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Abstract: Urban road intersections are one of the key components of road networks. Due to complex
and diverse traffic conditions, traffic conflicts occur frequently. Accurate traffic conflict detection
allows improvement of the traffic conditions and decreases the probability of traffic accidents. Many
time-based conflict indicators have been widely studied, but the sizes of the vehicles are ignored.
This is a very important factor for conflict detection at urban intersections. Therefore, in this paper we
propose a novel time difference conflict indicator by incorporating vehicle sizes instead of viewing
vehicles as particles. Specially, we designed an automatic conflict recognition framework between
vehicles at the urban intersections. The vehicle sizes are automatically extracted with the sparse
recurrent convolutional neural network, and the vehicle trajectories are obtained with a fast-tracking
algorithm based on the intersection-to-union ratio. Given tracking vehicles, we improved the time
difference to the conflict metric by incorporating vehicle size information. We have conducted
extensive experiments and demonstrated that the proposed framework can effectively recognize
vehicle conflict accurately.

Keywords: traffic conflict identification; time difference to collision; deep learning; vehicle detection
and tracking

1. Introduction

Traffic environments at urban road intersections are complex and diverse due to
frequent traffic conflicts between vehicles [1]. The safety of intersections in urban road
networks is important because they are key nodes in the urban road network, where all
types of traffic participants (e.g., motor vehicles and pedestrians) must meet and disperse.
The high volume of traffic and the large number of conflict points at intersections increase
the chances of traffic accidents. Vehicle-to-vehicle accidents caused by the inability to avoid
traffic conflicts account for most accidents. Therefore, it is vital to detect conflicts between
vehicles at intersections to improve traffic conditions and reduce traffic accidents [2].

Traditional safety analysis approaches are mostly based on accident data. Although
they are effective, they suffer from a small number of samples due to the random nature of
the accidents [3]. Another direction is to exploit the technical theory of traffic conflict to
conduct safety studies at intersections [4]. The concept of a traffic conflict was introduced
and summarized by the Traffic Conflict Technique (TCT) in the 1960s and 1970s [5]. Many
countries have used the TCT instead of traffic accident data for safety analysis because of
its reliability, validity, and low cost compared to traditional methods [6].
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Many conflict indicators have been designed and they can be mainly grouped into
Time to Collision (TTC) and derivatives, Post Encroachment Time (PET), and decelera-
tion [7]. Different conflict indicators are formulated with different collision mechanisms
and have their favorable applications. TTC is the time it takes for two vehicles to collide
if they remain on the same seed and the same path [8]. PET is the “the time difference
between the moment an ‘offending’ vehicle passes out of the area of potential collision and
the moment of arrival at the potential collision point by the ‘conflicted’ vehicle possessing
the right-of-way” [9]. Deceleration Rate to Avoid a Crash (DRAC) is the decelerating rate
that the vehicles must enact to avoid the collision [10]. The Time Difference to Conflict
(TDTC) indicator combines the concepts of the TTC indicator and the PET indicator. To
some extent, the TDTC overcomes the limitations of the TTC indicator and makes up for
the shortcomings of the PET indicator [11]. It has been studied for the conflict between
pedestrians and vehicles. However, it has not been studied for conflicts between vehicles.
However, due to the complexity of vehicle types and low speeds at intersections, the size
of vehicles is a factor that cannot be ignored in conflict studies. Current indicators seldom
consider it [12].

In this paper, we expand the existing TDTC metrics for a conflict indicator between
vehicles. The effect of vehicle size is considered in the TDTC metric, thus making it
more applicable to vehicle conflict indicators at intersections. Moreover, the automatic
conflict detection framework work has been proposed, which includes vehicle extraction,
trajectory generation, and conflict recognition. The novel deep learning-based object
detection algorithm sparse RCNN was applied for vehicle detection with high-resolution
UAV traffic images [13]. The trajectory extraction algorithms are designed to achieve
automatic and accurate acquisition of vehicle micro data at intersections, which in turn
provides effective basic data for improved TDTC metrics and improves the accuracy of
conflict recognition. Based on the vehicles’ trajectory and vehicles’ sizes data obtained
from the vehicle extraction stage, an automatic and accurate intersection vehicle conflict
identification based on improved conflict time difference is proposed to help research in
the field of intersection traffic safety evaluation.

2. Related Works
2.1. Deep Learning-Based Vehicle Detection

The advance of deep learning algorithms in computer vision in recent years has
resulted in new object detection algorithms, which have also led to new methods for traffic
image processing [14]. Bautista et al. investigated the performance of convolutional neural
networks (CNN) in identifying and classifying vehicles using low-quality traffic camera
data [15]. The results showed a high level of accuracy. Current deep neural network-
based object detection algorithms fall into two main categories: one-stage methods and
two-stage methods.

One-stage methods directly predict and classify candidate regions on the image. For
example, the You Only Look Once (YOLO) model, an object detection algorithm proposed
by Redmon et al. [16], differs from previous deep learning detection algorithms in that it
starts from the complete image and directly predicts the bounding box and classification
probability of the object in the image [17]. In the two-stage methods, some candidate boxes
are first generated, and then the contents in the alternative boxes are classified, and the
positions of the alternative boxes are corrected. Recurrent convolutional neural network
(R-CNN) [18], Fast R-CNN [19], and Faster R-CNN [20] are two-stage methods and have
improved the accuracy and robustness of the model. Xu et al. extended the Faster R-CNN
framework to detect vehicles from low-altitude images of signal intersections, and their
experimental results show that the Faster R-CNN could achieve good vehicle detection
performance [21] while being responsive to illumination changes and vehicle rotation. In
addition, the detection speed of Faster R-CNN is insensitive to the detection load of the
number of vehicles detected in a frame, and thus the detection speed is almost constant
per frame.
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The latest research in deep learning, Sparse R-CNN [22], is a “sparse” method for object
detection in images. Sparse R-CNN is a purely “sparse” object detection model, which
abandons the region proposal network to produce dense anchors and avoids the complex
post processing. At present, Sparse R-CNN has only been evaluated for detection accuracy
on the public dataset COCO, and little research has been conducted on its application in
the field of vehicle detection [23,24].

2.2. Object Tracking

After successfully identifying the vehicle objects in each frame of video images, under-
standing how to effectively track these vehicles and successfully extract vehicle trajectory
information is an important prerequisite for accurately identifying vehicle conflicts. Tradi-
tional object algorithms, such as Boosting [25], MIL [26], TLD [27], and KCF [28], typically
utilize manually designed features or online learning. In recent years, many researchers
have proposed deep neural network-based object algorithms, benefiting from the excellent
feature extraction effect of deep learning. For example, Yun et al. proposed a new tracker,
ADNet [29], which is based on actions learned by deep reinforcement learning for objects.
Most CNN-based trackers treat object tracking as a classification problem, but they are
susceptible to identifying similar interfering objects. To address this problem, Fan et al.
proposed an object algorithm, called SANet [30], that combines recurrent neural networks
and CNNs in order to compute object features through CNNs as a way to improve the
algorithm. These algorithms use a CNN to compute object features [31], thus improving
the robustness of the algorithm. However, it is worth noting that most of the above object
algorithms were applied to single object tracking [32], and there has been less research on
multi-objective object algorithms that are suitable for scenarios such as intersections with a
high density of vehicles [33].

The latest Sparse R-CNN model can break through the limitations of other types
of deep object detection networks to a certain extent, but its application in the field of
vehicle detection has yet to be supported by experimental data [34]. Moreover, in the area
of intersections with multiple vehicle objects, a vehicle object and trajectory extraction
algorithm that can combine the results of deep neural network vehicle detection is needed
to provide reliable vehicle micro parameters (including vehicle type and size) for vehicle
conflict recognition to improve the accuracy of conflict recognition.

2.3. Traffic Conflict Indicators

Research has shown that traffic conflict is a better indicator of road safety than other
data because of its strong correlation with traffic accidents [35]. Therefore, vehicle conflict
data are important reference factors for intersection road safety evaluation. After using the
vehicle detection and object algorithm to obtain the effective vehicle micro parameters of
the intersection from UAV data [36], the effectiveness of the traffic conflict indicators used
largely affects the accuracy of the final vehicle conflict identification.

In recent years, many new conflict indicators have been proposed by scholars. Among
them is TDTC, which has great potential for application in the study of vehicle conflicts at
intersections. The conflict time difference combines the characteristics of TTC and PET as
in the common area of PET [37], which only considers whether there is a potential conflict
point in the current direction of motion of the two participants. The TDTC calculation
requires moment-to-moment microscopic data of the two conflicting vehicles so that it is
possible to make a valid assessment both before and after the occurrence of the conflict.
However, the TDTC indicator is still in the theoretical stage of research, and more data is
needed to support it.

Furthermore, TDTC indicators were originally proposed to study conflicts between
pedestrians and vehicles at intersections. For example, Wang et al. applied TDTC indica-
tors to intersection machines for non-serious conflict indicators to consider driver choice
through behavior [38]. Shunying used TDTC as an experimental conflict discriminator in
the study of traffic conflict models for merging sections of highway construction zones [39].
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At present, there are fewer applications of TDTC indicators in the study of conflicts be-
tween motor vehicles and other motor vehicles at intersections. Therefore, there is a need
to extend the TDTC and investigate methods to make it more applicable to inter-vehicle
conflict studies. Moreover, since vehicle size is a non-negligible factor in the study of vehi-
cle conflicts at intersections, to improve the accuracy of conflict identification, the influence
of conflicting vehicle size must be considered in the conflict indicator metrics [40,41].

3. Deep Learning-Based Vehicle Detection and Trajectory Estimation
3.1. Unmanned Aerial Vehicle-Based Vehicle Detection Using Sparse RCNN

Sparse R-CNN is a new paradigm for object detection, as it does not use the concept
of “dense,” such as anchor frames or reference points, but rather starts directly from a set
of learnable “sparse” proposals without the post-processing of extreme value suppression,
making the whole network exceptionally clean and simple. The main framework of a Sparse
R-CNN is shown in Figure 1, where the input consists of an image, a set of suggestion
boxes, and suggested features. The backbone network is used to extract the feature map,
while each suggestion frame and suggestion feature is fed into its unique corresponding
dynamic detection module to generate object features and finally output for classification
and localization.

Figure 1. Schematic diagram of a Sparse R-CNN network.

Sparse R-CNNs apply the set prediction loss to a fixed size set of predictions for
classification and bounding box coordinates. The prediction loss is defined as follows:

l = λcls·lcls + λL1·lL1 + λgiou·lgiou, (1)

where lcls is the focus loss between the predicted target classification and the true label
classification; lL1 and lgiou are the L1 loss and generalized Intersection-over-Union (IoU)
loss between the normalized center coordinates, height, and width of the predicted frame
and the true bounding box; and λcls, λL1, and λgiou are the coefficients of the three losses,
which are pre-defined hyper-parameters. The final loss of the model is the sum of all
matched pairs after normalization based on the number of targets in the training batch.

Sparse R CNN-Based Vehicle Detection at Intersections

Vehicle detection at intersections is essentially an application of object detection
algorithms in the traffic domain. Given the excellent performance of Sparse R-CNN on the
publicly available datasets, we applied it to vehicle detection at intersections for obtaining
the location and classification information of vehicles appearing in UAV images. The basic
process is as follows: Firstly, a model is trained using training data so that the deep neural
convolutional network can extract and classify the vehicle features in the image. Then, the
features of the object vehicle area in the image are extracted by the network model, and
these features with location attributes are input to the detection module for judgement.
Finally, a bounding box of the vehicle that can be circled is produced, and the vehicle
is classified.
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After the vehicle detection image is input into Sparse R-CNN, a fixed number of
learnable suggestion frames, which are randomly distributed over the image and basically
cover the whole image, are initialized by the model, as shown in Figure 2a. Sparse R-CNN
gradually refines the location of the target bounding box through the iterative module
while removing duplicate bounding box locations. Finally, the model outputs accurate
vehicle positioning bounding box and classification information, as shown in Figure 2b.

Figure 2. Schematic diagram of the vehicle prediction frame at different stages in the Sparse R-CNN. (a) Learnable
suggestion box. (b) Results.

Based on this training model, the video image sequences are processed to provide
accurate vehicle location information data for subsequent vehicle object and trajectory
extraction, while vehicle bounding box information can also be output to provide effective
vehicle size information for the subsequent conflict indicator considering vehicle size.

3.2. Vehicle Trajectory Extraction Algorithm

The detection algorithm processes the vehicle detection results of each frame in the
complete video image sequence. Due to the short time interval between frames (0.03 s) and
the slow speed of most vehicles driving at road intersections, there must be a relatively
high overlap between the bounding boxes of two adjacent frames for each vehicle. This
overlap can be measured using the IoU ratio.

As shown in Figure 3, the IoU ratio is the ratio of the area of the intersection of two
regions to the area of the concatenation of two regions and is calculated as shown in
Equation (2).

IoU(a,b) =
Area(a∩ b)
Area(a∪ b)

. (2)
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Figure 3. Schematic diagram of the intersection and merging of two regions.

A trajectory extraction method is used to create a tracker for each object (vehicle in
a specific area of the video). The position of the vehicle predicted by each tracker in the
next frame and the result of the vehicle detection algorithm in the next frame are calculated
separately. When the intersection ratio is greater than a set threshold, the bounding box
generated by the detection algorithm can be assigned to the trajectory represented by the
corresponding tracker. After the vehicle detection result is processed by the trajectory
extraction algorithm, the trajectory information of each vehicle travelling at the road
intersection during that time period can be obtained. The specific algorithm steps are given
below and Figure 4 demonstrates the process of the vehicle trajectory extraction:

1. Read the video image sequence and the corresponding vehicle detection results.
2. Extract the detection results of a single frame.
3. If the frame is the first frame, initialize the tracker, that is, create and number the

trackers for all the vehicles detected in the first frame of the video; if the frame is not
the first frame, then only create and number the trackers for the vehicles located in
the most tracked area (inlet or exit of the road intersection in all four directions).

4. Update the tracker for each vehicle and make a bounding box prediction for the
next frame.

5. Obtain the detection results for the next frame and calculate the intersection ratio
of each tracker's predicted bounding box to all the bounding boxes in the detection
results separately and keep the results that meet the set threshold.

6. Assign a corresponding detection result to each of the existing trackers using a linear
assignment algorithm, that is, assign the result of the vehicle detection algorithm to
the corresponding vehicle number.

7. Return to Step 2 and cyclically execute the algorithm until the video sequence
is processed.
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Figure 4. Vehicle trajectory extraction algorithm.

4. Vehicle Conflict Indicator Metric Based on Improved Conflict Time Difference

Time difference to conflict includes four steps: vehicle speed and direction estima-
tion, conflict distance computation, calculation of the TDTC indicator value, and thresh-
old judgement.

4.1. The TDTC Calculation Method Applied to Vehicles at Intersections

When a UAV video is processed, the trajectory data of each vehicle can be obtained,
that is, information about the position of each vehicle in each frame, which is generally
represented by the coordinates of the vehicle in the image coordinate system. The position
of a vehicle at a moment in time can be expressed as follows:

LV(t) = (XV(t), YV(t)). (3)
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4.1.1. Time Difference to Conflict Considering Vehicle Size

Due to the large number of vehicle types at intersections, it is difficult to obtain the
actual size of the vehicle based on the specific vehicle type. Therefore, the bounding
box information (W,H) is used to approximate the size of each vehicle. W denotes the
width of the bounding box of the vehicle and H denotes the length of the bounding box of
the vehicle.

The TDTC was improved by considering the vehicle size factors mainly for two
scenarios: rear-end conflict and crossover conflicts and lane change conflicts.

As shown in Figure 5, for a rear-end conflict considering the vehicle size factor, the
expected conflict point is the contact point between the front vehicle and the rear vehicle
at the time of collision. Combined with the geometric relationship in the image, it can be
concluded that, for a rear-end conflict, a certain t moment, set to V1, is the front vehicle,
and V2 is the rear vehicle. Then, the two vehicles TDTCV1,V2 have zero between them, and
the conflict is discriminated in the same way as the TTC indicator.

TTC′ =

 ∞,
.
SV1(t) ≥

.
SV2(t)

SV1 (t).
SV1 (t)

=
SV2 (t).
SV2 (t)

,
.
SV1(t) <

.
SV2(t)

, (4)

.
SV1(t)·TTC′ + ∆S(t) =

.
SV2(t)·TTC′ +

H1 + H2

2
. (5)

Figure 5. Tailgating conflict considering vehicle size.

In Equations (4) and (5), SV1(t) is the distance of V1 from the intersection at moment t;
SV2(t) is the distance of V2 from the intersection at moment t;

.
SV1(t) is the velocity of V1 at

moment t;
.
SV2(t) is the velocity of V2 at moment t; and H1 and H2 are the lengths of the

bounding boxes of vehicles V1 and V2, respectively.
For crossover conflicts and lane change conflicts, if the vehicle is treated as a mass point,

then the calculated TDTC actually represents the time difference between the respective
center of the two vehicles moving at their current speed to the potential conflict point.
If the size of the vehicle is considered, then the current potential conflict position of the
conflicting vehicle cannot be considered to be a point but rather a potential conflict area
approximating a circle. As shown in Figure 6, the dashed line in the diagram indicates the
potential conflict state. For vehicle 1, the potential conflict area is the distance from vehicle
1’s position at that moment to the boundary of the potential conflict area if vehicle 2 is
located at the intersection of the two vehicles' driving directions, and the potential conflict
distance is the distance from vehicle 2’s position at the t moment to the boundary of the
potential conflict area. The potential conflict distance is the distance from the position of
vehicle 2 to the boundary of the potential conflict area at the t moment.



Remote Sens. 2021, 13, 4994 9 of 19

Figure 6. Schematic diagram of a cross-conflict considering vehicle dimensions. (a) potential conflict
point of vehicle 1, (b) potential conflict point of vehicle 2.

The smaller the time difference between the two vehicles arriving at the potential
conflict zone, the more likely it is a conflict will occur. To accurately represent the time
difference between the two vehicles at their respective current speeds until they reach the
potential conflict point, the size of this potential conflict area is related to the size of the
vehicle, and thus, when calculating the TDTC for V1 and V2, the radius of the potential
conflict area as well as its own vehicle length need to be subtracted from the distances
SV1(t) and SV2(t) from the vehicle to the intersection point in the direction of speed. For
crossover and lane change conflicts, the TDTCV1,V2 between the two vehicles at a given
moment t when considering vehicle dimensions can be calculated as follows:

TDTCV1,V2(t) =
SV1(t)−

√
W2

2+H2
2+H1

2
.
SV1(t)

−
SV2(t)−

√
W2

1+H2
1+H2

2
.
SV2(t)

, (6)

where SV1(t) is the distance of V1 from the intersection at moment t; SV2(t) is the distance
of V2 from the intersection at moment t;

.
SV1(t) is the velocity of V1 at moment t;

.
SV2(t) is

the velocity of V2 at moment t; W1 and W2 are the widths of the bounding boxes of vehicles
V1 and V2, respectively; and H1 and H2 are the lengths of the bounding boxes of vehicles
V1 and V2, respectively.

4.1.2. Calculation of the Vehicle Speed and Direction

As the time interval between each frame of the UAV video is very small, the vehicle
can be regarded as making a uniform linear motion during this period from which the
instantaneous velocity and direction of the vehicle can be calculated for the momentary
frame, and the calculation formula is as follows:

.
SV(t) =

∆SV(t)
∆t

, (7)

∆t =
1

fps
, (8)

∆Sv(t) =
√
(XV(t)− XV(t + ∆t))2 + (YV(t)− YV(t + ∆t))2, (9)

αV(t) = arctan
(

YV(t)− YV(t + ∆t)
XV(t)− XV(t + ∆t)

)
, (10)

where ∆Sv(t) represents the distance that the vehicle moves from moment t to moment
t + ∆t; and αV(t) represents the angle between the velocity direction and the positive
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direction of the x-axis in the image coordinate system, which is used to represent the
direction of the vehicle's movement at the t moment.

4.1.3. Calculation of the Potential Conflict Distance of a Vehicle

The potential conflict distance of a vehicle refers to the distance from the vehicle's
location at the current t moment to the potential conflict area. The intersection points in the
current direction of travel of the two vehicles are calculated first, and the intersection points
that meet the conditions (i.e., the potential conflict points) are screened out. On this basis,
the potential conflict distance of the vehicle is calculated by considering the vehicle size.

To calculate the intersection of the direction of travel at the t moment of the two
vehicles, in the image coordinate system x–y, the equation for the line in which the direction
of velocity αV of the two vehicles lies is derived as follows:

Y = kV1X + bV1 (11)

Y = kV2X + bV2 . (12)

Then, using the method of solving for the intersection of two straight lines, the
coordinates of the intersection point of the two vehicles in the direction of travel are
derived from the joint solution. Like the method above, solving for the intersection of two
straight lines can lead to situations where the solved intersection is not the intersection of
the direction of travel. Additional judgement conditions need to be added to eliminate
intersections that do not match. This is achieved by calculating whether or not the direction
of the vector of two vehicles is the same as the direction of their own speed. The (X12, Y12)

coordinates of the intersection of the two lines are found, and the two vectors
→
V1 and

→
V2

can be respectively calculated by

→
V1 =

(
X12 − XV1 , Y12 − YV1

)
, (13)

→
V2 =

(
X12 − XV2 , Y12 − YV2

)
, (14)

→
SV1 =

(
XV1(t + ∆t)− XV1(t), YV1(t + ∆t)− YV1(t)

)
, (15)

→
SV2 =

(
XV2(t + ∆t)− XV2(t), YV2(t + ∆t)− YV2(t)

)
, (16)

θ1 = arc cos
→
v1 ·

→
sv1∣∣∣→v1

∣∣∣ · ∣∣∣ →sv1

∣∣∣ , (17)

θ2 = arc cos
→
v2 ·

→
sv2∣∣∣→v2

∣∣∣ · ∣∣∣ →sv2

∣∣∣ , (18)

where θ1 and θ2 respectively represent the angle between the direction of speed of the
two vehicles and the direction of the vehicles to the intersection point. The calculated
intersection point is the direction of travel intersection. When the direction of travel
intersection is calculated, the distances of the two vehicles from the direction of travel
intersection can be calculated according to the distance formula.

SV1(t) =
√(

X12(t)− XV1(t)
)2

+
(
Y12(t)− YV1(t)

)2, (19)

SV2(t) =
√(

X12(t)− XV2(t)
)2

+
(
Y12(t)− YV2(t)

)2. (20)

4.1.4. Time Difference to Conflict Calculation and Threshold Determination

Combining the above, once the respective potential conflict distances of the two
vehicles have been calculated, the conflict time difference TDTC values for the t moment
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vehicles V1 and V2 can be calculated by bringing Equations (4), (5), (7), (19), and (20) into
Equation (6).

With reference to the threshold value of the intersection TTC indicator, it is set so
that when the absolute value of TDTC is less than 1.5 s, the two vehicles are judged to be
in conflict at the current moment. As a conflict is a continuous process, theoretically, if
vehicles A and B have clashed, then they should be judged by the model to have clashed in
several successive frames of the video (several successive moments). Therefore, to reduce
misjudgment and improve the accuracy of conflict indicator, it is set only when the number
of moments in which the two vehicles are judged to have clashed is greater than five.

5. Experiments
5.1. Experimental Data
Dataset

We chose five road sections with high traffic flow and collected traffic video using
the INSPIRE 1 Pro UAV manufactured by DJI with a video frame rate of 30 frames per
second. The position of the drone during filming is shown in Figure 7, with the filming
angle perpendicular to the road surface. This filming method could capture the global
information of the intersection with relatively few dead ends, making the collected data
more conducive to vehicle detection and identification and conflict indicators. The hovering
height of the drone was 126 m, and the main parameters of the traffic video data collection
are shown in Table 1. The datasets are generated from 10 video segments from five urban
road intersections.

Figure 7. Diagram of the location of the drone shot.

Table 1. Traffic video capturing parameters.

Parameters Range/Value

Time 7:00 a.m.–9:00 a.m. and 5:00 p.m.–7:00 p.m.
Weather Not a rainy day, not a strong wind

Temperature 18 ◦C to 26 ◦C
Resolution 3840 × 2160
Frame rate 30 frames/s

Total duration About 70 min
Number of sections taken 5

The captured video data were pre-processed, mainly to correct the UAV video, and
we used Fourier Merlin transform [42] to correct the video. The original 4k images were
divided into a number of sub-images of uniform size in the order of top to bottom and
left to right, with the sub-images having a size of 256 pixels overlapping the neighboring
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sub-images. Since the width of the original images was 2160 pixels, which cannot be
divided by 256, the segmentation of the sub-images at the lower border of the image was
achieved by starting at the lower border and going 512 pixels upwards.

Given the sub-images, the object vehicles in the sub-images needed to be annotated.
We classified vehicles into bus, car, and truck types and annotated the vehicles in the image
in the form of rectangular bounding boxes. The statistical results of the three types of
vehicles in the dataset are shown in Table 2. The training and test datasets were divided
randomly, and the statistics of the number of the three types of vehicles after the division
are shown in Table 3.

Table 2. Statistical results of the three types of vehicles in the collected datasets. RS represents the
different road intersections.

RS1 RS2 RS3 RS4 RS5 Total

Car 12,265 9754 6355 8483 15,605 52,462
Bus 3082 940 704 181 1411 6318

Track 333 287 146 3177 1729 5672
Total 15,680 10,981 7205 11,841 18,745 64,452

Table 3. Statistical result of the three vehicles in the training and test sets.

Dataset Car Bus Track Sum

Training set 47,090 5671 5093 57,854
Test set 5372 647 579 6598

Sum 52,462 6318 5672 64,452

5.2. Vehicle Detection Experiments
5.2.1. Setup

The hyperparameters of the three models were configured in the model configuration
file, with ResNet-50 [43] as the backbone network, and initialized using the pre-training
weights obtained from ImageNet [44]. The optimization method used AdamW, with
weights decaying by 0.0001. Since a single graphics card was used for training, the batch
size was set to 16, and the maximum number of iterations was set to 270,000, where the
initial learning rate of Sparse R-CNN was set to 0.000025 for better training results. Data
enhancement methods included resizing the input image, random horizontal flipping, and
scaling dithering.

The hyperparameters in the Sparse R-CNN loss function Equation (1) λcls and λL1
were set to 2, and λgiou was set to 5. The default numbers were used for the suggested
frames. The suggested features and corresponding iterations were 100, 100, and 6.

5.2.2. Evaluation Metrics

The object detection algorithm uses the IoU metric to measure the degree of similarity
between the object bounding box predicted by the model and the true bounding box. The
IoU is defined and calculated as described in Section 3.2. of this paper. The following are
some of the relevant metrics and concepts used to evaluate the model.

The ground truth (GT) denotes the boundary frame and classification of a real existing
vehicle in an image, obtained by manual annotation; true positive (TP) denotes the number
of detected frames whose IoU with GT was greater than the set threshold, and the same
GT was only calculated once; false positive (FP) denotes the number of detected frames
whose IoU with GT were less than or equal to the set threshold or the number of redundant
detected frames with the same GT detected; and false negative (FN) denotes the number of
detected frames with no GT detected.
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Precision accuracy, that is, the accuracy rate, represents the proportion of real vehicles
in the results marked as vehicles, and it is calculated as follows:

precision =
TP

TP + FP
. (21)

The recall represents the proportion of correctly identified vehicles to all real vehicles,
and it is calculated as follows:

recall =
TP

TP + FN
. (22)

The F1-score equilibrium average is calculated by combining the model accuracy and
detection rates as follows:

F1 =
2∗precision× recall

precision + recall
. (23)

Average precision (AP), which is a measure of the model's detection accuracy for each
category, is calculated by averaging the precision over a precision–recall (PR) curve. For
the PR curve, the calculation is performed using an integral with the following equation:

AP =
∫ 1

0
p(r)dr. (24)

In practice, however, the AP is not calculated based on the original PR curve but
rather on the PR curve after a smoothing operation has been performed. The specific way
in which the curve is smoothed is that the value of precision at each point on the curve is
taken to be the value of the largest precision to the right of that point.

Psmooth(r) = max
r′>=r

P
(

r′
)
. (25)

The above formula is used to calculate the value of AP. Here, AP50 is the AP value at
an IoU threshold of 0.5, and AP75 is the AP value at an IoU threshold of 0.75. The mean
average precision (mAP) is the average of all the AP categories.

5.2.3. Model Training Results

In this paper, three deep neural networks, Sparse R-CNN, Faster R-CNN, and Reti-
naNet, as well as YOLO, were trained separately. Due to the performance limitation of the
training equipment, the training took a longer time, and the time required for training the
three networks as well as the detection speed on the test set are shown in Table 4. After
completing the training, the final model vehicle detection was tested on the test dataset,
and the evaluation metrics for the four networks are shown in Table 5.

Table 4. Model training time and detection speed.

Model Faster R-CNN RetinaNet Sparse R-CNN

Training time 71 h 50 min 70 h 48 min 83 h
Inference speed 28.1 fps 27.7 fps 27.5 fps

Table 5. The comparison of four models on the vehicle detection performance.

Model mAP (%) AP50 (%) AP75 (%)

Sparse-RCNN 76.27 96.89 93.46
Faster-RCNN 72.47 90.12 88.9

RetinaNet 71.79 90.15 88.84
YOLO 73.7 94.8 90.85

Table 5 shows that Sparse R-CNN achieved the best results, with an mAP reaching
76.27% and AP50 and AP75 reaching 96.89% and 93.46%, respectively. Both were higher
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than those of Faster R-CNN, RetinaNet, and YOLO. Besides, R-CNN and RetinaNet were
much closer, with 72.47% and 71.79% for their mAP, 90.12% and 90.15% for AP50, and
88.9% and 88.84% for AP75, respectively. YOLO achieved a slightly better performance
than the Faster R-CNN and RetinaNet but performed worse than Sparse-RCNN with a 3%
decrease. Although Sparse R-CNN required a longer training time, it could improve its
average accuracy by about 5% with vehicle detection speeds similar to Faster R-CNN and
RetinaNet. Taken together, the Sparse R-CNN model can be used for vehicle detection and
the recognition of UAV video data to obtain better results and provide a better data base
for subsequent trajectory extraction and vehicle conflict indicators.

5.2.4. Comparison of the Actual Detection Effect of the Models

To test the actual intersection vehicle detection effect of the three vehicle detection
models, Sparse R-CNN, Faster R-CNN, and RetinaNet, five 4k resolution images were
selected from five traffic videos taken with high traffic flow, and five 4k resolution images
were obtained as test data to compare the detection effects of the three vehicle detection
models. The precision detection rate, recall detection rate, and F1-score (see Section 5.2.2)
were used to evaluate the three vehicle detection models, where TP is the number of
vehicles detected correctly, FP is the number of objects detected incorrectly as vehicles, and
FN is the number of vehicles that were not detected. The statistics of the detection results
for the three models are given in Tables 6–9.

Table 6. Sparse R-CNN model detection results.

Type TP FP FN

Bus 45 8 3
Car 325 4 8

Truck 23 10 1
Sum 393 22 12

Table 7. Faster R-CNN model detection results.

Type TP FP FN

Bus 46 6 2
Car 327 10 6

Truck 24 21 0
Sum 397 37 8

Table 8. RetinaNet model detection results.

Type TP FP FN

Bus 46 4 2
Car 312 16 21

Truck 24 20 0
Sum 382 40 23

Table 9. Comparison of accuracy of three models.

Model Precision Ratio P (%) Recall Ratio R (%) F1-Score (%)

Sparse R-CNN 94.7 97.04 95.85
Faster R-CNN 91.48 98.02 94.64

RetinaNet 90.52 94.32 92.38

By analyzing the data in the above table, it can be found that the actual vehicle
detection results of the three detection models are in line with the evaluation of the training
results of the models in Table 5, in which Sparse R-CNN had a better overall effect. When
the three vehicle detection models are analyzed in detail, the Sparse R-CNN had the best
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results for the “Car” and “Truck” types of vehicles, as well as the “Bus” type of vehicle, with
fewer false detections. Faster R-CNN had the best results for “Car” and “Truck” vehicles,
with fewer false detections. However, there were more false detections for “Bus.” Faster
R-CNN and RetinaNet performed similarly, with the former detecting “Car” vehicles better
than the latter, and the latter detecting “Truck” vehicles slightly better. The main reason for
this is that the background color in some scenes near the road was too close to the color
scheme of some buses (blue and white), which led to an increase in FPs. Moreover, in some
scenarios, the container trucks were longer than other types of vehicles, which made it
more difficult for the model to identify them, and there were also FPs due to the similar
background color of the “Bus” type of vehicle. None of the three models were effective in
detecting the “Truck” type. The Sparse R-CNN was more accurate and effective than the
other two networks, and thus it is used as the vehicle detection algorithm.

5.3. Experiments of Vehicle Trajectory Extraction
Comparison of Different Trajectory Extraction Algorithms

To verify the effectiveness of the proposed vehicle trajectory extraction method, three
other commonly used object tracking algorithms, MIL, KCF, and CSRT, were compared.

Firstly, a vehicle was randomly selected as the object vehicle in the UAV video, and the
position information of the object vehicle in each frame was obtained by manual marking.
Then, the real trajectory information of the vehicle was obtained over a period of time.
At the same time, the vehicle trajectory extraction method was proposed, and three other
object algorithms were used to process the tracked vehicle and output the trajectory results,
and the trajectory extraction effect of the different algorithms was evaluated by calculating
the difference between the trajectory points generated by the four algorithms and the real
trajectory points. The gap between the trajectory points output by the algorithms and the
real trajectory points was expressed using the distance between two points, which was
calculated formulas follows:

D = |CT −CG| =
√
(xT − xG)

2 +
(
yT − yG

)2, (26)

where CT denotes the track point generated by the object algorithm, the coordinates
are denoted by (xT, yT), CG denotes the real track point of the tracked vehicle, and the
coordinates are denoted by

(
xG, yG

)
. During the experiment, the error (distance) between

the tracked track points and the real track points in each frame was counted and plotted on
a line graph, and, finally, the total error of all frames and the average error of each frame
were calculated.

The results of the object experiments for the four algorithms are shown in Table 10
and Figure 8. The tracked vehicles selected in the experiments experienced a total of 297
frames in the video. The vehicle object and trajectory extraction algorithm proposed based
on the vehicle detection model performed the best among the four algorithms, with an
average error of about 1 pixel per frame. The error line graph shows that, although the
error was larger in individual frames, the overall error variation trend was more stable
compared to the other three object algorithms. This shows that the vehicle object and
trajectory extraction algorithm used is more effective than the traditional object algorithm.

Table 10. Error value statistics for four vehicle trajectory extraction algorithms.

Algorithm MIL CSRT KCF Ours

Total Error (pixels) 4358.12 2640.48 895.16 646.8
Average error per frame (pixels) 14.67 8.90 3.01 1.26
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Figure 8. Error comparison of the four vehicle trajectory extraction algorithms.

5.4. Time Difference to Conflict Conflict Indicator Index Comparison

To evaluate the effectiveness of the conflict indicator based on the improved TDTC
metrics proposed and to avoid the influence of the accumulated errors in the vehicle
detection and trajectory extraction stages on the evaluation results, some conflict vehicle
samples from the traffic video were selected, and manual annotation was used to obtain
the real trajectory information of the conflict samples to establish the conflict vehicle
trajectory data set. Experiments were conducted to evaluate the conflict indicator effect of
the improved TDTC metrics while comparing the unimproved TDTC metrics.

5.4.1. Experimental Results and Analysis
Experimental Results

The sample data was input into the TDTC indicator conflict indicator model based on
the vehicle size improvement proposed, and the output results are shown in Table 11. The
model used the interval of two frames to obtain the front and rear positions of the vehicles
and calculate the speed. For 150 frames, if the number of frames in which a conflict was
detected was greater than five, then the two vehicles were judged to be in conflict.

Table 11. Conflict indicator results based on the improved TDTC metrics.

Model Discrimination Is Non-Conflicting Model Discrimination Is a Conflict

Non-conflict samples 24 9
Conflict samples 5 62

From the calculation of the relevant metrics in Section 5.2.2 combined with the data
in Table 12, it can be concluded that, using the sample data, the conflict indicator model
based on the improved TDTC metrics had 86% accuracy, 87.3% precision, 92.5% recall, and
the equilibrium mean F1-score value was 89.9%.

Table 12. Comparison of model results considering and not considering vehicle size factors.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Consider vehicle size 86.00 87.30 92.50 89.80
Vehicle dimensions are not considered 81.00 90.00 80.60 85.04

Difference in Results between Considering and Not Considering Vehicle Size
The results of the experiments considering and not considering vehicle size are shown

in Table 12, given that the other pre-set parameters in the model were the same.
As shown in Table 12, the accuracy of the vehicle conflict indicator for the sample data

was improved when vehicle size was factored into the TDTC metrics, although the accuracy
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rate was reduced. The recall and F1-score were improved compared to the TDTC metrics
without vehicle size factored in. This shows that the vehicle size factor is a necessary
consideration for the identification of conflicts between vehicles at intersections with dense
traffic flow and complex vehicle types, and it has a significant effect on improving the
conflict indicator accuracy.

5.5. Vehicle Conflict Detection Based on Sparse R-CNN with Improved TDTC Metrics
Comprehensive Experiments

Based on the results of the vehicle detection model comparison experiments in
Section 5.2 and the improved TDTC metrics comparison experiments in Section 5.4, the
Sparse R-CNN model was selected as the vehicle identification algorithm in the vehicle de-
tection phase, and the improved TDTC metrics based on vehicle dimensions were selected
as the conflict indicator metrics in the vehicle conflict detection phase. To evaluate the
conflict recognition effect of the method proposed in the text, the sample data selected in
Section 5.4 were used as the validation data. The vehicle detection and trajectory extraction
processes were carried out for all the videos where the sample vehicles were located. Then,
the trajectory information of the corresponding time periods of the sample vehicles was
obtained in the results, and the trajectory information of each sample vehicle was input
into the conflict indicator model based on the improved conflict time difference indicator
to output the results. Finally, in addition, this study also compared the conflict indicator
effect based on two other vehicle detection models to verify the influence of the vehicle
detection model on the conflict indicator effect of the final model. The experimental results
are given in Table 13.

Table 13. Comparison of conflict indicator results based on three vehicle detection models.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Sparse R-CNN 82.00 87.69 85.07 86.36
Faster R-CNN 80.00 92.73 76.12 83.61

RetinaNet 77.00 95.83 68.66 80.00

Table 13 shows that the accuracy and recall as well as the equilibrium mean of conflict
indicator based on Sparse R-CNN and improved TDTC were the highest among the three
models, while the check-all rates of the conflict indicator models based on RetinaNet and
Faster R-CNN were both higher than that of Sparse R-CNN. Analyzing the confusion matrix
shows that RetinaNet and Faster R-CNN were better than Sparse R-CNN in discriminating
non-conflicted data. However, both were worse than Sparse R-CNN in discriminating
conflicting samples, and thus Sparse R-CNN had the highest equilibrium mean. Overall,
it can be proved that using Sparse R-CNN with a higher vehicle detection accuracy can
improve the accuracy of the final vehicle conflict indicator, and the comprehensive conflict
indicator is better.

6. Conclusions

In this paper, an automatic vehicle conflict recognition framework using deep learning
and conflict time difference was proposed. Comprehensive experiments demonstrated
the superiority and adaptability of the proposed method. Sparse R-CNN was adopted
for vehicle detection, and it outperformed the other types of deep neural network object
detection models. Given the vehicle detection, this paper implemented a vehicle trajectory
extraction algorithm based on the overlap of the same vehicles. Compared with traditional
semi-automatic object algorithms such as MIL, KCF, and CSRT, the proposed algorithm
can achieve multiple vehicle tracking and trajectory extraction. The experimental results
show that the proposed method obtained better trajectory.

Besides, we improve the TDTC metrics for vehicle conflict recognition by considering
vehicle size for different types of conflicts. The real experimental results show that it could
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identify vehicle conflicts more accurately, and the discrimination accuracy was significantly
improved compared with a metric that did not consider the vehicle size factor.

One of the drawbacks is that the proposed method relies on the sparse RCNN for
vehicle detection, which has high requirements for computation resources. Finding the
lightweight object detection models such as YOLOv5 that run in common computers is a
promising direction.
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