific Ocean, where high level deep convective
clouds are normally expected [33], and included a slight overestimation of cloud cover
mainly over the oceanic regions of the globe. The SYN4.1 version of the satellite data
(b) behaved very similarly to EBAF4.1 (a) when the data were compared to the GOCCP
data. However, it underestimates the TCC much more severely over northern Africa and
some parts of tropical regions. In contrast, this version of the CERES data overestimated
the cloud cover over the northern and southern portions of the Pacific Ocean, but the data
agreed with GOCCP data much better over the Pacific Islands as compared to EBAF4.1. The
calculated RMSD for SYN4.1 was 4.7%, which is slightly higher as compared to EBAF4.1.
As shown in (d), the ISCCP data showed less cloud cover when compared against the
GOCCP data over the tropical regions, particularly over the southern Pacific and Atlantic
Oceans near the equator and also over the polar regions, where the satellite retrieval using
the passive sensors was generally much more challenging (c). In contrast, the ISCCP data
overestimated the cloud cover between about 40◦ and 60◦ latitude in both hemispheres,
particularly over North America and Europe, by about 5% and 10% depending on the
location. This finding of the overestimation of the TCC over the European continent by the
ISCCP-H data is consistent with the previous study [18] that compared the ISCCP data with
surface-based measurements. The RMSD value for the ISCCP-H data was 6% higher than
the CERES datasets. The comparisons of the CERES cloud product (d) revealed that the
largest discrepancy occurred in the tropical oceans, where the EBAF4.1 data showed higher
cloud cover and the calculated RMSD value was 3.4%. Based on these results, overall, the
EBAF4.1 agreed with the GOCCP data better except over some parts of dry regions such as
the Sahara Desert located in northern Africa.
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3.4. Annual and Zonal Means

The zonally and annually averaged satellite cloud products and associated zonal mean
bias (ZMB) as compared to the GOCCP data are shown in Figure 6 ((a) and (b) respectively).
Based on the zonal mean data perspectives ((a) and (b)), the EBAF4.1 data agreed relatively
better with the GOCCP data as compared to the ISCCP-H and SYN4.1 datasets over all
latitudes, with a slight overestimation of TCC near the equator (ZMD < 2.5%), possibly
associated with the positive bias over regions such as the Pacific Islands and the northern
Indian Ocean, and underestimation near the poles (latitude > 75◦ over both latitudes).
Both the SYN4.1 and ISCCP-H data underestimated the TCC over the tropical latitudes
(20◦ S and 20◦ N), with a maximum ZMD of −5%. In the mid-latitude portions of the
globe, between 20◦ S and 60◦ S and 20◦ N and 80◦ N, the ZMDs were well below 2.5%
for all data except the ISCCP-H that overestimated and underestimated the cloud cover
with a maximum ZMD of −7.5% and 5%, respectively. It is particularly interesting to
note that the ISCCP-H data significantly underestimated the cloud cover of high latitude
regions (≈55◦ < latitude < 75◦) in both hemispheres, with a maximum ZMD close to−7.5%.
In these regions, the CERES products slightly overestimated the TCC. It is worth noting
that over these regions, the ISCCP uses the polar orbiting satellite to retrieve the TCC.
The ISCCP-H data actually slightly overestimated the TCC near the south polar regions
(latitude > 75◦), also contrary to the CERES products (b). These parts of the globe are
generally difficult for the passive sensors to retrieve reliable cloud data as compared the
active sensors. However, as mentioned earlier, there are some uncertainties also in the
active remote sensing. Nonetheless, according to these results, the ISCC-H data were more
significantly affected at high latitude regions as compared to the CERES datasets.
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3.5. Seasonal Climatology Comparisons

Figure 7 shows the global maps of annually and seasonally averaged bias in TCC
and RMSD as compared to the CALIPSO data. The first and second columns show the
northern hemisphere summer (JJA) and winter (DJF) seasons, respectively. Generally, the
CERES data sets are characterized by significant positive bias in the winter hemisphere
over the oceanic regions, reaching a maximum close to 15% over the Western Pacific (both
hemispheres) and negative bias in the summer hemisphere, particularly over the continents
including the Antarctic and Sahelian regions, with a maximum bias of close to −15% ((a),
(b), (c), and (d)). From a global mean perspective, the EBAF4.1 slightly overestimated
and underestimated the TCC during JJA and DJF seasons, with MD values of 0.1% and
−0.2%, respectively ((a) and (b)). The RMSD values for EBAF4.1 were 5.8% and 5.6% for
JJA and DJF, respectively. Overall, during the summer hemisphere, the CERES data sets
reasonably agreed with the GOCCP data over the oceanic regions than over the continents.
The bias in the ISCCP-H data had similar behavior, but a notable exception is the area of
large negative bias, reaching −15% to −20% in the tropics and around the globe near the
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60◦ S during the JJA season, expanded towards the South Pole during the DJF season ((e)
and (f)). The seasonal variation of the difference between the two CERES TCC products
(EBAF4.1 and SYN4.1) was not as high as when we compared with the GOCCP data; but
EBAF4.1 produces more clouds (positive bias ≈ 5%) in the tropics during both seasons,
having a slightly wider positive bias during the northern hemisphere summer ((g) and (h)).
Thus, according to these results, the passive sensors significantly underestimated cloud
cover during summer in both hemispheres.

Figure 8 shows zonally and seasonally averaged TCC JJA ((a)) and DJF (b) based
on the GOCCP, EBAF4.1, SYN4.1, and ISCCP-H data and the associated bias for each
season with respect of the GOCCP data (panes c and d). The variability of zonally and
seasonally averaged TCC looks very similar to Figure 6. However, the exceptions are
the cloud locations associated with the Hadley circulation and mid-latitude storm tracks,
which moved towards the northern hemisphere during the northern hemisphere summer,
as obviously would be expected ((a) and (b)). Over the oceans (latitude > 20◦S) in the
southern hemisphere during the southern hemisphere winter (JJA), the CERES cloud
products overestimated the cloud cover (positive bias) as compared to the CLAPISO data.
In contrast, the ISCCP-H data significantly underestimated the cloud near the latitude 60◦S,
as already discussed earlier. Similar behavior can be seen during the northern hemisphere
winter. Based on zonally and seasonally averaged data, during the summer season in both
hemispheres, all the satellite products based on the passive sensors underestimated the
cloud cover at higher latitudes (latitude > 60◦S and 60◦N), particularly the ISCCP-H data
(see (c) and (d)). In the tropical region, both ISCCP-H and SYN4.1 underestimated the
cloud cover during both the summer and winter seasons, with values varying between
−2.5% to −7.5% ((c) and (d)). As mentioned earlier, Figure 8 also reveals that the EBAF4.1
data agreed with GOCCP data within the latitude 60◦S and 60◦N relatively better than the
other satellite products in both summer and winter seasons. According to Figure 8e, all
of the satellite products exhibited significant inter-seasonal variability (JJA-DJF) over the
tropics (between 20◦S and 40◦N) and polar regions as a result of the movements of Hadley
cells and strong seasonal variability of polar regions, respectively. All the satellite products
showed similar variability in the tropics, with zonal mean seasonal difference (ZMSD)
between −15% in the south and about 20% in the north, except the EBAF4.1 data that
showed relatively higher variability (−15% to 25%). In the high latitudes regions (poleward
of 60◦ in both hemispheres), however, the GOCCP retrieval produced higher TCC in the
northern hemisphere and lower TTC in the southern hemi-sphere during the JJA season.
The CERES products (ENAF4.1 and SYN4.1) followed a similar trend as the GOCCP in the
northern hemisphere, but deviated somewhat in the southern hemisphere polar regions. In
contrary, the ISCCP-H showed relatively smaller variability between JJA and DJF seasons
in the northern hemisphere; but, over the southern hemisphere, it produced significantly
higher TCC in JJA as compared to the DJF season, reaching close to a 23% difference near
80◦ S. There was No significant inter-seasonal variability over the southern hemisphere
(30◦ S–60◦ S). This may be because the area is mainly dominated by oceans. According
to these results, all of the data sets had higher TCC over the polar regions during the JJA
season except the GOCCP data over the southern hemisphere, which showed relatively
lower TCC. Based on CloudSat/CALIPSO data, [34] also showed a similar seasonal trend
as the GOCCP data. This can be explained based on (a) and (b) in Figure 8 that show that
all the passive sensors reported higher TCC near the south pole (north of 70◦ S) during
JJA (southern hemisphere winter) as compared to the DJF season (southern hemisphere
summer). However, as stated above, this was not supported by the active sensor.
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4. Summary and Conclusions

In this study, the climatologies of four different satellite cloud products based on
an active senor (CAPLISO-GOCCP; hereafter, GOCCP) and passive sensors from CERES
(versions EBAF4.1 and SYN4.1) and from ISCCP-H were compared. These comparisons
were carried out over the entire globe (ocean + land) and separately over the oceans and
continental regions. The statistical comparisons of the annually averaged monthly mean
total cloud cover (TCC) retrieved over the entire globe based on the passive and active
sensors revealed that the correlation coefficient (r) between the two types of measurements
was well over 0.93. Based on a monthly averaged data perspective, the two CERES cloud
products, SYN4.1 and EBAF4.1, on average slightly underestimated and overestimated
the TCC compared to the GOCCP, having a mid-difference (MD) of −0.6% and 0.3%,
respectively. The ISCCP-H version of the data generally underestimated the TCC as
compared to the GOCCP data by a relatively higher MD value of −2.3%. Most of the
discrepancies between the GOCCP and CERES data sets occurred at lower cloud covers
(TCC < 50%) where the CERES datasets significantly underestimated the TCC. The two
CERES products, EBAF4.1 and SYN4.1, showed excellent agreement with each other with
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a correlation coefficient of r = 0.98. However, on average, the EBAF4.1 data were larger by
about 1%. Over the land areas, all of the passive sensors underestimated the cloud cover
as compared to the GOCCP relative to the combined data (land + ocean), particularly the
SYN4.1 version of the CERES data, with a MD of −2.6% followed by the EBAF4.1 and
ISCCP-H data with a MD of approximately −2.0%. Over the ocean, the CERES-based
passive sensors overestimated the cloud cover, particularly the EBAF4.1; but the SYN4.1
agreed with the CALIPSO reasonably well. The ISCCP-H data underestimated the cloud
cover under all surface conditions.

Comparisons of the global maps of annually averaged TCC from the passive sensors
against the corresponding active sensor data generally showed that all of the products
captured similar climatologies of the TCC distributions but with some differences over
various geographical regions in the tropics, such as the Sahelian region of northern Africa,
where the CERES data sets underestimated the TCC as compared to the GOCCP data. The
ISCC-H data also showed lower TCC over this region as well as over the tropics, particularly
over the southern hemisphere near 60◦ S, where the other data sets showed a significantly
enhanced TCC. The exceptions were over northern Africa and southeastern South America,
where the EBAF4.1 underestimated the cloud cover (10–20%) mostly over the continents
and also over the Pacific Islands between the Indian and eastern Pacific Oceans, where
EBAF4.1 overestimated the cloud cover (5–20%). The ISCCP data overestimated the TCC
between about 40◦ and 60◦ latitude in both hemispheres, particularly over North America
and Europe by about 5% and 10% depending on the location. The global distribution of
the bias between the active and passive sensors also showed that the EBAF4.1 TCC data
agreed reasonably well with GOCCP, with a root mean square deviation (RMSD) of 4.1% as
compared to 6% for ISCCP-H data. All of the products had higher seasonal RMSD values
as compared to the annual mean data.

From zonally and annually averaged TCC perspectives, the EBAF4.1 data also agreed
relatively better with the GOCCP data over all latitudes as compared to the other satellite
datasets, particularly within the latitudes (60◦S and 60◦N) where the zonal mean difference
(ZMD) varied between ±2.5% with a slight overestimation of TCC near the equator and
near the poles. Both the SYN4.1 and ISCCP-H data underestimated the cloud cover over
the tropical latitudes (20◦S and 20◦N).

According to these results, the comparisons of the spatial distribution and climato-
logical variability of the TCC retrieved using the passive sensors (EBAF4.1, SYN4.1, and
ISCCP-H) against the GOCCP data depended on the geographical locations as well as the
associated algorithm used. As discussed above, the TCC retrieved using the passive sensors
agreed with each other and also as compared to the GOCCP data over some geographical
locations. Hence, in these regions, the data obtained using the passive sensors can be used
with some confidence. According to this study, the CERES EBAF4.1 data in particular
reasonably agreed with the GOCCP data over a number of geographical regions. However,
based on these results, the use of the ICCP data, particularly in the tropics and some high
latitude regions, is questionable. Further in-depth study is required to get better insights
into these discrepancies.
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