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Abstract: The key to fine-grained aircraft recognition is discovering the subtle traits that can distin-
guish different subcategories. Early approaches leverage part annotations of fine-grained objects to
derive rich representations. However, manual labeling part information is cumbersome. In response
to this issue, previous CNN-based methods reuse the backbone network to extract part-discrimination
features, the inference process of which consumes much time. Therefore, we introduce generalized
multiple instance learning (MIL) into fine-grained recognition. In generalized MIL, an aircraft is
assumed to consist of multiple instances (such as head, tail, and body). Firstly, instance-level repre-
sentations are obtained by the feature extractor and instance conversion component. Secondly, the
obtained instance features are scored by an MIL classifier, which can yield high-level part semantics.
Finally, a fine-grained object label is inferred by a MIL pooling function that aggregates multiple
instance scores. The proposed approach is trained end-to-end without part annotations and complex
location networks. Experimental evidence is conducted to prove the feasibility and effectiveness of
our approach on combined aircraft images (CAIs).

Keywords: fine-grained image recognition; aircraft recognition; multiple instance learning; loss
function

1. Introduction

Remote sensing images are proposed to capture the particulars of surface features
with the advancement of remote sensing technology, thereby accelerating the development
of high-resolution remote sensing image interpretation. However, it is necessary to obtain
feature subcategories due to practical applications. For example, regulatory authorities
need to use remote sensing images to know aircraft types (e.g., Airbus 330 and Boeing 737)
to administer air transportation in airports. Therefore, fine-grained aircraft recognition
has become one of the research emphases in remote sensing image recognition. The goal
of aircraft recognition is aimed at mining distinguishing characteristics from subordinate
categories. As shown in Figure 1a, UCMerced Land Use Dataset [1] only contains airplane
scene semantics. The combined aircraft images (CAIs) subdivide the aircraft category into
several subcategories in Figure 1b.

In the past few decades, many scholars proposed several approaches in the aircraft
recognition task. The traditional method extracts handcraft features, which empirically
selects or fuses obtained characteristics to constitute aircraft features. Handcraft features
consist of scale-invariant feature transform [2], moment invariants [3–5], and Zernike
moments [6]. The handcraft feature combination methods include principal component
analysis [7], which automatically learns a group of weights from training samples. The
classification approaches, such as back-propagation neural networks [4], independent
component algorithm [6], and tree classifier [8], engraft extracted features to allow the
recognition model to make precise decision-making. The above low-level information on an
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aircraft combines with middle-level semantics, such as the bag of words [9]. Some scholars
also use template matching for aircraft recognition [10,11]. However, the above-mentioned
features possess weak generalization ability because the selection and combination of low
or mid-level handcrafted features demand abundant professional and prior knowledge
to generate rich characteristic expression. Thus, the classification results of traditional
methods tend to be unstable and inaccurate.
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The rapid progress of deep learning has resulted in the emergence of some ad-
vanced convolutional neural networks (CNNs), such as AlexNet [12], VGGNet [13],
GoogLeNet [14], and ResNet [15], in the computer vision community. Deep CNNs (DC-
NNs) automatically cultivate high-dimensional feature expressions. Therefore, previous
researchers obtain aircraft features using DCNNs, thereby considerably increasing recog-
nition performance [16–18] and enhancing the generalization ability of the recognition
model [15–17]. Recent researchers have been locating components to highlight differences.
The traditional locating methods include strong supervision and weak supervision (see
Figure 2). The strong supervision utilizes box coordinates to local part regions [19], and
the weak supervision performs part learning via a positioning attention mechanism to
compensate for the lack of part annotation data. For example, K. Fu et al. [20] proposed
multiple class activation mapping to locate discriminative features and recognize aircraft
types without part information. Yunsheng Xiong et al. [21] proposed a non-locally en-
hanced feature fusion network to cultivate holistic representations and highlight part
responses. The above approaches demand the complex design of locating networks to
encode subcategory object features, which occupy many model parameters and consume
much reasoning time.

To decrease the high consumption of obtaining part information, we attempt to intro-
duce semi-supervised learning. Semi-supervised learning is dedicated to extracting explicit
semantics by marked labels and mining implicit information with unlabeled samples.
Meanwhile, the input data are composed of labeled images and part of unlabeled images,
which can reduce the cost of acquiring training data. The main semi-supervised learning
methods are divided into adaptive learning [22] and regularization methods. The main
regularization methods include mean teacher [23], high-rankness regularization [24], and
stack auto-encoder [25] to improve recognition performance by unlabeled data. Addi-
tionally, Bei Fang et al. [26] propose a novel dual-strategy sample selection co-training
algorithm to achieve the same effect.
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Figure 2. Traditional fine-grained aircraft recognition procedures using a strong supervision method and a weak supervision
method separately. The process of aircraft recognition via strong supervision method is indicated in Figure (a), in which the
local positions of aircraft components are obtained by the given box coordinates. The weak supervision scheme, shown in
Figure (b), employs the cascade-attention model to mine distinguishable information.

The above approaches mainly tackle the scarcity of training data. However, in fine-
grained recognition tasks, the label of the training data is already obtained, whereas
the part annotations are unmarked. Therefore, we introduce multiple instance learning
(MIL), which is used for image recognition to tackle obstacles in obtaining component
information. MIL only adopts bag-level labels. In MIL, a bag comprises multiple instances,
and a bag label is contributed by extracted instance features without instance information.
MIL, originating from the activity detection of drug molecules [27], has been widely used
in computer vision, such as image segmentation [28], image marking [29], and image
retrieval [30]. For instance, Miao Sun et al. [31] proposed a loss function based on MIL to
improve recognition performance. Mengran Fan et al. [32] enhanced foreground instances
using an attention mechanism to enhance the expression ability of features. In the field
of remote sensing image recognition, Zhili Li et al. [33] proposed an MIL scene feature-
representation method, wherein a scene is represented as a bag of local patches. It can be
facilitated to construct a robust scene representation. Accordingly, MIL is expected to show
considerable potential in the recognition task.

Motivated by [33], we attempt to explore the effectiveness of MIL in fine-grained
aircraft recognition. Meanwhile, the standard MIL is applied to represent scene semantics
that contain several separate objects (see Figure 3a). Thus, we use generalized MIL applied
in fine-grained aircraft recognition. In generalized MIL aircraft recognition, an aircraft is
represented as a bag of component concepts, and a component concept denotes an aircraft
part, such as the head, tail, or wing (see Figure 3b). Additionally, randomly arranging
the order of the instances, which is termed permutation invariance of generalized MIL, is
robust to aircraft recognition [34]. It facilitates the semantic information of robustness to
various spatial transformations, such as translation, rotation, and mirroring. This scenario
is conducive to expressing different poses of aircraft.
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Figure 3. Schematic diagram of MIL classification recognition. Figure (a) illustrates the standard MIL
classification recognition approach, and Figure (b) outlines the sketch map of the generalized MIL
framework in fine-grained aircraft classification.

The structure of the generalized MIL recognition framework includes a feature ex-
tractor, an instance conversion component, and an MIL pooling component. The feature
extractor adopts a pretrained network to obtain basic characteristics, transforming the
input image into a set of local patch features (patch-level features). In Figure 4a, an aircraft
component in an image is divided into several patches. In this case, a single patch cannot
express the semantic information of specific parts, and the operation that directly feeds
images into backbones destroys the characterization ability of an instance. Consequently,
we design an instance conversion component, namely, instance loss function, to convert
patch-level response patterns to instance-level response patterns (see Figure 4b).
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Figure 4. Sketch maps of the patch-level and instance-level feature maps. In Figure (a), the feature
map is extracted by the backbone network, the size of which is H×W×N. In Figure (b), the multiple
feature maps are inferred by the generalized MIL network, the size of which is H ×W × N. The blue
grids indicate the background responses, and the red grids represent the emphasized foreground
value. The yellow boundary line is to spotlight the area comprised of the red grids.

The instance loss function is studied to learn the compactness and separability of
multiple instances. Similar functions have been achieved in face recognition. For example,
the contrastive loss [35] explores map input patterns into a target space, such that the
L1 norm in the target space approximates the semantic distance in the input space. The
above-mentioned loss function optimizes feature distribution in a given metric space.
Unlike metric learning, mutual-channel loss (MCL) [36] is aimed at gaining individual
feature channels early on, as opposed to the convention of starting from a consolidated
feature map, which provides a novel perspective of fine-grained recognition. Thus, the
proposed instance loss function is devised to accomplish instance feature learning, referring
to MCL. We employ a fixed percentage of randomly masked channels to generate several
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instance blocks, which are termed instance masks. Then, the masked features flow into
the instance conversion part composed of discriminability and diversity components.
In the discriminability component, we apply cross-channel max pooling [37] (CCMP)
to fuse the channels of each instance and maximize the mean of instance peaks, which
can concentrate on mutually distinct local instances. In the diversity component, we
leverage the softmax function to receive the normalized feature and adopt CCMP to
maximize spatial decorrelation across instances belonging to the same category. Finally, the
extracted instance-level features, aggerated by the MIL pooling function, infer classification
probabilities, aiming to yield robust expressions considering all instance scores. Introducing
additional information and complex training strategies is unnecessary.

The main contributions of this article include the following:

(1) We attempt to propose a generalized MIL fine-grained aircraft recognition method to
focus on the discriminative regions and reduce the excessive computational cost of
extracting fine-grained part features without marked part annotations. In generalized
MIL, a fine-grained aircraft is combined with several component concepts, which
are only known aircraft types. It can effectively spotlight part regions and suppress
background response values.

(2) The patch-level output extracted from the MIL backbone network cannot simply
present aircraft part semantics. Thus, we design an instance conversion part (instance
loss function) to transform patch-level information to instance-level fine-grained
semantic representations, which involves few model parameters and little testing time.

(3) We apply a self-made benchmark dataset CAIs in the remote sensing fine-grained
images to demonstrate the effectiveness and universality of our method. Compre-
hensive experimental evaluations of basic DCNNs verify the effectiveness of the
proposed method.

The rest of this article is organized as follows. Section 2 describes the theory and
architecture of our proposed method in detail. Section 3 specifies the metric datasets and
network hyperparameters and provides experimental results to demonstrate the feasibility
and effectiveness of the proposed method. Section 4 discusses our proposed method.
Section 5 summarizes the content of this article.

2. Materials and Methods

In this section, the theory of MIL recognition is illustrated in detail. Subsequently,
we introduce the structure of the generalized MIL fine-grained recognition, which mainly
describes the instance conversion component and the MIL pooling component.

2.1. Problem Statement

According to the relationship between the instances and bag labels, MIL includes
the standard and generalized paradigms [38]. The standard MIL [27] suggests that the
bag label depends on the most positive instance. Each instance exhibits an implicit mark
c ∈ Ω = {+1, −1}. In standard MIL, we assume X = {X 1, X2, . . . , Xn} denotes a bag con-
taining n instances xi ε χ (i = 1, 2, . . . , n), and c(x) represents an instance-level classifier.
The formula of predicting labels is as follows:

fSMIL(X) =
{

1, ∃c(x i) = 1
0, otherwise

(1)

The standard MIL recognition results are inferred by multiple individual instance
scores, which is suitable to perform the object semantics in image understanding. The
object semantics belongs to simple semantics, which is expressed by several closed re-
gions in an image. The building object semantics are shown in Figure 5a, which contains
complete individual buildings to signify building semantics. However, the aircraft parts
are not demarcated by separate closed areas on an aircraft object, as shown in Figure 5b.
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Aircraft components occur in an adjacency relationship. Thus, there are existing limitations
applying the standard MIL assumption to fine-grained recognition.
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To break the limitations of standard MIL, we introduce the generalized MIL paradigm
reference [39], which supposes a bag label is inferred by multiple instance concepts
C = {c 1, c2, . . . , cr}(c i: χ→ Ω) , to optimize the standard MIL method in aircraft recog-
nition. N(X, c i) signifies the number of instances corresponding to ci in the bag X. The
predicted formula can be written as follows:

fGMIL(X) =
{

1, ∀ci: N(X, c i) ≥ 1
0, otherwise

(2)

which indicates that an image marked as positive contains a positive instance referring to
the instance concept ci at least. The instance concept represents the sub-semantics of an
aircraft, such as head, tail, and wing.

Thus, we establish the generalized MIL method to fine-grained recognition. Differ-
ent recognition methods of response value distribution obtained by Grad-CAM [40] are
displayed in Figure 6. In particular, Figure 6a shows that the features extracted by the
baseline network are sparsely distributed, discarding aircraft part information to abstract
ambiguous expressions. Then, Figure 6b displays the obtained results from the standard
MIL network, the attention distribution of which can cover the whole aircraft. However,
the attention pattern does not concentrate on fine-grained exclusive regions. Moreover,
Figure 6c shows the attention distribution derived from a generalized MIL network, which
can observe the response distribution of typical components and generate the instance-
level attention distribution mode. Consequently, utilizing generalized MIL into aircraft
recognition tasks is reasonable based on the above visualization results.
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recognition. Figure (a) is the attention map extracted by CNN. The red box is the highlighted regions
of the aircraft. c represents the category of aircraft. Figure (b) is the attention map extracted by
standard MILCNN. The red columns describe the cth feature. The white columns indicate the surface
object. Figure (c) is the attention map extracted by generalized MILCNN. The red, yellow, and blue
boxes are the highlighted areas of the aircraft. The subscript number represents the number of aircraft
components. The different colors of the columns denote different components. The red, yellow, and
blue columns integrate aircraft expressions by MIL pooling function.

2.2. Generalized MIL Fine-Grained Recognition Network

As shown in Figure 7, the architecture of the proposed fine-grained recognition net-
work contains three components: the feature extractor, the instance conversion component,
and the MIL pooling component. The feature extractor uses a pretrained DCNN model
to transform the fine-grained image into a set of local patches. An extracted patch-level
feature represents the characteristic response distribution of fine-grained objects in the
spatial domain, which cannot sufficiently characterize aircraft components. Therefore,
we design the instance conversion component to accomplish interclass dispersion and
intraclass compactness. The construction of the instance loss function is described in
Section 2.3. Then, the MIL classifier is leveraged to calculate instance scores, and the MIL
pooling function is utilized to aggerate the obtained instance-level scores and calculate
class probabilities. The specific content of the MIL pooling part is introduced in Section 2.4.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 21 
 

 

CNN

C

C

Pooling

Pooling

A Others

A Others

(a)

(b)

 

Patch-level

Generalized 
MILCNN

Instance-level
(c)

C1 C3

Pooling

A OthersC2

C

Standard 
MILCNN

 
Figure 6. Schematic diagram of CNN, standard MILCNN, and generalized MILCNN in aircraft 
recognition. Figure (a) is the attention map extracted by CNN. The red box is the highlighted regions 
of the aircraft. c represents the category of aircraft. Figure (b) is the attention map extracted by 
standard MILCNN. The red columns describe the cth feature. The white columns indicate the sur-
face object. Figure (c) is the attention map extracted by generalized MILCNN. The red, yellow, and 
blue boxes are the highlighted areas of the aircraft. The subscript number represents the number of 
aircraft components. The different colors of the columns denote different components. The red, yel-
low, and blue columns integrate aircraft expressions by MIL pooling function. 

2.2. Generalized MIL Fine-Grained Recognition Network 
As shown in Figure 7, the architecture of the proposed fine-grained recognition net-

work contains three components: the feature extractor, the instance conversion compo-
nent, and the MIL pooling component. The feature extractor uses a pretrained DCNN 
model to transform the fine-grained image into a set of local patches. An extracted patch-
level feature represents the characteristic response distribution of fine-grained objects in 
the spatial domain, which cannot sufficiently characterize aircraft components. Therefore, 
we design the instance conversion component to accomplish interclass dispersion and in-
traclass compactness. The construction of the instance loss function is described in Section 
2.3. Then, the MIL classifier is leveraged to calculate instance scores, and the MIL pooling 
function is utilized to aggerate the obtained instance-level scores and calculate class prob-
abilities. The specific content of the MIL pooling part is introduced in Section 2.4. 

 
Figure 7. Structure of the generalized MIL network. Figure 7. Structure of the generalized MIL network.



Remote Sens. 2021, 13, 5132 8 of 22

2.3. Instance Conversion Part (Instance Loss)

Instance loss function is devised to accomplish the feature conversion from patch
level to instance level based on MCL. Given an input image, the feature map extracted
by feeding into the backbone is denoted as F ∈ RN×W×H, where N is the number of
feature map channels; W is the width of the feature map, and H is the height of the feature
map. In MCL function, the feature map channels are equally divided to c × ξ, where c
represents the number of categories, and ξ is the set of channels that denote each object.
The grouped feature channels corresponding to ith class are indicated by FiεRξ×WH, i = 0,
1, . . . , c − 1. The subcategory channels, separated from one another, denote a particular
semantic category without further subdivision into sub-semantics. Additionally, several
channels individually expressing different subcategories are provided with similar feature
responses, particularly in some fine-grained objects with complex structures. Although
the number of categories increases, the number of channels belonging to each category
decreases, possibly weakening the characterization ability of feature maps.

Therefore, instance masks are introduced to restrain the learning of different instances
instead of directly splitting feature maps. The size of these masks is the same as the output
from the backbone network. The architecture of the MIL network with the proposed
instance loss function is shown in Figure 8. The channels of the feature map are randomly
divided into m groups. The feature map is equally formed as m × η, where m denotes
the number of instances, and η describes the subset of instance channels that represent
the components of fine-grained objects. The index of each group selects different channel
combinations to generate instance masks. The weight of the selected ones is adjusted to 1,
and the remainder are adjusted to 0. In this way, instance masks of m groups with specific
channel suppression can be received. Mathematically, it can be presented as follows:

Si= {F i×η+1, Fi×η+2, . . . , Fi×η+η

}
(3)

Hi= {I i×η+1, Ii×η+2, . . . , Ii×η+η

}
(4)

Di= Ki−Hi (5)

SIi= T0(D i)∩T1(H i) (6)

SFi= F × SIi (7)

where Si denotes the ith selected instance channel set; Hi is the index set of Si, and Ki
represents the array of positive integers from 0 to N − 1. Di, a difference set reckoned
by Ki and Hi, indicates a set of unselected channels. T0 implies to set the weight of the
channel index Di to 0, and T1 stands for adjusting the weights of the channel index Hi to
1. SIi performs the ith instance channel mask, and SFi signifies the ith instance feature,
i = 0, 1, . . . , m.

Subsequently, SF = {SF 0, SF1, . . . , SFm−1} is driven by two loss functions for recog-
nizable intentions, which involve the cross-entropy loss and the instance loss:

Loss(F) = LCE(F) + µ × Linstance(F) (8)

Linstance(F) = Ldis(F) − λ × Ldiv(F) (9)

where LCE is the cross-entropy loss, and Linstance intends the instance loss function. µ and
λ are both the hyperparameters of instance loss. The hyperparameter setting is identified
in Section 3.2.2.
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Figure 8. Overview of the instance loss, containing the diversity component and discriminability
component. The number of instances is set to 3. In subblocks (a,b), the output feature map is
divided into three groups, and each group denotes the set of instance channels. The flow diagram of
the discriminability component is shown in subblock (a), and the outline pipeline of the diversity
component is displayed in subblock (b).

After achieving masked instance particularities, the feature information flows into
the discriminability and diversity components. The discriminability component aims to
emphasize the feature expression of the m instance blocks. The mathematical formula of
the discriminability component is as follows:

Ldis(F) =
1
m

m−1

∑
i=0

LCE(y,
[e g(SF0), eg(SF1), . . . , eg(SFm−1)]

T

∑c−1
i=0 eg(SFi)

) (10)

g(SFi) =
1

WH

WH

∑
k=1

max
j=1,2,...,η

[SF i,j,k] (11)

where g(SF i) contains the global average pooling (GAP), cross-channel max pooling
(CCMP), and channel-wise attention (CWA). The structures of CCMP and CWA are the
same as those in MCL function [36]. After obtaining instance scores, we calculate the
cross-entropy loss value of each instance and get the average instance value as the output
of the discriminability component.

The diversity component denotes a distance measurement for feature channels to
calculate total similarity, which is gained by CCMP and softmax function. This component
focuses on exclusive object regions in instance blocks, rather than all the channels focusing
on the most discriminative patch. The calculation formula of the diversity component is
as follows:

Ldiv(SF i) =
1
m

m−1

∑
i=0

Fconcat(h(SF 0), h(SF 1), . . . , h(SF m−1)) (12)

h(SF i) =
WH

∑
k=1

max
j=1,2,...,η

[
eSFi,j,k

∑WH
k′ SFi,j,k

] (13)
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where SFi indicates the ith instance feature blocks, and h(SF i) denotes the inference logits
of fine-grained categories. The obtained instance blocks are concatenated to generate
instance feature blocks. They calculate the average of multiple instance values to expand
the spatial distance among the instance peaks for mining various expressions.

2.4. MIL Pooling Part

After obtaining instance-level features driven by instance loss, we handle the MIL
pooling part to anticipate labels, which contain the MIL classifier and MIL pooling function
(see Figure 9). In the MIL pooling part, scoring instance blocks are employed by several
1 × 1 convolutions as an instance classifier. The MIL pooling function aims to aggregate
the instance scores into object probabilities. Considering the contribution of each instance,
GAP is adopted to reduce the sensitivity to abnormal instance blocks, which assign the
equivalent weight of instances to predict labels. The calculation formula is as follows:

Si,j,c= fconv1×1×C(f conv1×1×N(f conv1×1×N(SF i,j,k)) (14)

yc =
1

W×H

WH

∑
i,j=1

Si,j,c (15)

where SFi,j,k is the response value of instance in the ith column, jth row, and kth channel.
fconv1×1×N denotes 1 × 1 × N convolution operation, and fconv1×1×C denotes 1 × 1 × C
convolution operation and the shape of Fc is N × H × W. N represents the number of
feature channels, and C denotes the number of types. Si,j,c indicates the instance score in
the ith column, jth row, and cth channel position, and yc signifies the label score of cth
channel position, the shape of which is 1 × 1 × C. H and W represent the height and width
of the feature map.
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Figure 9. Construction of the MIL pooling component. The MIL pooling component comprises the
instance classifier and the MIL pooling function. N represents the number of feature channels, and C
denotes the number of aircraft types.

3. Experiments and Results
3.1. Dataset

At present, the public remote sensing image datasets contain a few categories with
large intraclass variance, such as ship, tank, and harbor, which are distinguished readily. We
collect an aircraft dataset from the 2020 Gaofen Challenge on Automated High-Resolution
Earth Observation Image Interpretation [41], DIOR [42], and DOTA [43] to explore the
fine-grained study. The aircraft images provided by the Gaofen competition are from
GF-2, with spatial resolutions ranging from 0.5 m to 0.8 m (see Figure 10). We select
additional types of aircraft images from DIOR and DOTA to extend the Gaofen competition
dataset. The distribution of the CAIs, including 15 categories, is shown in Table 1. The fine-
grained aircraft images are centrally cropped following the official coordinate annotations.
Given the high similarity in the dataset, this dataset is considered the main experimental
benchmark dataset.
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Table 1. Quantity distribution of combined aircraft images (CAIs).

Types Images Types Images Types Images

Type 1 500 Type 2 480 Type 3 480
Type 4 374 Type 5 16 Type 6 500
Type 7 594 Type 8 263 Type 9 570

Type 10 500 Type 11 500 Type 12 500
Type 13 370 Type 14 493 Type 15 500

3.2. Implementation Details
3.2.1. Data Preprocessing

The training samples and testing samples are resized to 224 pixels by interpolation.
During the training phase, data augmentation is applied by randomly left-right and up-
down flipping and randomly rotating the images based on a set of angles (e.g., 0◦, 90◦,
180◦, and 270◦). The ratios of a training set to a test set are 5:5, 6:4, and 8:2 on CAIs.

3.2.2. Parameter Settings

The ImageNet pretrained model (VGGNet-16 and ResNet v2-50) is employed to
initialize the backbone part in the recognition network and MILCNN. In CAIs, the optimizer
in the model is Adam with a batch size of 32, and the weight decay is 0.0005. The initial
learning rate is 0.00005, and the learning rate is multiplied by 0.1 every 30 epochs. The
training process ends after 100 epochs. The number of instances m is set to 3; the coefficient
of instance loss µ is adjusted to 0.005, and λ is adjusted to 10.

3.2.3. Evaluation Metrics and Experimental Platforms

Some common evaluation criteria are listed as follows to judge the performance of
various models quantitatively: overall accuracy (OA) and confusion matrix. The confusion
matrix evaluates the algorithm accuracy in each category and misclassification among
different sorts. The evaluation reflects the classification performance of the proposed
algorithm. OA performs the ratio of the number of correctly recognized sample to the
number of test samples, thereby exhibiting the classification performance of the algorithm
on the test metric dataset. The calculation formula is as follows:

OA =
Ntrue

N
(16)

where Ntrue denotes the number of the correctly classified samples, and N represents the
number of the test images.

Additionally, we code via the TensorFlow framework and experiment on a workstation
with an AMD Ryzen5 3600 CPU and NVIDIA GeForce GTX 2060 GPU.

3.3. Comparative Experiment of Baseline Networks and Standard MIL Networks

Sufficient experiments have been undertaken to compare the test performance of the
baselines and standard MIL networks on the CAIs. The standard MIL network architecture
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is the same as that in [33], which contains feature extractor and MIL pooling part. The test
results of which are shown in Table 2.

In terms of the results of CAIs in Table 2, all the standard MIL networks outperform
baselines in OA with fewer parameters. For instance, the standard MIL networks indicate
that accuracy of 91.71%, 92.71%, and 93.58% on VGGNet and 92.01%, 92.94%, and 94.21% on
ResNet with 50% training data, which proves the lightweight capability of MIL networks.
The confusion matrixes of the baseline networks and the standard MIL networks are
indicated in Figure 11a,b, and the per-class OA results on the baselines and standard
MIL-VGGNet are shown in Figure 12, which shows that the number of misclassified
samples drop.
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Figure 11. The confusion matrix results from different recognition frameworks with 50% training data.
Figure (a) represents the result of VGGNet; Figure (b) indicates the result of standard MIL-VGGNet
(VGGMIL), and Figure (c) denotes the result of generalized VGGMIL. The black value in the figure
represents per-class recognition accuracy. The white value in the figure signifies misclassification
accuracy. For clarity, the confusion matrices only show the between-class misclassification greater
than 0.001.
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Table 2. Experimental results of the different recognition loss function on the CAIs (the ratio of a training set is 50%, 60%, and 80%), which indicates the performance of OA, model
parameters, training time, and testing time. Training time indicates the time consumption of model training, and testing time is the time consumption of predicting an image. VGGMIL
denotes MIL network, whose backbone network is VGGNet, and ResMIL represents MIL, whose backbone network is ResNet. VGGMIL/ResMIL with CE Loss indicates the standard MIL
networks, and VGGMIL/ResMIL with CE Loss and Instance Loss signifies the generalized MIL networks.

Baseline Loss Function
Accuracy/%

Parameters/MB Training Time/ms Testing Time (ms/Image)
Tr = 50% Tr = 60% Tr = 80%

VGGNet CE Loss 91.0000 91.5030 92.6038 134.32 5368.96 6.15
VGGNet CE Loss and MCL 90.8981 90.4834 92.2264 134.32 5694.91 6.20

VGGNet CE Loss and Instance
Loss 90.5666 91.0498 92.9811 134.32 5791.13 6.10

VGGMIL CE Loss 91.7119 92.7115 93.5849 56.91 3216.95 3.80
VGGMIL CE Loss and MCL 92.8270 93.8444 93.3585 56.91 3270.45 3.95

VGGMIL CE Loss and Instance
Loss 93.0380 94.0710 94.0377 56.91 3337.66 3.90

ResNet CE Loss 91.3201 92.7492 94.1887 89.84 2066.15 2.25
ResNet CE Loss and MCL 92.3749 92.8625 94.2143 89.84 2099.63 2.15

ResNet CE Loss and Instance
Loss 91.1995 92.8625 94.3571 89.84 2438.67 2.25

ResMIL CE Loss 92.0133 92.9381 94.2143 33.89 1981.13 1.85
ResMIL CE Loss and MCL 92.3448 92.9381 94.4906 33.89 2077.18 1.85

ResMIL CE Loss and Instance
Loss 92.4653 93.2024 94.6415 33.89 2253.53 1.75
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Meanwhile, the largest improvement types are contributed by Type 13 (+4.32%), Type 7
(+3.21%), and Type 2 (+2.50%), and the largest decline types include Type 4 (−3.20%), Type 6
(−2.40%), and Type 3 (−1.25%) in standard MIL-VGGNet. The attention visualization
results of increased and dropped types are respectively exhibited in Figures 13 and 14.
Considering increased categories, Type 7 has two jets on each side of the wing, which
has typical traits compared with other Boeing aircraft. The attention results extracted by
the standard MIL networks can capture the key parts of aircraft, which is demonstrated
by the fact that, in standard MIL, it is easy to implement rich local semantic modeling to
distinguish other subcategories. In terms of dropped categories, Type 3 belongs to large
passenger planes without obvious local typical features, which is mainly predicted by the
width of the fuselage and the length of the plane. This reflects the fact that the standard
MIL is powerless to acquire non-local particularities of aircraft.
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3.4. Comparative Experiment of the Standard MIL Networks and Generalized MIL Networks

Detailed experiments have been attempted to compare the recognition performance of
standard MIL networks and generalized MIL networks on the CAIs. The generalized MIL
network is composed of a feature extractor, an instance conversion component (instance
loss), and an MIL pooling component.

According to the results of CAIs in Table 2, all of the generalized MIL networks outper-
form standard MIL networks in OA with fewer parameters. For example, the generalized
MIL network reaches the best accuracy, 93.04%, 94.07%, and 94.04%, on VGGNet and
92.47%, 93.20%, and 94.64% on ResNet, with 50% training data. The memory parameters
and testing time consumption reach the lower level as aircraft test accuracy increases.
The confusion matrix results for standard and generalized MIL-VGGNet are displayed in
Figure 11b,c to explore the contribution of instance loss. The per-class OA results on the
standard and generalized MIL-VGGNet are revealed in Figure 12.

In addition, the largest improvement types are contributed by Type 9 (+5.61%), Type
13 (+5.41%) and Type 7 (+3.03%). The type most in decline is Type 1 (−0.45%) in generalized
MIL-VGGNet. The aircraft samples and attention visualization outputs of increased and
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dropped types are separately exhibited in Figures 15 and 16. Considering increased
categories, the recognition accuracy of Type 7 has been further increased. The attention
results of Type 9 in Figure 16 are displayed so that the output of the standard MIL spans
larger coverage, which may emphasize the background regions to influence prediction
results. The attention results extracted by generalized MIL only focus on the pivotal part of
aircraft, which illustrates that generalized MIL networks can capture affluent local typical
traits. In terms of dropped samples, Type 1 has a slender body, which has insufficient
typical traits compared to other aircraft. The visualization result of Type 1 indicates that the
highlighted regions of standard and generalized MIL networks are almost the same, which
can further confirm the lack of long-distance feature modeling capability of the generalized
MIL methods.
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However, for aircraft with highly similar appearance characteristics, our proposed
generalized MIL method still leads to some classification errors. Figure 17 exhibits the
attention weights of misclassified samples to explore the limitation of the proposed general-
ized MIL network. The attention weights are obtained by Grad-CAM [40]. The calculation
formula is as follows:

ωc
k =

1
W×H
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∑
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whereωc
k indicates the derivative score for the predicted class c and the kth feature map

activations of a convolutional layer. yc denotes the category c score. Watt signifies the
attention weight, and D represents the number of channels of the feature maps. The
gradients flowing back are GAP over the width and height dimensions to obtain the
neuron importance weights, which are indicated the importance of the feature map for a
target class.

In Figure 17, Type 1 is seriously confused with Type 6. The reason is that both of them
are twin-engine turbofan short-range passenger aircraft, and their ratio of the wingspan to
the fuselage is approximately 1. Therefore, it is challenging to distinguish Type 1 and Type
6 with global or local features. Furthermore, Type 8 is readily recognized as Type 9. This is
because Type 8 and Type 9 both belong to the twin-engine turbofan long-distance aircraft
of Boeing. Type 13 and Type 15 are seriously misclassified because they both possess two
engines on the wing. The main point to distinguish between Type 13 and Type 15 is the
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ratio of the plane and the wing. However, the input images resized to a fixed size may lead
to a change in the proportion of aircraft.

In summary, a comparison of the generalized MIL network with other networks
indicates that, when the baseline is utilized as feature extractors, the extracted features
are an overall representation of an aircraft that may lack local semantics. Therefore, the
final test accuracy is still not optimistic, even if some structures are introduced to drive
the local semantic learning of objects. Although a single standard MIL network without
any tricks is employed for aircraft recognition, which treats the patch-level features as
aircraft expression, the extracted patch cannot express the part sub-semantics. However,
the generalized MIL network applies several patches to construct aircraft explicit features
and introduces the instance loss function to merge the patch-level feature to grab instance-
level aggregation mode. In the conversion component of the generalized MIL network, the
reason to modify it is that the MCL function randomly selects a few channels to gain the
part feature of fine-grained objects. The instance loss function employs masked feature
blocks to represent instance features, maximize the adoption of effective channels, and
suppress useless background noise.
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are obtained by Grad-CAM [40], which can explore the importance of the feature map for a predicted label/true label.

Another reason for the test accuracy improvement is the MIL pooling function. After
obtaining the scores of multiple instances, this function jointly determines the aircraft label
placed on instance sub-semantics. According to the permutation invariance in MIL, an
object sample consists of instance concepts, and randomly scrambling the order of instances
does not affect the object semantics. Thus, the MIL pooling function, robust to the space
rotation characteristics of aircraft, can reduce the prediction error in aircraft recognition.

4. Discussion

In this section, we discuss the number of instances and the visualization results in
generalized MIL networks based on CAIs.

4.1. Number of Instances

The aircraft components usually include two wings, a nose, a tail, and other unique
structures (such as a high T-tail wing in ARJ21 and turbofan jet engines in Boeing 474).
Thus, the number of instances must be discussed. The results of the different number of
instances are shown in Table 3. Our proposed method has the best recognition results when
m is set to 3. The performance of our pipeline reaches the lowest level when m is adjusted
to 4, which implies that the higher the number of the instances performed, the better the
recognition performance is. The test accuracy ranks second in Table 3 when m is set to 1.
The reason for this phenomenon is that some instance features obtained by the instance
extractor cannot motivate a typical aircraft feature result in instance images containing
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multiple aircraft parts. The extracted instances cannot be encouraged to learn the most
knowledgeable information to reduce recognition accuracy.

Table 3. The ablation experiment in the number of instances. VGGMIL denotes generalized MIL whose backbone network
is VGGNet and ResMIL represents generalized MIL whose backbone network is ResNet.

Baseline The number of
Instances m Loss Function Accuracy/%

(Tr = 50%) Parameters/MB Training
Time/ms Testing Time/ms

VGGMIL 1 CE Loss and
Instance Loss 92.9475 56.91 3451.21 7.65

VGGMIL 2 CE Loss and
Instance Loss 92.8270 56.91 3340.35 7.04

VGGMIL 3 CE Loss and
Instance Loss 93.0380 56.91 3337.66 3.90

VGGMIL 4 CE Loss and
Instance Loss 92.6160 56.91 3402.68 7.44

ResMIL 1 CE Loss and
Instance Loss 92.4051 33.89 2253.53 5.18

ResMIL 2 CE Loss and
Instance Loss 92.2242 33.89 2341.67 4.72

ResMIL 3 CE Loss and
Instance Loss 92.4653 33.89 2181.48 1.75

ResMIL 4 CE Loss and
Instance Loss 92.0434 33.89 2310.24 4.49

4.2. Visualization

The visualization results of the fifth convolutional feature map exported from the
backbone network are shown in Figure 18 to illustrate the capability of the proposed
method. The instance number is set to 3. The visualization results indicate that the
characters derived from VGGNet exhibit a cramped attention span and few peak areas, and
the attention explicit features of which are not disobeyed by multiple local attention modes.
The features received from MIL-VGGNet possess discriminative characteristics, which
comprise the scope of an aircraft. The attention distribution results reveal a single peak
attention pattern. The generalized MIL network captures the salient regions of aircraft and
effectively expands the highlight area coverage. Our consequences indicate discriminative
and diverse attention mode, which can spotlight aircraft components and capture the
different traits of a fine-grained object. Thus, the proposed method can emphasize the
optimization of the extracted fine-grained characteristics.

Figure 19 displays the visualization consequences for the distribution of fine-grained
attention weights by Grad-CAM. The second column represents the attention allocation
generated from VGGNet, the high response values of which are small quantities and
sparsely dispersed. The above extracted fine-grained traits cannot be fine-grained compo-
nent semantics. The third column indicates the response value collected from the standard
MIL-VGGNet. The attention range coverage in the third column is much wider than that
in the second column, and it can enclose most regions of the fine-grained components. The
above-mentioned circumstance proves the explicit characteristics of the objects extracted
by MIL networks. However, the attention distribution pattern cannot effectively highlight
components. The last column shows the attention output obtained from the generalized
MIL-VGGNet, which exhibits the discriminating regions and the separability distributions
among fine-grained samples.
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5. Conclusions

Fine-grained aircraft recognition is an essential topic with great practical demand in
remote sensing image interpretation. The research focuses on obtaining the component
features that can be distinguished from other subcategories. In this study, we introduce
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the standard MIL framework, which consists of the feature extractor and the MIL pooling
component. It can focus on typical components from a fine-grained object and suppress
background noises. However, the feature extractor outputs a patch-level feature, which can
result in the scattered distribution of the network interest regions. Thus, the generalized
MIL is devised to encourage the learning of discriminative parts and different features
among various subcategories without extra model parameters and part annotations.

The generalized MIL network includes a feature extractor, an instance conversion com-
ponent, and an MIL pooling component. The instance conversion component (instance loss)
is composed of discriminability and diversity components. The discriminability component
is aimed to establish feature expressions of several instances, and the diversity component
is explored to extend the response distribution of different component characteristics. After
obtaining instance-level features, the MIL pooling component transforms instance scores to
fine-grained aircraft object probabilities. Additionally, the performances of different neural
networks on CAIs are compared, and ablation experiments are conducted to substantiate
the validity of MIL network and instance loss function.

The use of deep learning for fine-grained image recognition is the mainstream method.
Compared with that of the original model, the recognition accuracy of our proposed method
is increased. However, it still needs further enhancement. Our pipeline has some defects,
that is, the number of instances demands manual adjustment. Therefore, determining
automatically the important recognition network hyperparameters is a vital direction for
the application of deep learning to improve compatibility for aircraft recognition in future
research. Meanwhile, we mainly discuss the reduction of parts annotations in this paper.
Nevertheless, the research advancement in remote sensing is impeded by the lack of fine-
grained aircraft public datasets. Consequently, considering open set domain or generalized
zero-shot learning, using a few generic aircraft images to learn aircraft semantics in remote
sensing images, is worth exploring in the future.
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