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Abstract: It is an objective demand for sustainable agricultural development to realize fast and
accurate cultivated land quality assessment. In this paper, Tengzhou city (county-scale hilly area:
scale A), Shanghe county (county-scale plain area: scale B), and Huang-Huai-Hai region (including
large-scale hilly and plain area: scale C and D) were taken as research areas. Through the conversion
of evaluation systems, the inversion models at the county-scale were constructed. Then, the image
scale conversion was carried out based on the numerical regression method, and the upscaling
inversion was realized. The results showed that: (1) the conversion models of evaluation systems
(CMES) are Y = 1.021x − 4.989 (CMESA−B), Y = 0.801x + 16.925 (CMESA−C), and Y = 0.959x + 3.458
(CMESC−D); (2) the booting stage is the best inversion phase; (3) the back propagation neural network
model based on the combination index group (CI-BPNN) is the best inversion model, with the R2

are 0.723 (modeling set) and 0.722 (verification set). CI-BPNN and CI-BPNN-CMESA−B models are
suitable for the hilly and plain areas at the county-scale, and the level area ratio difference is less
than 4.87%. Furthermore, (4) the reflectance conversion model of short-wave infrared 2 is cubic, and
the rest are quadratic. CI-BPNN-CMESA−C and CI-BPNN-CMESA−C-CMESC−D models realized
upscaling inversion in the hilly and plain areas, with the maximum level area ratio difference being
1.60%. Additionally, (5) the wheat field quality has improved steadily since 2001 in the Huang-
Huai-Hai region. This study proposes an upscaling inversion method of wheat field quality, which
provides a scientific basis for cultivated land management and agricultural production in large areas.

Keywords: wheat field cultivated land quality; remote sensing inversion; evaluation systems
conversion; upscaling conversion; Huang-Huai-Hai agricultural region; China

1. Introduction

Cultivated land is the essence of land and the material basis for human survival and
development. Cultivated land quality (CLQ) reflects the productive capacity of cultivated
land, which is essential for food security, the maintenance of agricultural ecosystem func-
tions, and biodiversity [1,2]. For China, being a large population country in the world, the
protection and utilization of cultivated land resources are essential, and the maintenance
and improvement of CLQ are facing more significant challenges [3]. Huang-Huai-Hai
agricultural region is the main wheat production base in China. Due to natural and human
factors, there are many problems in cultivated land quantity and quality [4,5]. Therefore,
scientific assessment and rapid monitoring of wheat field CLQ have become an urgent need
for agricultural production and sustainable development in the Huang-Huai-Hai region.

Although CLQ is comprehensive, complex, and difficult to quantify, it is a mainstream
method to construct an evaluation system based on observable indicators using geographic
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information systems (GIS) technology [6–8]. However, it is difficult to achieve rapid
evaluation and dynamic update of CLQ for large regions due to the heavy workload and
protracted cycle of field investigation and laboratory detection [9]. With its advantages
of comprehensive coverage, low cost, strong spatial and temporal continuity, accuracy,
and reliability, satellite remote sensing (RS) has become an indispensable tool in acquiring
and monitoring cultivated land information [10,11]. Therefore, how to select remote
sensing indicators for evaluation, estimate CLQ quickly and efficiently, and analyze its
spatio-temporal variation has become a focus of current research.

In recent years, scholars have explored the comprehensive utilization of land evalua-
tion and remote sensing technology. Multi-source satellite data was widely used in CLQ
evaluation. High resolution satellite data was used in CLQ analysis at small and medium
scales. For example, Wu et al. [12], Fathizad et al. [13], and Binte Mostafiz et al. [14]
adopted different methods to realize CLQ evaluation based on Landsat series data (30 m) at
a small scale. Moreover, Fang et al. [15], Xia et al. [16], and Zolekar et al. [17] realized land
evaluation analysis based on SPOT (10 m), GF-1 (8 m), and IRS (5.8 m) data at a small scale.
However, the CLQ inversion in a large region is difficult due to its low temporal resolution
and limited coverage. Therefore, low resolution satellite data has been widely used in
CLQ analysis at a large scale. Xu et al. [18], Sciortino et al. [19], and Yu et al. [20] used
low-resolution MODIS series data products (250 m/500 m/1 km) to realize CLQ evaluation
at a local and national scale, respectively, but the spectral confusion is serious, and the
model accuracy is limited. Generally speaking, the current research mainly focused on a
single scale, and there were few remote sensing studies on CLQ at different scales. At the
same time, the CLQ varies significantly at different scales due to the heterogeneity of CLQ,
the non-linearity of remote sensing indicators and response functions, and the difference in
image resolution [21]. The inversion model at a small scale is difficult to directly apply to
other scales due to the scale variation of CLQ and remote sensing images [22,23]. Therefore,
how to better screen remote sensing indicators of CLQ, make full use of the complemen-
tarity of different resolution images, carry out scale conversion of inversion model, and
realize high-precision joint inversion of large-scale CLQ remains to be further explored.

Therefore, this paper took the Huang-Huai-Hai agricultural region as the research area,
and constructed the CLQ model based on OLI (operational land imager) data in typical
counties (Tengzhou city and Shanghe county). Additionally, MODIS (moderate-resolution
imaging spectroradiometer) images were then used to carry out the upscaling conversion
to realize the inversion and dynamic variation analysis of wheat field quality. This paper
explores the remote sensing model of wheat field quality and provides technical support
for cultivated land management and agricultural production in large areas.

2. Materials and Methods
2.1. Study Area

In this study, the Huang-Huai-Hai region was taken as a large-scale research area,
Tengzhou city (county-scale hilly area) was taken as the core area for model construction,
and Shanghe county (county-scale plain area) was taken as the area for model verification.

The Huang-Huai-Hai agricultural region is located in the east of mainland China
(32◦23′~41◦03′ N, 112◦01′~122◦42′ E), and includes two plain-type secondary zones (large-
scale hilly area) and two hilly-type secondary zones (large-scale plain area), covering
441 counties (cities and districts) [4]. The Huang-Huai-Hai Plain belongs to the warm
continental monsoon climate, which is rich in heat resources. The area is low and flat,
with plains, low mountains, hills, and other geomorphic types. The cultivated land use
types are mainly irrigated land, upland land, paddy field, etc., and there are 19 soil types,
including brown soil, cinnamon soil, ginger black soil, etc. This region is an important
grain production base, mainly planting winter wheat, whose sowing area accounts for
about 53% of the country, and the yield can reach 61% (2018).

Tengzhou city is located in the Shandong hilly agricultural and forestry zone, which
belongs to the warm continental monsoon climate. The soil is mainly brown soil and
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moisture soil. The cultivated land use is primarily irrigated land, dry land, and irrigated
paddy fields. At the same time, winter wheat is widely distributed, and the growth
difference is noticeable, which is an ideal area for CLQ inversion. This area is similar to the
Huang-Huai-Hai region in climate, topography, soil, and cultivated land utilization, and
has typical representativeness. Shanghe county is located in the low-lying plain agricultural
zone in Hebei, Shandong, and Henan, with low terrain, a high agricultural development
level, and extensive winter wheat planting. Therefore, it has a good representation of the
plain area and is an ideal model area for regional linkage verification (Figure 1).
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Figure 1. Distribution map of the study area. (a) Huang-Huai-Hai agricultural region; (b) Tengzhou city; (c) Shanghe county.
1© and 2© represent the plain-type secondary zones (Huang-Huai plain agricultural zone, and low-lying plain agricultural

zone in Hebei, Shandong, and Henan), 3© and 4© represent the hilly-type secondary zones (Shandong hilly agricultural and
forestry zone, and Piedmont Plain agricultural zone of Taihang and Yanshan Mountains).

2.2. Data Source and Preprocessing

The CLQ evaluation data were mainly derived from the cultivated land quality grade
evaluation project of the Huang-Huai-Hai region in 2018, and the cultivated land fertility
evaluation, soil testing, and formula fertilization project of Tengzhou city and Shanghe
county in 2018. The data content includes sampling sites, thematic maps (such as to-
pographic maps, soil maps, and administrative zoning maps), and relevant statistical
data. The wheat field area was obtained through the statistical yearbook and the national
economy and social development bulletin.

The required remote sensing images include Landsat OLI and MODIS data. Four
Landsat-OLI images at the greening stage (16 March 2018) and the booting stage (17 April
2018) were obtained for wheat field extraction and inversion at the county-scale from the
United States Geological Survey (http://glovis.usgs.gov (accessed on 15 August 2021)). As
for the Huang-Huai-Hai region, the MODIS series data were derived from LAADS DAAC
(https://ladsweb.modaps.eosdis.nasa.gov (accessed on 15 August 2021)). Among them,
MOD13Q1 was selected for wheat field extraction from 29 September 2017 to 26 June 2018;
and MOD09A1 was selected for upscaling inversion at the booting stage (15 April 2018) of
winter wheat. In addition, the MOD13Q1 (29 September 2000 to 26 June 2001, 30 September
2009 to 26 June 2010) and MOD09A1 (15 April 2001, 15 April 2010) data were selected for
multi-temporal wheat field extraction and quality inversion.

The IDW method was used to interpolate nutrients, and the statistical data was sum-
marized and sorted by Excel. For Landsat data, ENVI software was used for radiometric
calibration, atmospheric correction, geometric precision correction, and image cropping.
For MODIS data, the MRT tool was used for image mosaic, band screening, and projection
conversion. ArcGIS was used for cropping, ENVI was used for band synthesis, and the
Hants method was used for smoothing processing to obtain long time-series MODIS data.

2.3. Methods

Based on realizing the CLQ evaluation and system conversion, this study built an
inversion model at county-scale, and realized CLQ inversion and dynamic monitoring

http://glovis.usgs.gov
https://ladsweb.modaps.eosdis.nasa.gov
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in the Huang-Huai-Hai region through upscaling conversion of images and evaluation
systems. The technology roadmap is shown in Figure 2, which is mainly divided into the
following steps:
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Figure 2. Technology roadmap. CLQ: cultivated land quality, RS: remote sensing, RF: random forests, CMESA-B, CMESA-C,
and CMESC-D: conversion models of evaluation systems (from county-scale hilly area to county-scale plain area, from
county-scale hilly area to large-scale hilly area, and from large-scale hilly area to large-scale plain area).

Firstly, the primary research data were collected and preprocessed.
Secondly, CLQ evaluation and system conversion. Taking the wheat field extracted

from RS as the data source, this chapter evaluated the CLQ and realized the linkage between
multiple systems through the linear model.

Thirdly, model construction at county-scale. After determining the best inversion
phase, the estimation model was obtained by constructing spectral indicators and inversion
models at the hilly area. The inversion was realized by the conversion of evaluation systems
at the plain area, and then the accuracy was verified.

Fourthly, upscaling inversion at large-scale. In this chapter, the “numerical regression
method” was used for upscaling conversion of images. On this basis, the upscaling inver-
sion was realized through the scale conversion of evaluation systems, and the inversion
accuracy was analyzed.

Fifthly, CLQ dynamic analysis. The temporal and spatial dynamics of cultivated land
quantity and quality were analyzed from 2001 to 2018.

2.3.1. CLQ Evaluation Based on GIS and Evaluation Systems Conversion

(1) Wheat Field Information Extraction

Firstly, we set up sample points (training points: verification points = 2:1) according to
the characteristics of the study area, spectral, and soil and land use distribution. Secondly,
the wheat field information was extracted by the supervised classification method based
on OLI images in the greening period at the county-scale and by the random forest classifi-
cation method (through ENMAP Box software [24]) based on MODIS-NDVI data of the
whole growing period at large-scale [25]. Thirdly, the area classification accuracy (ACCarea)
was used to reflect the area difference between remote sensing extraction and the statistical
yearbook, and the verification point classification accuracy (ACCpoint) was calculated by
the proportion of verification points that were correctly classified.

(2) CLQ Evaluation Based on GIS

In this study, the CLQ was evaluated at county-scale (plain area and hilly area) and
large-scale (plain area and hilly area) according to the cultivated land quality grade (GB/T
33469-2016) [26]. First of all, the administrative zoning map, soil map, land use status
map, and wheat field map were superimposed to realize the division of evaluation units.
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Secondly, the Delphi method and system clustering method were used to select evaluation
factors. Thirdly, the Analytic hierarchy process (AHP) method was used to determine
the indicator weight (Ci), and the Delphi method and fuzzy statistics method were used
to determine the membership degree (Fi). Finally, the integrated fertility index (IFI) was
calculated, and CLQ grade was divided by the equal space method. The specific formula is
as follows:

IFI =
n

∑
i=1

(Ci × Fi); (1)

where Ci represents the combined weight of the ith indicator, and Fi represents the mem-
bership degree of the ith indicator.

(3) Conversion of CLQ Evaluation Systems

This study realized the linkage between different evaluation systems through the
conversion model. The idea of model construction was that different evaluation systems
were applied to the same data to obtain the IFI in different areas and scales; then, the IFI of
corresponding systems was used to construct a linear regression model. The conversion
models constructed in this study were as follows:

CMESA−B : IFIB = F(IFIA); (2)

CMESA−C : IFIC = F(IFIA); (3)

CMESC−D : IFID = F(IFIC); (4)

where CMESA-B, CMESA-C, and CMESC-D represent the conversion models of evaluation
systems from the county-scale hilly area to the county-scale plain area, from the county-
scale hilly area to the large-scale hilly area, and from the large-scale hilly area to the
large-scale plain area. IFIA, IFIB, IFIC, and IFID represent the evaluation results at the
county-scale hilly area, county-scale plain area, large-scale hilly area, and large-scale plain
area, respectively.

2.3.2. Construction of CLQ Inversion Models at County-Scale

(1) Selection of Optimal Time Phase for CLQ Inversion

The average values of IFI and NDVI were calculated in wheat’s critical growth periods
by taking each county as a unit in the Huang-Huai-Hai region; the Pearson correlation
coefficient (R) [27] was used to measure the explanatory power of remote sensing data to
CLQ in hilly and plain areas, and the optimal time phase was selected.

(2) Construction of CLQ Inversion Model at County-scale Hilly Area
1© Construction and Screening of Characteristic Spectral Parameters

We constructed a sensitive band group (consisting of OLI bands), vegetation index
group (consisting of vegetation index [28]), and moisture index group (consisting of mois-
ture index [29–31]). At the same time, the combined index containing multiple spectral
bands was obtained by using multiple combination methods for the above spectral index.

Then, the evaluation units corresponding to the training points and the correct classifi-
cation verification points in Tengzhou city were taken as a modeling set and verification set,
respectively. The mean values of spectral indicators and IFI in the evaluation units were
taken as independent and dependent variables, respectively. Additionally, the spectral
indicators were screened by the correlation coefficient (R) and the variance inflation factor
(VIF) [27].

2© Construction and Screening of Inversion Models

Multiple linear regression (MLR), back propagation neural network (BPNN), and
support vector machine (SVM) algorithms [32] were used to build the inversion model
with the support of SPSS and MATLAB software. Additionally, the inversion model was
screened by the determination coefficient (R2) and the root mean square error (RMSE) [33].
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(3) Promotion of CLQ Inversion Model at County-scale Plain Area

Through the CMESA-B, the inversion model was converted into the plain area
(Shanghe county).

(4) Verification of Inversion Model Accuracy

The inversion accuracy was verified by comparing the spatial distribution and the
area differences between evaluation and inversion results.

2.3.3. Upscaling Conversion of CLQ Inversion Model at Large-Scale

(1) Upscaling Conversion of Remote Sensing Images

The reflectance values of OLI and MODIS images were extracted by the modeling set
and validation set, respectively. Then, we took the band reflectance extracted from OLI
images (Bi) as the dependent variable and the band reflectance extracted from MODIS
images (bi) as the independent variable to construct the reflectance conversion model.

(2) Upscaling Conversion of Evaluation Systems

For the hilly secondary zones, the CMESA–C was used to realize the upscaling con-
version. For the plain secondary zones, the inversion model was first converted to the
large-scale hilly region by CMESA–C and then converted to the large-scale plain region
by CMESC–D. Additionally, the inversion results were obtained by summarizing each
secondary zone.

(3) Verification of Upscaling Inversion Accuracy

The difference of spectral indicators between OLI data (in Tengzhou city) and MODIS
data (before and after correction in the Huang-Huai-Hai region) was compared by mathe-
matical statistics analysis (mean, median, standard deviation). Furthermore, the spatial
distribution and the area differences were compared and analyzed between evaluation and
inversion results.

2.3.4. Spatio-Temporal Dynamic Analysis of Wheat Field Quantity and Quality

On the one hand, the change of wheat field area was analyzed based on the statistical
yearbook data and the dynamic attitude model [34]. On the other hand, the CLQ was
inverted by using the optimal upscaling model in the three-time phases (2001, 2010, and
2018), and the spatio-temporal variation was analyzed for the past 20 years.

3. Results and Analysis
3.1. The Results of CLQ Evaluation and Conversion Models of Evaluation Systems
3.1.1. The Results of Wheat Field Extracted

After the layout of sample points, 2512, 700, and 725 training points and 1256, 350, and
363 verification points were obtained in the Huang-Huai-Hai region, Tengzhou city, and
Shanghe county, respectively. After remote sensing extraction, the supervised classification
accuracy is as follows: ACCarea > 93.04%, ACCpoint > 91.46%; and the random forest algo-
rithm classification accuracy is as follows: ACCarea > 91.92%, ACCpoint > 88.48%, indicating
that the extraction results are ideal, which can meet the needs of further research.

3.1.2. The Results of CLQ Evaluation Based on GIS

Figure 3 shows the GIS-based evaluation results at two scales. It can be seen that
the wheat field is widely distributed in Tengzhou city, with noticeable grade differences,
which is conducive to the model construction. By comparing the evaluation results at
different scales in the same area, the CLQ has the same spatial distribution characteristics.
However, the CLQ is more fragmented at the county-scale and is covered up by the
large-scale. Therefore, regional linkage and upscaling conversion are necessary to achieve
large-scale inversion.
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3.1.3. Conversion Models of CLQ Evaluation Systems

The conversion models of evaluation systems are Y = 1.021x − 4.989 (CMESA–B:
from county-scale hilly area to county-scale plain area), Y = 0.801x + 16.925 (CMESA–C:
from county-scale hilly area to large-scale hilly area), and Y = 0.959x + 3.458 (CMESC–D:
from large-scale hilly area to large-scale plain area), respectively. The R2 > 0.942, and
RMSE < 3.559, indicating a significant linear relationship between different evaluation
systems. Such models can realize linkage and unification of CLQ in different regions.

3.2. CLQ Inversion Models at County-Scale
3.2.1. The Results of Time Phase Screening

After correlation analysis, it is found that from the regreening stage (late February)
to the booting stage (middle and early April), winter wheat begins to proliferate, and its
biomass reaches the maximum at the booting stage. Meanwhile, the NDVI index reaches a
peak, and its correlation with CLQ also increases; however, from the booting stage to the
milking stage (late May), the growth rate gradually slows down, the NDVI index decreases
continuously, and the correlation with CLQ also decreases slowly. Therefore, the booting
stage is the best time phase for CLQ inversion in plain and hilly areas.

3.2.2. CLQ Inversion Model at the County-Scale Hilly Area

(1) Characteristic Spectral Parameters

The correlation between various spectral indicators and IFI are shown in Table 1.
In the sensitive band group, NIR is the highest, with R = 0.706. The correlation in the
vegetation and moisture index groups is better. Furthermore, the correlation through
combined operation is enhanced compared with previous spectral parameters. The final
results obtained through R and VIF screening are shown in bold in Table 1.
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Table 1. Correlation between integrated fertility index (IFI) and spectral indicators.

Spectral Group Spectral Indicator R Spectral Group Spectral Indicator R

Sensitive band
group

Coastal −0.316 **

Moisture index
group

SWCI 0.613 **
Blue −0.424 ** NDMI 0.743 **

Green −0.524 ** NDI 0.736 **
Red −0.646 ** MSI1 −0.755 **
NIR 0.706 ** MSI2 −0.738 **

SWIR1 −0.511 ** GVMI 0.745 **
SWIR2 −0.615 ** SWIRR 0.608 **

SIWSI 0.750 **
WI 0.743 **

Vegetation index
group

NDVI 0.729 **

Combination index
group

1© Green/(NIR-SWIR1) −0.757 **
RVI 0.686 ** 2© Red/(NIR*SWIR1) −0.738 **
DVI 0.743 ** 3© Red+NIR-SWIR2 −0.761 **
SAVI 0.761 ** 4© DVI+NDMI 0.805 **
TVI 0.745 ** 5© NDVI+SWCI 0.736 **
EVI 0.754 ** 6© NDVI*MSI2 −0.745 **

ARVI 0.740 ** 7© MSI2/GRVI −0.761 **
GNDVI 0.718 ** 8© (NDVI-NDMI)/

(NDVI+NDMI) −0.750 **GRVI 0.683 **

Note: ** represents a significant correlation at the probability level of 0.01, and bold represents the spectral indicators used for model
construction after screening.

(2) CLQ Inversion Models

Table 2 shows the inversion models based on different variable sets. From different
modeling methods, the prediction accuracy of BPNN and SVM models is significantly
better than the MLR model, and BPNN is the best modeling method. From different
spectral indicator groups, the combination index model has the best inversion effect. In
summary, the modeling set: R2 = 0.723, RMSE = 4.645, and the verification set: R2 = 0.722,
RMSE = 4.661 in the BPNN model based on combination index group (CI-BPNN), with
good prediction ability, low error, and strong stability, which is the best inversion model.

Table 2. CLQ inversion models based on different variable sets.

Variable
Group

Modeling
Method

Modeling Set (700) Validation Set (320)

R2 RMSE R2 RMSE

Sensitive
band group

MLR 0.579 5.982 0.569 6.297
BPNN 0.637 5.570 0.618 5.922
SVM 0.618 5.796 0.616 5.797

Vegetation
index group

MLR 0.601 5.825 0.592 6.117
BPNN 0.658 5.399 0.630 5.852
SVM 0.654 5.512 0.620 5.571

Moisture
index group

MLR 0.601 5.824 0.631 5.829
BPNN 0.667 5.343 0.624 5.911
SVM 0.639 5.623 0.632 5.750

Combination
index group

MLR 0.673 4.994 0.640 5.041
BPNN 0.723 4.645 0.722 4.661
SVM 0.715 4.780 0.717 4.595

3.2.3. CLQ Inversion Model at the County-Scale Plain Area

The CMESA–B (Y = 1.021x − 4.989) was used to convert the optimal inversion model
(CI-BPNN) to obtain the model (CI-BPNN-CMESA–B) at the county-scale plain area.
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3.2.4. Verification Results of Inversion Accuracy

Figure 4 shows the comparison results of wheat field quality in Tengzhou city (county-
scale hilly area) based on GIS evaluation and RS (remote sensing) inversion. The results
of Figure 4a,b show that the southwest and northeast are high, and the northwest and
southeast are low, with a consistent grade distribution. Furthermore, the area ratio of each
grade is similar by comparing Figure 4c,d. When divided into ten grades, the maximum
grade area ratio difference is 3.45%; when divided into three levels, the maximum level
area ratio difference is 2.91%.
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Figure 5 shows the comparison results of wheat field quality in Shanghe county
(county-scale plain area) based on GIS evaluation and RS inversion. The results of
Figure 5a,b show that the southern is high, and the central and northwest are low, with
a consistent grade distribution. Furthermore, the area ratio of each grade is similar by
comparing Figure 5c,d. When divided into ten grades, the maximum grade area ratio
difference is 5.17%; when divided into three levels, the maximum level area ratio difference
is 4.87%.
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3.3. The Results of Upscaling Conversion and Model Inversion
3.3.1. The Results of Images Upscaling Conversion

(1) Reflectance Comparison between OLI and MODIS Bands

The mean reflectance values of OLI and MODIS images corresponding to the modeling
set and validation set were compared (Figure 6a). It was found that OLI’s reflectance is
higher than MODIS’s in the near red, while it is the opposite in other bands. Through the
correlation analysis from the mean reflectance of each band (Figure 6b), it can be seen that
there is a strong correlation, so it is feasible to carry out the upscaling conversion.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 5. Accuracy analysis of inversion model at the county-scale plain area. (a) Spatial distribution 
map based on GIS evaluation; (b) spatial distribution map based on RS inversion; (c) area ratio com-
parison between evaluation and inversion at ten grades; (d) area ratio comparison between evalua-
tion and inversion at three levels. 

3.3. The Results of Upscaling Conversion and Model Inversion 
3.3.1. The Results of Images Upscaling Conversion 
(1) Reflectance Comparison between OLI and MODIS Bands 

The mean reflectance values of OLI and MODIS images corresponding to the model-
ing set and validation set were compared (Figure 6a). It was found that OLI’s reflectance 
is higher than MODIS’s in the near red, while it is the opposite in other bands. Through 
the correlation analysis from the mean reflectance of each band (Figure 6b), it can be seen 
that there is a strong correlation, so it is feasible to carry out the upscaling conversion. 

 
Figure 6. Comparison of operational land imager (OLI) and operational land imager (MODIS) wave-
band reflectance. (a) Comparison of the mean reflectance between OLI and MODIS; (b) correlation 
Figure 6. Comparison of operational land imager (OLI) and operational land imager (MODIS) wave-
band reflectance. (a) Comparison of the mean reflectance between OLI and MODIS; (b) correlation of
the mean reflectance between OLI and MODIS. Bg, Br, Bnir, Bswir1, and Bswir2 are bands of green
light, red light, near-infrared, short-wave infrared 1, and short-wave infrared 2, respectively.
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(2) Image Upscaling Conversion Models

The reflectance conversion models are shown in Table 3. Among them, the best model
of Bswir2 is cubic, and the rest are quadratic, with R2 > 0.5 and p < 0.01.

Table 3. Reflectance conversion models of each band.

Name of Bands Reflectance Conversion Model R2 P

Bg Y = 0.039− 0.105x + 2.163x2 0.625 0.000
Br Y = 0.047− 0.342x + 3.609x2 0.636 0.000

Bnir Y = −0.217 + 2.924x− 3.480x2 0.651 0.000
Bswir1 Y = 0.145− 0.343x + 1.658x2 0.588 0.000
Bswir2 Y = 0.071− 0.096x+ 2.465x2− 6.024x3 0.538 0.000

Note: Bg, Br, Bnir, Bswir1, and Bswir2 are bands of green light, red light, near-infrared, short-wave infrared 1,
and short-wave infrared 2, respectively.

3.3.2. Upscaling Inversion Model at Large-Scale

After realizing the images scale conversion, the CMES were used to convert the upscal-
ing model, and the upscaling scale inversion model in the hilly secondary zones (CI-BPNN-
CMESA–C) and the plain secondary zones (CI-BPNN-CMESA–C-CMESC–D) were obtained.

3.3.3. Verification Results of Upscaling Inversion Accuracy

Figure 7 reflects the differences of spectral indicators among image data based on
different processing. Compared with OLI data, the difference of mean and median are
significant, and the standard deviation difference is noticeable in the original MODIS data.
However, after upscaling conversion, the average and median are closer, the standard devi-
ation difference is reduced significantly, and the spectral consistency is better. Therefore,
the numerical regression method can enhance the consistency of spectral indicators and
realize upscaling inversion.
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Figure 7. Statistics on the mathematical characteristics of spectral indicators from different images:
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According to the spatial distribution of upscaling inversion (Figure 8b), high and
medium level lands are widely distributed in the Huang-Huai-Hai region. The low-level
lands are mainly concentrated in the east of the Shandong hilly agricultural and forestry
zone, the south of the Huang-Huai plain agricultural zone, and the north of the low-
lying plain agricultural zone in Hebei, Shandong, and Henan, and the Piedmont Plain
agricultural zone of Taihang and Yanshan Mountains, consistent with the evaluation results
(Figure 8a).
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According to the area comparison results (Figure 8c,d), when divided into ten grades,
the maximum grade area ratio difference is 2.88%; when divided into three levels, the
maximum level area ratio difference is 1.60%. It can be seen that the upscaling inversion
model can reflect wheat field quality at a large-scale and has good spatial universality
and stability.

3.4. The Dynamic Analysis Results of Wheat Field Quantity and Quality
3.4.1. Wheat Field Quantity Change

According to the area statistics results in the recent 20 years, the current wheat
field area is stable at about 12,000 hectares in the Huang-Huai-Hai region, and the dy-
namic change rate is steady at –5~5%. The wheat field area had experienced a decrease
(2001–2004), an increase (2004–2011), and then finally became stable (2011–now).

3.4.2. Wheat Field Quality Change

Figure 9 reflected the spatio-temporal change of wheat field quality in the Huang-
Huai-Hai region. By comparing the inversion results in different phases, it can be seen
that the wheat field quality is constantly improving, and the distribution of high-level
lands is becoming more and more extensive. According to Figure 9d,e, the high-level lands
increased from 46.20% to 51.96%, the middle-level lands were stable, and the low-level
lands decreased from 5.65% to 2.87% in the past 20 years.
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4. Discussion

Cultivated land is a complex system, and the CLQ shows complex scale variability at
different scales [35,36]. In this study, CLQ at different scales in the same region has similar
spatial distribution characteristics. The large-scale is more general, highlighting the overall
trend, but covers up the variability at the local county-scale. At the same time, the diversity
and multiplicity of CLQ were emphasized at the county-scale. CLQ evaluation at different
scales should select the appropriate system [37], but different evaluation systems lack
comparability. Previous studies had explored the connection between plains and hills [38],
but the research on the linkage and conversion between multi-scales was still lacking. This
paper has carried out the CLQ link in different regions and scales, with R2 > 0.942 and
RMSE < 3.559, which provides a reference for relevant research.

Time phase selection is the premise for remote sensing inversion of CLQ. In this paper,
the correlation analysis of series MODIS-NDVI data shows that the correlation between
NDVI and IFI is the highest at the booting stage, indicating that spectral information has
a significant effect on the identification of CLQ. This is similar to the findings of several
scholars [39,40]; the leaf area index (LAI), coverage, and biomass of winter wheat in this
period reached it’s highest, and NDVI also reached it’s peak, which is a sensitive period for
monitoring crop growth and yield, and also becomes the best time phase for CLQ inversion.

The spectral information of wheat growth and soil moisture indirectly represents
CLQ [10,41]. Through the analysis of surface spectral characteristics, it is found that the
near-infrared band, vegetation index, and moisture index can all reflect the CLQ. Still, the
collinearity among indicators is strong, and the model accuracy is difficult to improve.
The constructed combination index combines the spectral information of different spec-
tral bands, including visible light, near-infrared and mid-infrared, which overcomes the
collinearity problem to some extent and has a stronger correlation with IFI and higher
model accuracy. In addition, the land surface temperature is also an important representa-
tion of the CLQ. Spectral indicators such as TVDI constructed by vegetation index and land
surface temperature information can highlight the surface drought degree. Liu et al. [42]
and Airiken et al. [43] have achieved land quality assessment with such indicators, and our
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study needs to be further strengthened in this respect. From the perspective of modeling
methods, machine learning is superior to linear models, the R2 of each variable group is
improved and the RMSE is reduced, with strong nonlinear fitting and data mining capa-
bilities [44,45]. However, how to further optimize the model and improve the inversion
accuracy remains to be studied.

There is a typical linear relationship between the mean reflectance of each band in OLI
and MODIS data. Among them, the correlation between near-infrared is the highest, with
R2 = 0.651. However, the correlation between shortwave infrared 2 is relatively low, with
R2 = 0.538, which is considered to be due to the significant difference in central wavelength,
resulting in the difference in the spectral response of crops [46]. Previous studies have
shown that MODIS data’s resolution is low, and the inversion model constructed directly
has low accuracy [47,48]. In this study, based on the numerical regression method, the error
caused by image scale was “eliminated”, the upscaling application of the inversion model
was realized, and the inversion effect was ideal. The image scale conversion based on
numerical regression has a simple principle and is easy to implement, but it lacks sufficient
extrapolation ability and portability. Gao et al. applied the Bayesian method [49], Pereira
et al. applied the geostatistical method [50], and Qi et al. applied the TsHARP method [51]
to achieve image scale conversion, respectively. Different methods have their advantages
and disadvantages, and how to use other multi-platform remote sensing data to realize the
collaborative inversion of CLQ is still worthy of further study.

This paper extracted the wheat field area by the random forest method and inversed
the wheat field quality by the upscaling model. The results presented here emphasize the
adequate selection of remote sensing indicators for the CLQ evaluation; compared with
previous studies [6–9], it overcomes the disadvantages of time-consuming and tedious
traditional survey and evaluation methods, and realizes long-term dynamic monitoring
of wheat field information at different scales in the Huang-Huai-Hai region. It will be an
effective alternative for the land evaluation of other agricultural territories explored (such
as Latin America [52,53], Africa [52] and Asia [54,55]), whose impact would be beneficial
when applying techniques such as those developed in our study quickly and efficiently,
and when analyzing the spatio-temporal variation of the evaluations. However, the CLQ
covered by other crops and its changes need to be further studied.

The techniques developed in our study can allow us to distinguish potentially suitable
areas to obtain high levels of productivity and lead to long-term sustainability in these
types of important areas. Studies of the CLQ developed in tropical areas [56,57], establish
that commercial banana plantations in agricultural areas of the Venezuelan plains were
characterized by a considerable reduction in the production and productivity due to a
change and deterioration of the land. It was mainly caused by the physical, chemical and
biological properties of the soil, these variables being the most determinant of the quality
of banana soil in plains. Studies in the subtropical plains have found that soil fertility in a
large grain-production area of China has declined [58]. The changes of cropping systems,
the differences of fertilization, and the acid rain were the three most important reasons for
the changes in recent years. According to the influencing factors of CLQ in different regions,
using remote sensing technology to quickly extract sensitive indicators and monitor the
dynamic changes of soil fertility will be an important means to prevent soil degradation.

5. Conclusions

This paper constructed the remote sensing inversion model of wheat field quality
at the county-scale, and the upscaling inversion was realized at the large-scale by the
numerical regression method and regional linkage models. The main conclusions are
as follows:

(1) Conversion models of evaluation systems are Y = 1.021x − 4.989 (CMESA–B: from
county-scale hilly area to county-scale plain area), Y = 0.801x + 16.925 (CMESA–C: from
county-scale hilly area to large-scale hilly area), and Y = 0.959x + 3.458 (CMESC–D:
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from large-scale hilly area to large-scale plain area), with R2 > 0.942 and RMSE < 3.559,
which can realize the CLQ connection in different regions and scales.

(2) The booting stage is the best time for CLQ inversion. The BPNN model based on the
combination index group (CI-BPNN) is the best inversion model, with R2 = 0.722 and
RMSE = 4.661 (validation precision). The CI-BPNN and CI-BPNN-CMESA–B models
have strong spatial universality and stability at county-scale hilly and plain areas.
The maximum level area ratio difference between model inversion and conventional
evaluation are 2.91% and 4.87%, respectively.

(3) For image upscaling conversion, the reflectance conversion model of short-wave
infrared 2 is cubic, and the others are quadratic. By converting images and evaluation
systems, the upscaling inversion models are CI-BPNN-CMESA–C (hilly secondary
zones) and CI-BPNN-CMESA–C-CMESC–D (plain secondary zones), with the maxi-
mum level area ratio difference being 1.60%, which has high prediction accuracy and
spatial universality.

(4) Since 2001, the wheat field area has been relatively stable, and the dynamic degree
is between −5% and 5%. The wheat field quality has been steadily improved in the
Huang-Huai-Hai region, with high-level lands increasing, low-level lands decreasing,
and medium-level lands staying relatively stable.

This paper proposes an effective method for upscaling inversion of wheat field quality
in the Huang-Huai-Hai region, which provides a scientific basis for obtaining wheat field
quality quickly, accurately, and efficiently at different spatio-temporal scales, and guiding
agricultural production.
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