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Abstract: The fusion of a hyperspectral image (HSI) and multispectral image (MSI) can significantly
improve the ability of ground target recognition and identification. The quality of spatial information
and the fidelity of spectral information are normally contradictory. However, these two properties are
non-negligible indicators for multi-source remote-sensing images fusion. The smoothing filter-based
intensity modulation (SFIM) method is a simple yet effective model for image fusion, which can
improve the spatial texture details of the image well, and maintain the spectral characteristics of the
image significantly. However, traditional SFIM has a poor effect for edge information sharpening,
leading to a bad overall fusion result. In order to obtain better spatial information, a spatial filter-
based improved LSE-SFIM algorithm is proposed in this paper. Firstly, the least square estimation
(LSE) algorithm is combined with SFIM, which can effectively improve the spatial information quality
of the fused image. At the same time, in order to better maintain the spatial information, four spatial
filters (mean, median, nearest and bilinear) are used for the simulated MSI image to extract fine spatial
information. Six quality indexes are used to compare the performance of different algorithms, and
the experimental results demonstrate that the LSE-SFIM based on bilinear (LES-SFIM-B) performs
significantly better than the traditional SFIM algorithm and other spatially enhanced LSE-SFIM
algorithms proposed in this paper. Furthermore, LSE-SFIM-B could also obtain similar performance
compared with three state-of-the-art HSI-MSI fusion algorithms (CNMF, HySure, and FUSE), while
the computing time is much shorter.

Keywords: hyperspectral image; multi-source image fusion; SFIM; least square estimation; spatial filter

1. Introduction

In recent years, a large number of remote-sensing satellites have been launched
continuously with the development of Earth observation technology [1,2]. Modern remote-
sensing technology has reached a new developmental stage of multi-platform, multi-sensor,
and multi-angle observation [3–5]. The continuous development of remote-sensing appli-
cations such as geological exploration [6], resource and environmental investigation [7–9],
agricultural monitoring [10–12], urban planning [13–16], etc., has greatly promoted the
demand for remote-sensing data and the improvement of the performance of satellite
sensors. However, due to the limitations of optical diffraction, modulation transfer func-
tion, signal-to-noise ratio, and the sensor hardware conditions, a single sensor normally
cannot obtain data with both high-spatial and high-spectral resolutions at the same time.
Multi-sensor data fusion has arisen at an historic moment, which can effectively explore
the complementary information from multi-platform observations, making land surface
monitoring more accurate and comprehensive. Multi-source remote-sensing data fusion
refers to the processing of multi-source data with complementary information in time or
space according to certain rules, so as to obtain a more accurate and informative composite
images than any single data source.
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A variety of multi-source remote-sensing fusion techniques have been developed
in the last decade to enhance the spatial resolution of hyperspectral images and obtain
information-rich HSI data with both high-spectral and high-spatial resolutions. The HSI-
MSI fusion algorithms can be divided into the following four categories: component
substitution (CS), multi-resolution analysis (MRA), spectral unmixing (SU), and Bayesian
representation (BR). The idea of CS-based fusion algorithms is straightforward, it trans-
forms the original HSI data, replaces the spatial information in low-spatial HSI data set
with the spatial information in the high-spatial MSI data set, and finally inverts the re-
constructed data to obtain the fused hyperspectral image. The typical CS-based methods
are proposed toward generalizing existing pansharpening methods for HSI-MSI fusion,
including the IHS [17] transform method proposed by W. J. Carper in 1990, PCA [18]
transform proposed by P. S. Chavez in 1991, Gram–Schmidt (GS) [19] transform proposed
by B. Aiazzi in 2007, and their variants [20–22], etc. These methods are simple and easy
to implement, but have serious spectral distortion and cannot be used well for the fusion
of hyperspectral images. The MRA-based methods obtain the fusion result by filtering
the high-resolution image and adding the high-frequency detailed information to the
hyperspectral image. The earliest MRA-based methods realized multi-scale image decom-
position through pyramid transform, while the most representative and most widely used
multi-resolution analysis methods include the fusion method based on various wavelet
transforms [23], the smoothing filter-based intensity modulation (SFIM) [24] proposed by
Liu and the generalized Laplacian pyramid (GLP) method proposed by Aiazzi [25]. The
advantages of these MRA-based methods are less spectral distortion and anti-aliasing, but
the algorithm is complex and the spatial feature loss often occurs in the fusion results. The
SU-based methods utilize the hyperspectral linear unmixing model and apply it to the
fusion optimization model. The advantages of these methods are less spatial and spectral
information loss, but they always have higher computational complexity. Typical methods
include the coupled non-negative matrix factorization (CNMF) [26] method proposed by
Yokoya in 2012, the subspace-based regularization (HySure) [27] method proposed by
Simoes in 2015, and the coupled sparse tensor factorization (CSTF) [28] method proposed
by Li in 2018. The BR-based methods transform the problem of high-resolution image and
hyperspectral image fusion into the problem of solving the Bayesian optimization model,
and obtain the fusion result through solving the optimization. Typical BR-based methods
include a maximum posteriori-stochastic mixing model (MAP-SMM) [29] proposed by Eis-
mann in 2004, Bayesian sparse method [30] proposed by Wei in 2015, and fast fusion based
on the Sylvester equation (FUSE) [31] method proposed by Wei in 2015. The BR-based
methods have the advantage of less spatial and spectral information loss, but also result in
a disadvantage of high computational complexity.

Recently, an increasing number of HSI-MSI fusion algorithms have been proposed [32–34].
These algorithms have been proved to be effective with good fusion performance. How-
ever, most of the researchers focus too much on performance improvements using modern
technologies such as sparse representation, deep learning processing, etc., ignoring the
computing time. In other words, these algorithms improve the fusion performance at the
cost of increased computational complexity. As one of the effective MRA-based fusion
methods, SFIM is proposed by Liu [24] for image fusion as mentioned above. Compared
with traditional methods, SFIM is simple to calculate, easy to implement, and the spectral
information is normally retained well, but there are problems such as fuzzy edge informa-
tion of the image and insufficient improvement of detailed spatial information. In recent
years, many improved SFIM algorithms have been studied, most of which focused on how
to obtain simulated multispectral images with spatial information characteristics consistent
with hyperspectral images and spectral features consistent with multispectral images. This
paper combines the least square estimation LSE algorithm with SFIM, which can effectively
improve the spatial information quality of the fused image. This paper also compares
several spatial filters to extract spatial information to enhance the simulated MSI′s bound-
ary spatial information, and proposes an improved LSE-SFIM fusion algorithm based on
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spatial information promotion to obtain an optimal fusion result. Experimental results on
three HSI-MSI data sets show the effectiveness of the proposed algorithm using six image
quality indexes.

The remainder of this article is organized as follows. Section 2 gives a detailed
description of the proposed method. In Section 3, experimental results and analysis of
different data sets are presented. Finally, conclusions are drawn in Section 4.

2. Proposed Method
2.1. Basic Smoothing Filter-Based Intensity Modulation (SFIM) Algorithm

The SFIM algorithm was proposed by Liu for image fusion in 2000, which is based
on the simplified solar radiation and surface reflection model. Even though it was pro-
posed some time ago, this algorithm is still in use due to its simplicity with good spectral
preservation. The basic principle of the traditional SFIM is expressed as follows [24]:

DNSFIM =
DNlowDNhigh

MeanDNhigh
(1)

where DNlow, DNhigh represent the gray values of low-resolution and high-resolution
images respectively, MeanDNhigh represents the simulated low-resolution image obtained
by the local mean value of DNhigh.

2.2. The Proposed Spatial Filter-Based Least Square Estimation (LSE)-SFIM

For HSI-MSI image fusion, the formula (1) can be expressed as:

Fusion =
HSI′ ×MSI

MSI′′
(2)

where HSI′ is the up-sampling of original low-resolution hyperspectral data HSI, MSI
represents the original high-resolution multispectral data MSI, and MSI′′ is the up-sampling
of MSI′ where MSI′ represents the simulated low-resolution image obtained by MSI. The
algorithm performance is influenced by two factors: (1) how to obtain the simulated low-
resolution image MSI′; and (2) how to get the up-sampled HIS′ and MS′′. The traditional
SFIM uses mean filter to obtain the simulated low-resolution MSI′ (down-sampling) and
uses the same filter to obtain up-sampled HSI′ and MSI′′. The edge information is lost by the
mean filters, and this paper takes two steps to solve the problem: (1) least squares estimation
(LSE) is used to adjust the coefficient and obtain MSI′ with as similar spatial information
as the original HSI image, with the details discussed in Section 2.2.1; (2) filtering and
interpolation methods are compared in the up-sampling stage to obtain the best enhanced
spatial information, with the details discussed in Section 2.2.2. A bilinear approach proved
to be the best in the experiments for this paper. The flow chart of the proposed algorithm is
shown in Figure 1.

In order to make it clear how we obtain MSI, MSI′, MSI”, HSI, and HSI′, Figure 2
gives a graphic abstract with detailed steps of the proposed algorithm. It can easily be
seen from Figure 2 that, MSI is the original high-spatial multispectral data set, MSI′ is the
down-sampling of MSI where the spatial size can be shrunk into the same as the original
HIS (LSE is used here to adjust MSI′ for preserving better spatial information), and MSI′′ is
the up-sampling of MSI′ with the same size as the original high-spatial resolution MSI. HSI
is the original low-spatial resolution hyperspectral data set, and HSI′ is the up-sampling of
HSI to the same size as the high-spatial resolution.
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Figure 1. Flowchart of the proposed fusion algorithm.

Figure 2. Graphic abstract with detailed steps of the proposed algorithm.

2.2.1. Least Square Estimation Based SFIM Algorithm (LSE-SFIM)

Assuming that there is an ideal simulated multispectral image MSI′, it should have two
characteristics: (1) the spatial information characteristics are consistent with the original
hyperspectral image, which can ensure that the spatial information of the hyperspectral
image is counteracted; (2) the spectral information characteristics should be consistent
with the original multispectral image, which ensures that the spectral characteristics of
the multispectral image can be counteracted. The least square estimation algorithm solves
these two problems well.

The LSE algorithm finds the best matching function by minimizing the sum of squares
of errors. It is often used to solve linear regression coefficients in the processing of remote-
sensing images. The LSE-SFIM algorithm uses LSE to solve the linear regression coefficient
that can minimize the spatial information error between the hyperspectral image and the
simulated multispectral image MSI′, so that the latter can have as much spatial information
as possible as with the hyperspectral image.

The LSE-SFIM fusion algorithm first down-samples and extracts the spatial informa-
tion of the high-resolution multispectral image MSI to obtain the simulated MSI′, and then
uses the least square estimation algorithm to solve the problem that can minimize the linear
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regression coefficient of the spatial information error between the multispectral image MSI′

and the hyperspectral image, and use this linear regression coefficient to update the MSI
and MSI′, so as to ensure that the spectral information of the MSI is close to the MSI′, and it
can ensure that both MSI and MSI′ can have the same spatial information as HSI as possible.
Finally, the HSI′ and MSI′′ are obtained by up-sampling, which will be introduced in the
next section, and fused separately according to the bands to obtain the fused image.

2.2.2. Spatial Information Enhanced LSE-SFIM

When using the LSE-SFIM fusion image, the most critical step concerns how to
obtain the simulated multispectral image MSI′′ whose spatial information features are
consistent with the hyperspectral image and spectral features are consistent with the
multispectral image, so as to effectively improve the spatial resolution of the hyperspectral
image and achieve the purpose of fusion. This step is the up-sampling process to obtain
MSI′′ and HSI′ in Figure 2. This paper compares several methods of extracting boundary
spatial information from low-spatial resolution multispectral images, and obtains the best
fusion result.

Filtering Method

Mean filtering and median filtering are two commonly used filtering methods. The
main idea of mean filtering is to replace the gray value of the central pixel with the mean
value of the gray value of the pixel to be found and the surrounding pixels in the middle,
so as to achieve the purpose of filtering. Mean filtering can be simplified as Equation (3):

g(x, y) =
1
M ∑

f∈W
f (x, y) (3)

where M is the filtering window size (pixels within the current window), and W is the
current window.

Median filtering, as the name implies, is to replace the value of the pixel with the
median value of the gray-scale values in the neighborhood window of a pixel. Median
filtering can be simplified as Equation (4):

g(x, y) = med{ f (x− k, y− l), (k, l ∈W)} (4)

Taking 3 × 3 window size as the example, mean and median filtering are shown in
Figure 3, where (a) represents gray values before filtering, (b) represents gray values after
mean filtering, and (c) represents gray values after median filtering.

Figure 3. 3 × 3 mean and median filtering, (a) gray values before filtering in green color, (b) gray
values after mean filtering in red color, and (c) gray values after median filtering in purple color.

Interpolation Method

Image interpolation algorithm is a basic technology in image processing. Nearest
neighbor interpolation and bilinear interpolation are two commonly used image interpo-
lation algorithms. The nearest neighbor interpolation algorithm has the least amount of
calculation and the simplest principle. The gray value of the nearest point among the neigh-
boring pixels around the point to be sampled is used as the gray value of the point. There
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is a linear relationship between the pixel values of different points in the image. According
to this idea, the bilinear interpolation algorithm considers the pixel values in the horizontal
and vertical directions at the same time, so that the problem of grayscale discontinuity in
the image is improved, and the overall effect of the image can also be improved.

3. Experimental Results and Analysis

In order to verify the effectiveness of the algorithm proposed in this paper, three sets
of simulation experiment data sources are selected, namely Pavia University, Chikusei and
HyMap Rodalquilar. This paper uses MATLAB R2018b software platform to program on
Windows 10 64-bit system, and the processor is Intel (R) Core (TM) i5-8250U, 8G memory.

3.1. Hyperspectral Datasets

In order to evaluate the performance of the fusion method objectively and quan-
titatively, we use low-spatial resolution hyperspectral images obtained from real data
resampling in the spatial domains, and high-spatial resolution multispectral images ob-
tained in the spectral domains to carry out simulation data experiments. Table 1 shows the
parameters of the three datasets used in this paper for verification experiments.

Table 1. Parameters of three hyperspectral datasets.

Dataset Year Original Sensor Spectral Range (µm) Spatial Resolution (m) Bands

Pavia University 2003 ROSIS-3 0.43–0.84 1.3 103
Chikusei 2014 Hyperspec 0.36–1.02 2.5 128

HyMap Rodalquilar 2003 HyMap 0.4–2.5 10 167

3.1.1. Pavia University

Pavia University acquired a ROSIS sensor in 2001. The image size is 610× 340 with
a spatial resolution of 1.3 m per pixel, and the experimental data selected in this section
contains 560 × 320 pixels. Its spectral range is 0.43–0.86 µm with a total of 115 bands, and
103 bands are remaining used after removing 12 noise bands. The low-spatial resolution
HSI image was obtained from the original HSI data through the isotropic Gaussian point
spread function down-sampling eight times with a total of 103 bands and 70 × 40 pixels,
the pseudo-color image is shown in Figure 4a. The high-spatial resolution MSI image data
was synthesized from the original HSI data according to the SRF down-sampling of the
ROSIS sensor. There were four bands in total with an image size of 560 × 320, as shown in
Figure 4b. The reference image of the original HIS is shown in Figure 4c.

Figure 4. Pavia University datasets with (a) low spatial resolution hyperspectral image (HSI), (b) high
spatial resolution multispectral image (MSI) and (c) high spatial resolution HSI as the reference.
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3.1.2. Chikusei

Chikusei dataset was collected by a Headwall Hyperspec-VNIR-C sensor on 29 July 2014
in Chikusei City, Japan. It was then produced and published by Naoto Yokoya and Akira
Iwasaki of the University of Tokyo [26]. The spatial resolution is 2.5 m and the scene is
2517 × 2335. It consists of several pixels, mainly including agricultural and urban areas.
In the experiment, a size of 540 × 420 pixels image is selected for experiments. The data
spectrum range is 0.36–1.02 µm, including 128 bands in total. Among them, the low-
spatial resolution HSI image was obtained from the original HSI data through the isotropic
Gaussian point spread function down-sampling six times, with a total of 128 bands and
90 × 70 pixels, the pseudo-color image is shown in Figure 5a. The high-spatial resolution
MSI data were synthesized from the original HSI data according to the SRF of the WV-2
sensor, with eight bands and 540 × 420 pixels, and the pseudo-color image of MSI was
shown in Figure 5b. The reference image of the original HSI is shown in Figure 5c.

Figure 5. Chikusei datasets with (a) low-spatial resolution HSI, (b) high-spatial resolution MSI and
(c) high-spatial resolution HSI as the reference.

3.1.3. HyMap Rodalquilar

The HyMap image was taken in Rodalquilar, Spain in June 2003 [35], covering a gold
mining area in the Cabo de Gata Mountains. The spatial resolution of the data was 10 m.
The experimental data selected in this paper contains 867 × 261 pixels. After removing
the water absorption band, 167 bands are selected for experimentation, and the spectral
range is 0.4 µm–2.5 µm. Among them, the low-spatial resolution HSI image was obtained
from the original HSI data through the isotropic Gaussian point spread function down-
sampling three times, with a total of 167 bands and 289 × 87 pixels, and the resulting
pseudo-color image is shown in Figure 6a. The high-spatial resolution MSI image data
were synthesized from the original HSI data according to the SRF down-sampling of the
HyMap sensor. There were four bands in total with the image size of 867 × 261 pixels, as
shown in Figure 6b. The reference image is shown in Figure 6c.

3.2. Comparative Analysis of the Proposed Spatial Enhanced LSE-SFIM Using Different
Spatial Filters

In this section, different spatial enhanced methods in Section 2.2.2 are used to extract
boundary information and obtain better fusion results, and the performance discussed
to find the best method. Six methods are discussed in this section, the traditional SFIM
(named as SFIM), LSE-based SFIM (named LSE-SFIM), mean filtering LSE-SFIM (named
LSE-SFIM-M), median filtering LSE-SFIM (named LSE-SFIM-Med), neighboring inter-
polation LSE-SFIM (named LSE-SFIM-N), and bilinear interpolation LSE-SFIM (named
LSE-SFIM-B). Both subjective and objective evaluations are discussed, and spectral distor-
tion are compared among all six algorithms.
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Figure 6. HyMap Rodalquilar datasets with (a) low spatial resolution HSI, (b) high spatial resolution
MSI and (c) high spatial resolution HSI as the reference.

3.2.1. Subjective Evaluation

The subjective evaluation mainly uses human eyes to observe the fusion results.
The comparison chart of the fusion results of the three groups of experiments is shown in
Figures 7–9. Observing the fusion result from a subjective point of view, it can be known that
the method of using bilinear interpolation to obtain simulated MSI′ has better visibility, and
the fusion result obtained has a clearer texture and better spectrum retention performance.

Figure 7. Fusion results of Pavia University using six smoothing filter-based intensity modulation (SFIM)-based algorithms.

Figure 8. Fusion results of Chikusei using six SFIM-based algorithms.
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Figure 9. Fusion results of Chikusei using six SFIM-based algorithms.

Figure 7a–f shows that the Pavia University dataset has been subjected to SFIM,
LSE-SFIM, LSE-SFIM-M, LSE-SFIM-Med, LSE-SFIM-N and LSE-SFIM-B. It can be seen
from the figures that the spectral characteristics of the fusion results by all methods are
maintained well. In terms of spatial geometric features, the fusion result of LSE-SFIM-N is
visually blurred, and the edge details are not highlighted. In addition, the fusion results
obtained by other algorithms have higher clarity, and the LSE-SFIM-B algorithm, whether
in terms of spectral characteristics or spatial characteristics, has the closest visual effect to
the reference image.

Figure 8a–f are the fusion results of Chikusei dataset through 6 algorithms, namely
SFIM, LSE-SFIM, LSE-SFIM-M, LSE-SFIM-Med, LSE-SFIM-N and LSE-SFIM-B. It is obvious
that, in terms of spectral characteristics, the fusion results of each method have no more
spectral distortions of ground objects, and the color information performs well. In terms
of spatial features, the fusion result of LSE-SFIM-N has unclear ground textures and non-
obvious edge details. In addition, the fusion results obtained by other algorithms maintain
both texture features and edge details of the ground features, especially the LSE-SFIM-B
algorithm, which retains more spatial features and the edges of the ground features are
more obvious.

Figure 9a–f are the fusion results of the HyMap Rodalquilar data set by 6 algorithms,
namely SFIM, LSE-SFIM, LSE-SFIM-M, LSE-SFIM-Med, LSE-SFIM-N and LSE-SFIM-B. In
terms of spectral characteristics, the fusion results of each method are not too distorted in
the maintenance of the ground object spectrum, and the color information is maintained
well. In terms of spatial features, the LSE-SFIM-N fusion result has a poor spatial infor-
mation enhancement effect. In addition, the fusion results obtained by other algorithms
maintain the texture features of hyperspectral images and multispectral images well, espe-
cially the LSE-SFIM-B algorithm, which maintains the spatial characteristics better, and the
edges of the features are also the most obvious.

In general, through the subjective evaluation of the fusion results by human eyes, it
can be found that the proposed LSE-SFIM-B fusion algorithm has the best performance, and
the fusion image with clearer boundaries can be obtained from the visual results, especially
in Figures 7 and 8. It is the LSE-SFIM-B algorithm makes full use of the complementary
characteristics of HIS and MSI images, which realizes the fusion of spectral and spatial
features of multiple source images, improves the geometric features of ground objects, and
verifies the effectiveness of this algorithm. As for Figure 9, due to image abbreviation,
the spatial information enhancement effect of some images is not easy to see, and it is
difficult to subjectively judge which method is better. Therefore, objective evaluation is
particularly important.
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3.2.2. Objective Evaluation

By observing the fusion results in Figures 7–9, it can be seen that the method of
obtaining simulated multispectral images by using the LSE-SFIM-B method has better
visibility, and the fusion results obtained have clearer texture and better spectrum retention
capabilities. To further objectively evaluate the quality of the fusion images by different
algorithms, this paper also calculates and analyzes the fusion results from a quantitative
perspective by comparing the six objective evaluation indicators of PSNR (peak signal-to-
noise ratio), SAM (spectral angle mapping), CC (cross correlation), Q2n (quality 2n), RMSE
(root mean square error) and ERGAS (error relative global adimensionnelle synthesizer).
The quantitative comparisons are shown in Tables 2–4, with the histogram comparison of
evaluation indicators shown in Figures 10–12.

Table 2. Quantitative comparisons of fusion performance by six algorithms for Pavia University.

Evaluation Index SFIM LSE-SFIM LSE-SFIM-M LSE-SFIM-Med LSE-SFIM-N LSE-SFIM-B

PSNR 25.8772 36.1762 37.9836 33.4864 28.7486 42.1976
SAM 9.3271 3.4442 3.0933 4.1955 5.7274 2.6762
CC 0.82418 0.98594 0.99101 0.97659 0.92191 0.99362
Q2n 0.46532 0.72695 0.75624 0.7093 0.56614 0.8975

RMSE 0.4142 0.01298 0.01075 0.01767 0.030804 0.007333
ERGAS 6.1140 1.2945 1.0702 1.6944 2.8878 0.76253

Table 3. Quantitative comparison of fusion results by six algorithms for Chikusei.

Evaluation Index SFIM LSE-SFIM LSE-SFIM-M LSE-SFIM-Med LSE-SFIM-N LSE-SFIM-B

PSNR 24.0379 37.8579 40.1123 35.3821 31.0431 46.6653
SAM 7.4477 1.8777 1.5704 2.0696 2.8164 1.3432
CC 0.76329 0.9873 0.99117 0.98013 0.94795 0.99341
Q2n 0.35951 0.87498 0.87572 0.85253 0.83137 0.91992

RMSE 0.4142 0.0078549 0.0061514 0.010291 0.017394 0.0037586
ERGAS 6.1140 1.7005 1.4777 2.0937 3.0949 1.2483

Table 4. Quantitative comparison of fusion results by six algorithms for HyMap Rodalquilar.

Evaluation Index SFIM LSE-SFIM LSE-SFIM-M LSE-SFIM-Med LSE-SFIM-N LSE-SFIM-B

PSNR 36.9969 36.3762 37.8249 36.518 35.2463 39.6276
SAM 2.9165 2.7045 2.6616 2.6922 2.7101 2.6475
CC 0.95908 0.96912 0.97943 0.97128 0.96045 0.9855
Q2n 0.67894 0.51703 0.54971 0.53345 0.49201 0.6217

RMSE 0.018907 0.016785 0.015491 0.01656 0.018003 0.014377
ERGAS 4.2584 2.3641 2.1552 2.3246 2.5765 1.9779

According to Table 2 and Figure 10, it can be seen that for Pavia University data,
the method based on the LSE-SFIM algorithm has better fusion effect than traditional
SFIM, and the algorithms LSE-SFIM-M and LSE-SFIM-B are better than the original LSE-
SFIM algorithm, and the effect of LSE-SFIM-B is even better than that of LSE-SFIM-M,
which is the best among several comparison methods. In terms of PSNR, CC and Q2n, the
LSE-SFIM-B fusion algorithm is significantly higher than the results of the other algorithms,
indicating that the spatial quality information of the fusion image is better, the fusion result
has more detailed spatial information, and it is correlated with the reference image. In
terms of SAM, RMSE and ERGAS, the LSE-SFIM-B fusion algorithm is still superior to
other algorithms, indicating that the fusion result can better maintain the spectrum, and
the error with the reference image is the smallest, and the fusion result is the closest to the
reference image.
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Figure 10. Histograms comparison of evaluation indicators by six algorithms for Pavia University.

Figure 11. Histogram comparison of evaluation indicators by six algorithms for Chikusei.
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Figure 12. Histogram comparison of evaluation indicators by six algorithms for HyMap Rodalquilar.

In order to further illustrate that the algorithms proposed in this paper have a good
performance using the data of different images, Table 3 and Figure 11 give the objective
evaluation of Chikusei data, and Table 4 and Figure 12 give the objective evaluation of
HyMap Rodalquilar data. It can be seen that for all the data sets, the fusion algorithm using
LSE-SFIM-B is also the most outstanding in terms of spatial resolution enhancement and
spectral characteristic maintenance. Specifically, the LSE-SFIM-B algorithm is significantly
higher than other algorithms in terms of PSNR, CC and Q2n, indicating that the fusion
image has good ground quality information, the fusion result is more detailed, and the
correlation with the reference image is relatively high. In terms of SAM, RMSE and
ERGAS, the LSE-SFIM-B fusion algorithm has the best performance, indicating that the
error between the fusion result and the reference image is the smallest, and the spectrum
can be better maintained.

3.2.3. Spectral Distortion Comparison

A good fusion method should minimize spectral distortion as much as possible while
improving the spatial resolution. In this section, to further analyze the spectral distortion
for different SFIM-based algorithms, Figures 13–15 show SAM plots of the experimental
results of three hyperspectral data sets. The SAM plot is conducted for every pixel to
compute the SAM value between the fusion result and the reference image. In the figures,
each pixel uses the change from cold to warm to indicate the level of spectral similarity
at that pixel. The closer the color of the pixel point is to the warm color, that is, the closer
to dark red, the lower the spectral similarity and the worse the spectral quality relative
to other pixels; the closer the color of the pixel point is to the cool color, that is, the closer
to dark blue, the higher the spectral similarity and the higher the spectral quality relative
to other pixels. The larger the area occupied by the blue part in the figure, the better the
overall spectral quality. Compared with other algorithms, it can be seen from the SAM
graph of the algorithm experiment results that the spectral performance of LSE-SFIM-B on
the three data sets is relatively better.
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Figure 13. Spectral angle mapping (SAM) map of six algorithms for Pavia University data experiment results.

Figure 14. SAM map of six algorithms for Chikusei data experiment results.

Figure 15. SAM map of six algorithms for HyMap Rodalquilar data experiment results.

3.2.4. Influence of Spatial Scale Factor between MSI and HSI

The above experiments have proved the LSE-SFIM-B algorithm to be effective among
all SFIM-based algorithms. It would be interesting to know the performance of the
proposed LSE-SFIM-B algorithm according to the spatial scale factor between the high-
resolution MSI and low-resolution HSI images. In order to see how the algorithm performs
on different scale factors, the Pavia University data are used in this section, where the
spatial scale factors (SF) are set to SF = 2, 4, 8, respectively. The performance comparison is
given in Table 5, where the spatial scale value is the down-sampling rate of the HSI data.
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Table 5. Performance of different spatial scale factors of MSI and HSI data using LSE-SFIM-B
algorithm for Pavia University.

Indexes/Spatial Scales 2 4 8

PSNR 44.1518 43.2708 42.1976
SAM 2.1803 2.4104 2.6762
CC 0.99553 0.99458 0.99362
Q2n 0.93804 0.93213 0.8975

RMSE 0.005912 0.006572 0.007333
ERGAS 2.5732 1.4025 0.76253

The results in Table 5 are very interesting and show that the PSNR, SAM, CC, Q2n and
RMSE values tend to worsen as the spatial scale factor increases, while the ERGAS value
becomes smaller (better) as the spatial scale factor increases.

3.3. Performance Analysis of the Proposed SFIM-Based Algorithm and Other Commonly
Used Algorithms

In order compare the fusion performance of the proposed SFIM-based algorithm with
the existing representative algorithms, this section chooses some state-of-the-art algorithms
for comparison. Three state-of-the-art algorithms have been used in this section, which are
CNMF proposed in 2012, HySure proposed in 2015, and FUSE proposed in 2018. Since the
LSE-SFIM-B method has been proved to be most effective in the previous section, we will
use this one for comparison. Since the robustness of the algorithm for different data sets
has been proved in the previous section, in this section only the Chikusei data set is use to
reduce repetition.

The experimental settings are as follows: (1) for the Chikusei data set, the number of
endmembers (D) is set to D = 30 for any algorithm needed. (2) In CNMF algorithm, the
maximum number of iterations for inner loops (Iin) and the maximum number of iterations
for outer loops (Iout) are Iin = 200, Iout = 2. (3) In the HySure algorithm, the parameters are
set to λϕ = 10−3, λB = λR = 10.

Figure 16a–e are the fusion results of the Chikusei dataset through five algorithms,
which are conventional SFIM, the proposed LSE-SFIM-B, CNMF, HySure, and FUSE. The
visual effects seem to be similar to the last four algorithms, in which the SFIM seems to
have the worst performance. In order to further evaluate the performance of the proposed
LSE-SFIM-B algorithm and the other three state-of-the-art algorithms, Table 6 gives the
comparison for objective evaluation indicators PSNR, SAM, CC, Q2n, RMSE and ERGAS.

Figure 16. Fusion results of Chikusei dataset by five different algorithms.
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Table 6. Quantitative comparison of fusion results by five different algorithms for Chikusei.

Evaluation Index SFIM LSE-SFIM-B CNMF HySure FUSE

PSNR 24.0379 46.6653 46.1716 47.3149 45.4159
SAM 7.4477 1.3432 1.2497 1.1544 1.4699
CC 0.76329 0.99341 0.98988 0.99093 0.98855
Q2n 0.35951 0.91992 0.9485 0.9606 0.91975

RMSE 0.4142 0.0037586 0.0035002 0.0032553 0.0044402
ERGAS 6.1140 1.2483 1.5456 1.4725 1.6222

It can be seen that the conventional SFIM algorithm has the worst performance
of all six indicators. The other four algorithms, including the proposed LSE-SFIM-B,
CNMF, HySure, and FUSE, have similar performance. In the HySure algorithm four of
the six indicators are optimal, and the other two optimal indicators are obtained by the
proposed LSE-SFIM-B algorithm. However, as mentioned in Section 1, the SFIM-based
algorithm is simple to calculate and easy to implement. In order to verify the computational
complexity of these different algorithms, Table 7 shows the computing time comparisons
for different algorithms, and the proposed LSE-SFIM-B algorithm has the least computing
time. To further show the time-efficient superiority of LSE-SFIM-B, the speed-up ratio is
also provided in Table 7 which is calculated using the computing time of the other three
algorithms (CNMF, HySure, and FUSE) divided by the computing time of the proposed LSE-
SFIM-B algorithm. As a result, even though the HySure algorithm has four performance
indicators that are better than LSE-SFIM-B algorithm, it is time consuming, especially when
the data set is very large, the LSE-SFIM-B could demonstrate its excellent time efficiency
while maintaining the performance.

Table 7. Computational complexity analysis by five different algorithms for Chikusei.

Algorithms LSE-SFIM-B CNMF HySure FUSE

Computing time/second 0.77 32.36 317.43 3.00
speed-up ratio/times – 42.03 412.25 3.40

4. Discussion and Conclusions

This paper proposes a spatial-enhanced LSE-SFIM algorithm for HSI-MSI images
fusion. The contributions of the proposed algorithm can be summarized as follows:

1. Improving the performance of tradition SFIM algorithm. The traditional SFIM fusion
algorithm has problems such as blurred image edge information and insufficient
spatial detail information. In this paper, two steps are taken to solve the above
problems: (1) LSE is used to adjust the obtained simulated low-spatial MSI′ so that the
linear regression can minimize the spatial information error, and the simulated MSI′

can have as much as possible the same spatial information as HSI; (2) four different
spatial filters are then used to further improve the detailed spatial information in the
process of up-sampling, and the experimental results show that the use of bilinear
interpolation in LSE-SFIM-B fusion algorithm has the best performance among all
SFIM based algorithms.

2. Achieving similar performance with much less computing time. This paper also
employs three state-of-the art algorithms (CNMF, HySure and FUSE) to compare
the performance, and the experimental results show that the proposed LSE-SFIM-B
algorithm can achieve similar performance as these, while the computing time is much
less. As a result, in the case of high time requirements or in the case of processing a
very large data set, the proposed LSE-SFIM-B algorithm can show a good ability in
both processing performance and time effect with practical significance.

The proposed algorithm can achieve a good performance in most cases, performs
better than traditional SFIM algorithm with better spatial preserving and less spectral
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distortion, and also has less computational complexity than the state-of-the-art fusion
algorithms. However, the spectral fidelity is not good enough, since the SFIM-based model
performs the fusion band by band, without considering the spectral correlations. Adding
spectral constraints to the model can be considered in a future study.
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