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Abstract: Extracting road information from high-resolution remote sensing images (HRI) can provide
crucial geographic information for many applications. With the improvement of remote sensing
image resolution, the image data contain more abundant feature information. However, this phe-
nomenon also enhances the spatial heterogeneity between different types of roads, making it difficult
to accurately discern the road and non-road regions using only spectral characteristics. To remedy
the above issues, a novel residual attention and local context-aware network (RALC-Net) is proposed
for extracting a complete and continuous road network from HRI. RALC-Net utilizes a dual-encoder
structure to improve the feature extraction capability of the network, whose two different branches
take different feature information as input data. Specifically, we construct the residual attention
module using the residual connection that can integrate spatial context information and the attention
mechanism, highlighting local semantics to extract local feature information of roads. The residual
attention module combines the characteristics of both the residual connection and the attention
mechanism to retain complete road edge information, highlight essential semantics, and enhance
the generalization capability of the network model. In addition, the multi-scale dilated convolution
module is used to extract multi-scale spatial receptive fields to improve the model’s performance
further. We perform experiments to verify the performance of each component of RALC-Net through
the ablation study. By combining low-level features with high-level semantics, we extract road infor-
mation and make comparisons with other state-of-the-art models. The experimental results show
that the proposed RALC-Net has excellent feature representation ability and robust generalizability,
and can extract complete road information from a complex environment.

Keywords: attention mechanism; road extraction; deep learning; remote sensing; multi-scale di-
lated convolution

1. Introduction

The rapid development of remote sensing technology has led to a sharp increase in
high-resolution remote sensing image data and provides an important data source for
road extraction. Compared with medium and low-resolution remote sensing images, HRI
contains more texture, shape, structure, neighborhood relations, and other information,
which can extract road information more accurately [1]. Extracting road information
accurately and quickly can provide important geographic information for urban planning
and spatial decision-making [2,3]. Accurate extraction of ground objects, such as roads,
from remote sensing images has excellent social and economic value, which can play
an essential role in disaster investigation [4,5], automatic navigation [6], geographical
information system construction [7,8], and other fields.
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Generally speaking, road extraction methods are divided into traditional methods and
deep learning-based methods [9,10]: (1) Traditional methods. In this method, road types are
defined manually based on one particular feature information, and then the corresponding
feature extraction model is constructed to recognize and extract the road [11,12]; (2) Deep
learning-based methods. This method takes advantage of automatic feature extraction
ability, strong generalization ability, high efficiency of fitting ability, and stability robustness
of the deep learning model to mine deep characteristic information from HRI based on the
prior knowledge to complete the automatic extraction of road information [13–15].

Specifically, the optimization of the network model structure is one of the main strate-
gies to improve performance. Xin et al. [16] optimized U-net by replacing the original
encoder with Dense blocks, which reduced the number of parameters and improved the
robustness of the network. Xie et al. [17] chose LinkNet as the basic architecture to con-
struct HsgNet by adding a middle block between the encoder and decoder. The function
of the middle block is to save global-context semantic information, long-distance spatial
information and the relationship, and different feature channels’ information and depen-
dencies, which can improve the generalization ability and performance of the network.
Liu et al. [18] proposed a multi-task convolutional neural network named Roadnet to
extract roads from complex urban scenes, which completed the task of simultaneously
predicting road surfaces, edges and center lines for the first time. The other works mainly
take advantage of the discriminative probability model as a post-process method to further
improve the accuracy of the extracted road results. Liu et al. [19] combined the adaptive
sparse model with Markov random field, extracted more abstract and more discriminative
high-level features, and then used Gabor filters and nonmaximal suppression combined
with ridge transversal method to extract the centerline of the road, which can obtain a
more accurate extraction result. Wang et al. [20] introduced the conditional random field
into the encoder-decoder structure and enhanced the road extraction structure to improve
classification accuracy through the conditional random field.

In the past, road extraction from remote sensing images based on deep learning had
the following problems: (1) The spatial heterogeneity between roads caused by issues such
as solar elevation angle, occlusion, and lack of semantic information leads to a decrease
in the prominence of road geometric texture, discontinuous road extraction results, and
fragmented road sections in the road network. In this case, a network structure using only
a single encoder cannot effectively extract and abstract road features; (2) Most previous
works focused on integrating global context information. They ignored the importance of
the local perception information that could not accurately describe the diversity of spatial
distribution of complex ground objects in the case of similar spatial-temporal characteristics
of different ground objects. However, local information can enhance the feature representa-
tion ability of major information and retain spatial topological information such as texture
and boundary; (3) The enhancement in the resolution of remote sensing images makes the
object information present as highly detailed. At the same time, imaging conditions and
the complexity of the composition and distribution of the objects can increase intraclass
variability (and interclass similarity), a decrease in the distinguishability of different objects.
The category of objects whose spectral curves are very similar cannot be effectively distin-
guished only according to the image’s spectral radiation or grayscale information, resulting
in the misclassification of two kinds of objects with similar reflectance characteristics.

To solve the above problems, we propose a residual attention and local context-aware
network (RALC-Net) for road extraction from HRI. RALC-Net takes advantage of the encoder–
decoder structure to connect context information, a residual attention module to highlight
representation ability of local semantics, and a multi-scale dilated convolution module to
enhance feature extraction ability. The main contributions of this paper are as follows:

(1) To extract complete road information from HRI, we designed the RALC-Net model.
The proposed network consists of a dual-encoder with the residual attention module,
a multi-scale dilated convolution module, and a parallel partial decoder. At the same
time, the context information is highlighted by using skip connections between the
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encoder and decoder. The dual-encoder structure is used to enhance the feature
abstraction and fusion capabilities of the network and extract the feature map of
the input data. Then the extracted feature map is passed through the multi-scale
dilated convolution module to retain the feature information at different spatial scales
and obtain high-level semantic information under the multi-scale spatial receptive
field, enhancing the network’s feature representation ability. The decoders gradually
enlarge the spatial size of the obtained feature map until it is consistent with the input
data, and the classifier is ultimately used to make classification decisions;

(2) By introducing residual connection into the attention mechanism, the residual at-
tention module is constructed to emphasize the local semantics and improve the
generalization ability of the network model. The residual attention module can retain
local detailed semantic information and spatial boundary and use residual mapping
to extract and abstract deep feature maps to relieve over-fitting;

(3) Multi-feature information is used as the input of the network model to assist the
extraction of road information from HRI, which has more abundant spectral and
texture information. Color, texture, and shape information extracted from image data
can provide the essential decision-making basis for road information extraction. The
original image, color feature, texture feature, and shape feature are simultaneously
input into the model to extract road information, which improves the generalization
ability of the network model and enhances the robustness.

The remainder of this paper is arranged as follows. Section 2 reviews the application
of traditional methods, deep learning-based methods, and attention mechanisms in road
extraction. Section 3 introduces the methodology of the approach proposed in this article
and multi-feature information. Section 4 presents experimental results and evaluations. In
Section 5, we discuss the performance of the network and the influence of multi-feature
details on road extraction. The conclusion is described in Section 6.

2. Related Work
2.1. Traditional Road Extraction Methods

Traditional road extraction methods can be divided into three categories: pixel-based,
object-oriented, and machine learning-based road extraction methods. The pixel-based
road extraction method usually targets a single pixel and its surrounding pixels, and
considers their spectral characteristics, temporal and spatial relationships, and gradient
characteristics to establish the corresponding road extraction model [21]. Liu et al. [22]
used the linear features of roads to construct a rural road geometric knowledge database,
identified parallel line segments in the image according to the geometric features of the
road, grouped and connected the line segments, and finally extracted a complete rural road.
Cheng et al. [23] used a combination of semi-supervised classification methods with multi-
scale filtering and multi-direction non-maximum suppression (MF&M-NMS) methods to
extract road networks based on the relationship between labelled samples and unlabeled
samples. Shi et al. [24] divided the road and non-road areas according to the spectral
characteristics of the image and then extracted practical road sections by using the shape
features of the road and refined and smoothed the extraction results to obtain the complete
extraction results. However, this method has certain limitations and is only suitable
for extracting urban arterial roads from high-resolution images. Shanmugam et al. [25]
proposed a junction-aware water flow model, which automatically recognizes and extracts
road networks based on geometric features such as the width, direction, centerline and
length of each road. This method can be used to identify complex road intersections with
fewer automatically generated anchor points.

Since the pixel-based road extraction method is prone to the salt and pepper phe-
nomenon, Baatz et al. [26] proposed an object-oriented image processing method for image
classification and the extraction of various ground features, effectively solving the effect
of salt and pepper noise on the results. Li et al. [27] defined structural features based on
orientation histograms and morphological profiles, combined the two geometric features of
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compactness and elongation to merge the roads in the region of interest, and successfully
grouped and linked adjacent small sections of roads with high spectral heterogeneity and
similar geometric shapes. Huang et al. [28] used an object-oriented method to extract multi-
scale information and road structure features to reduce the impact of local spectral changes
in the image. Miao et al. [29] proposed a novel object-based automatic road extraction
method, which went through five steps in sequence: image segmentation, filtering, feature
set extraction, road contour extraction, and post-processing, to overcome the limitations
of automatic road extraction to a certain extent. Yin et al. [30] improved the ant colony
algorithm to implement global optimization of roads according to the object and edge
information, effectively overcoming the shortcoming that the object-oriented method could
not make full use of edge information.

Machine learning can automatically extract abstract feature information by mining
and abstracting the sample data to fit the correlation and relationship between the samples
and then ensure the classification interpretation of the ground objects according to these
features [31]. Road extraction methods based on machine learning commonly include
support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), and de-
cision tree (DT) [32–34]. Zhu et al. [35] used K-means to segment the image and then
combined SVM and the fuzzy C means method (FCM) to extract the road network from
the segmentation map. Xu et al. [36] converted the road network into vector polygons
and trained the random forest model by using various geometric driving factors such as
compactness, width, circularity, area, perimeter, complexity, parallelism, shape descriptor,
and width-to-length ratio to extract the road information of Beijing. Soni et al. [37] com-
bined least square support vector machine (LS-SVM), mathematical morphology, and road
shape features to construct a multi-stage road extraction model. Specifically, the image
was divided into road and non-road areas. Then, the road centerline was extracted by
the method based on Euclidean distance transformation. Finally, the road network result
was obtained.

2.2. Road Extraction Methods Based on Deep Learning

In 2006, Hinton formally proposed the concept of deep learning, which is considered
the next technological extension to artificial neural networks [38]. A multi-level hierarchical
model similar to the human brain’s nervous system is constructed to automatically learn
and extract the feature information of the input data, from the bottom to the high level, and
completes the classification according to the extracted feature information. Under the big
data stage, accurately extracting practical information from massive remote sensing data is
a hot research direction, and deep learning provides efficient technical approaches [39–41].
Convolutional neural network (CNN) is one of the most common deep learning models in
image processing, which shows outstanding performance in road information extraction
from remote sensing imagery [42]. However, the CNN-based road extraction method relies
too much on the characteristics of the sliding window, resulting in low extraction efficiency
and difficulty in meeting the requirements of practical application. The fully convolutional
network uses convolutional layers instead of fully-connected layers to achieve end-to-end
semantic segmentation and overcome the inefficiency of the CNN method based on a slid-
ing window, which can preserve target spatial information while extracting semantic text
information [43–45]. Zhou et al. [46] proposed a boundary and topologically-aware neural
network (BT-Roadnet) to solve the problem of boundary accuracy and topological connec-
tivity by using the CMPM block to convert the input optical image into road probability
maps and using the FMPM block to do further feature extraction on the road probability
map. Cheng et al. [47] used the encoder-decoder structure to construct a cascaded end-
to-end convolutional neural network (CasNet), attempting to connect two subtasks using
the cascaded network for the first time. Zhang et al. [48] improved the U-net network
by adding residual units, which simplified the training of the deep neural network and
improved the generalization ability of the network model while reducing the number
of parameters by adding multi-layer skip connections. Abdollahi et al. [49] proposed a
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method to extract road information based on the generative adversarial network (GAN). In
this method, the improved U-Net network was used to obtain road network feature maps,
which retained edge information, for the most part, reduced the influence of occlusions
from trees, and finally got ideal extraction results.

2.3. Attention Mechanisms

In addition, the attention mechanism is an important research area in the field of
computer vision. Because of its superior feature representation ability, it has been widely
applied to extract remote sensing information [50,51]. The attention mechanism can high-
light important information and suppress secondary information by assigning disparate
weights to different information [52]. Xu et al. [53] introduced the attention unit into the
deep convolutional neural network to extract local and global information of the road in the
remote sensing image and improve the accuracy of road network extraction. Wan et al. [54]
used a shallow encoder framework to construct a Dual-Attention Network (DA-RoadNet)
to explore and analyze the correlation of road features in spatial dimensions and channel
dimensions and then extract road information from a complex environment. Ren et al. [55]
designed a Dual-Attention Capsule U-Net (DA-CapsUNet) to extract and fuse multi-scale
context information of road networks by constructing a feature attention module.

3. Methodology

In this section, we introduce the structure of the proposed RALC-Net in Figure 1. The
network uses an encoder–decoder structure to construct the model, encoders with a residual
attention module to gradually extract high-level semantic information from the input data, a
multi-scale dilated convolution module to extract multi-scale spatial information, decoders
to amplify the abstracted feature information layer by layer, which achieves the purpose
of pixel-by-pixel semantic segmentation. We introduce the structure of the RA module
and the multi-scale dilated convolution and how to extract the spatiotemporal features of
the input data. We present the composition of both the residual attention module and the
multi-scale dilated convolution and extract the spatiotemporal characteristics of the input
data. In addition, we list the types of feature information used in this article and explain
how multi-feature information is input into the network model.

3.1. The Structure of Encoder-Decoder

At present, most of the state-of-the-art network models choose to use the encoder–
decoder structure such as U-net [56], Deeplab [57] and Hsgnet [17], which can extract richer
detailed feature information of the input information. In general, encoders usually choose
excellent network structures (such as VGG and ResNet). These network structures generally
include convolutional layers, pooling layers, fully connected layers, batch normalization
layers (BN layers), and activation layers. The adjusted ResNet-50 is taken as as the baseline
of the dual-encoder structure, which is composed of a multi-layer residual mapping block.
These residual mapping blocks are divided into two primary components, conv blocks
and identity blocks. Each convolution block includes two 1 × 1 convolutional layers and a
3 × 3 convolutional layer. The identity block has one more 1 × 1 convolutional layer than
the convolution block on the shortcut, which is used to adjust the dimension of the channel.
Compared with the encoder structure, the decoder structure is composed of up-sampling
and convolution blocks. Up-sampling enlarges the spatial size of the feature map, and the
convolution layer performs local feature extraction on the amplified feature map.

As shown in Figure 1, the RALC-Net network proposed in this paper has two input
paths, and the two input information consists of a variety of feature information. Com-
pared with a single encoder, two symmetrical encoders can enhance the feature extraction
capability of the model by assigning them different values of weight parameters. The input
data are processed through multiple conv blocks and identity blocks, and feature maps
in different dimensions are extracted layer by layer. However, the input data lose part of
the spatial and spectral information due to multiple dimensionality reduction processing.
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Therefore, we combine the underlying feature information with in-depth features by using
skip connections between the encoder and the decoder to obtain features with higher
dimensions to effectively extract road information in complex environments.
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3.2. Residual Attention Module

The attention mechanism is currently the most advanced model for solving multi-
tasks, which overcomes some limitations of traditional neural networks and provides
certain interpretability for the agnostic nature of deep learning models [58,59]. We con-
struct an attention mechanism model that simulates the human perception system and
extracts important feature information from top to bottom. The model uses different
weights to highlight important information and suppress irrelevant information. At the
same time, we can also take advantage of the attention mechanism to solve a series of
problems caused by the correlation between different feature channels, the reduction of
computational efficiency resulting from different input sequences, and the lack of extraction
and abstraction for important information in the network. The attention mechanism can
use high weight to highlight important information and low weight to ignore irrelevant
information, enhancing the generalization ability and robustness of the network model to
extract meaningful information in different scenarios.
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The combination of the attention mechanism and deep learning can successfully im-
prove the performance of deep learning models. As for the encoder–decoder structure, the
network model often generates many residuals during the feature mapping process. These
residuals will increase as the number of network layers deepens. Correspondingly, while
the attention mechanism uses different weights to highlight important information, it also
provides a certain degree of interpretability for the “black box” characteristics. Accordingly,
we propose a residual attention module (RA module) in this paper, which uses the attention
mechanism to highlight crucial local information and residual connections to integrate
local context information, and finally achieves the purpose of highlighting local contextual
details. The RA module includes two parts: series convolution and shortcut, and the struc-
ture of the RA module is shown in Figure 2. In series convolution, a BN layer and a ReLU
activation function are followed after each convolution layer to improve the network’s
generalization ability and speed up the convergence of the model. The convolution kernel
of each convolution layer in the series convolution structure is

{
2(i+5), 2(i+5), 2(i+6)

}
and i

means the number of the RA module. Because of the inconsistency of the number of input
and output channels in the series convolution structure, the shortcut structure composed
of 1 × 1 convolution is introduced to adjust the channel dimension, and the number of
convolution kernels is 2(i+6).
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3.3. Multi-Scale Dilated Convolution

We added a multi-scale dilated convolution module between the encoder and the
decoder in the model structure, using different dilation rates of dilated convolution and
1 × 1 convolution layer to extract multi-scale feature maps. Figure 3 shows the multi-scale
dilated convolution structure with five channels. We only use the 1 × 1 convolutional
layer to extract feature information in the first channel and add a 3 × 3 convolutional
layer in the second channel. From the third to the fifth channel, we sequentially append
dilated convolutions with dilation rates of {1, 2, 3} to expand the range of the receptive
field without increasing the complexity of the model. The specific calculation process is
defined as follows:

g(l0) =
N

∑
i=1

fi(l0) , (1)

where l0 represents the multi-scale dilated convolution input feature map, and fi() repre-
sents the ith layer multi-scale dilated convolution. Finally, the calculation results of each
layer are added, and the fused multi-scale feature information is obtained.
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of {1, 2, 3}.

3.4. Multi-Feature Information

The improvement of remote sensing image resolution makes the image data have
more abundant feature information. This underlying information, including color, texture,
spectrum, and neighborhood relations, can be extracted according to the feature informa-
tion [60]. The underlying information positively affects road extraction and can accurately
extract the target road from a complex environment. We use the original image data and
the color, texture and shape features extracted from remote sensing images as the two
inputs of RALC-Net, making full use of the rich feature information of high-resolution
remote sensing images to extract road information accurately. In this article, color moments
are selected as color features, Gray Level Co-occurrence Matrix (GLCM) based on statistics
is selected as texture features, and edge detection results based on contours are selected as
shape features. The specific feature combination is shown in Figure 4. The processing of
color features and texture features usually extracts its information pixel by pixel. In this
process, the spatial feature information of the original data will be lost, so this article uses
the domain method to extract color features and texture features, which uses a 3 × 3 neigh-
borhood window centered on a specific pixel and calculates the feature information in each
neighborhood window as the result of the center pixel.
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3.4.1. Color Feature

The color feature is one of the most commonly used information features in tasks such
as target detection and image classification. It can intuitively reflect the surface properties
of objects and is less affected by image size and shooting angle. This paper uses color
moments as color features, and the information in color moments is often reflected in
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low-order moments. Therefore, the low-order moments including mean, variance, and
skewness, are selected as the color driving factors. The calculation formula is as follows:

Mi =
1
N ∑N

j pij (2)

Vi =

√
1
N ∑N

j (pij −Mi)
2 (3)

Si =
3

√
1
N ∑N

j (pij −Mi)
3 (4)

where Mi, Vi and Si represent the mean, variance, and skewness of the ith pixel respectively,
and pij represents the pixel value of the ith row and the jth column.

3.4.2. Texture Feature

The texture feature is a quantitative description of the texture properties of an image.
It is also a visual feature that does not depend on color or brightness information to reflect
the homogeneity of the image and contains important arrangement information of the
image surface structure and its relationship with the surrounding environment [61]. The
Gray Level Co-occurrence Matrix (GLCM) is a statistically-based texture feature that can
conduct a statistical analysis on all pixels of the image according to the distance and angle
between each pixel in the imagery, and extract texture features in a conditional probability
manner to describe the spatial correlation of image pixels in grayscale. As the result of
the statistical analysis, GLCM cannot be directly used to describe texture information, but
the feature value calculated based on GLCM is taken as the description factor of texture
information. This article uses homogeneity, contrast, and energy as description factors of
texture features.

Hom = ∑
i

∑
j

g(i, j)

1 + (i− j)2 (5)

Con = ∑
i

∑
j
(i− j)2g(i, j) (6)

Ene = ∑
i

∑
j

g(i, j)2 (7)

where g(i, j) is the value of the ith row and the jth column in GLCM.

3.4.3. Shape Feature

The shape feature is a high-level visual feature in the image. Under certain extreme
conditions, where other features do not exist, the category of the object can still be identified
through the shape and contour of the object. The edge of an image is a collection of positions
where the grayscale value of the pixel changes sharply, and it is one of the main description
methods of shape features. Image edge detection usually uses a binarization method to
distinguish the edge area from other areas, highlight the region of change in the object’s
shape, and show the object’s contour. The edge detection methods used in this paper
include Robert, Laplace, Prewitt and Canny.

4. Experiments

In this section, the Massachusetts Roads Dataset and DeepGlobe Roads Dataset are
taken as the experimental data to validate the performance of the proposed RALC-Net. For
experiment 1, different encoders with RA modules are used to extract road information
in the two datasets, and results of qualitative and quantitative comparisons are presented
in Sections 4.3.1 and 4.3.2. For experiment 2, we compared the impact of multi-feature
information on the performance of other state-of-the-art models on the Massachusetts
Roads Dataset in Section 4.3.3. In addition, Adam is chosen as the optimizer with the batch



Remote Sens. 2021, 13, 4958 10 of 20

size of 1 and Binary Cross-Entropy loss is taken as the loss function. The initial learning
rate is 0.0002, and when the loss value does not decrease for three epochs, the learning rate
is multiplied by 0.5. Tensorflow is taken as the backend, and Keras is used to implement
all network models trained on NVIDIA GTX2080 GPU.

4.1. Dataset
4.1.1. Massachusetts Roads Dataset

The Massachusetts Roads Dataset [62] is composed of 1171 aerial images, with a
total coverage area of 2.25 square kilometres, and the size of each image is 1500 × 1500.
The original dataset includes 1108 training images, 14 validating images, and 49 test
images. To validate the performance of the model proposed in this article, we screened the
original data set and selected 718 images with excellent quality for training and 49 images
for testing by discarding some incomplete images. Furthermore, to prevent computer
memory from overflowing, we cropped the image data to a size of 512 × 512 and obtained
10,052 training images and 441 test images after data enhancement.

4.1.2. DeepGlobe Roads Dataset

The DeepGlobe Roads Dataset [63] consists of 6226 training images, 1243 validating
images, and 1101 test images, including cities and rural areas in many countries such as
Thailand, Indonesia, and India. Each image has three bands with a spatial resolution of
0.5 m. In the original dataset, only 6226 training images have label data. Therefore, we
randomly divide 6226 images into 4359 training images and 1867 test images. Similarly, we
cropped and enhanced the original images to obtain 26,154 training images and 7468 test
images with a spatial size of 512 × 512.

4.2. Evaluation Metrics

We use the mean union score (mIOU) as an evaluation metric in this paper. For the
mIOU, we need to calculate the union score (IOU) of each original dataset image and then
take the average of all the calculation results.

IOUi =
TPi

TPi + FPi + FNi
(8)

mIOU =
1
n∑n

i=1 IOUi (9)

where TPi, FPi and FNi is the true positive, false positive and false negative of the ith image.
In addition, we also take the F1-score as an evaluation metric. Firstly, we need to

obtain precision (P) and recall (R). Then the F1-score is calculated based on their correlation.

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

F1 = 2 ∗ P ∗ R
P + R

(12)

However, the calculation results of precision, recall, and F1-score excessively depend
on the number of samples and categories, and there will be uncertainties in the results.
Therefore, we can combine the Kappa coefficient to more objectively evaluate the accuracy
of the results. The Kappa coefficient uses a discrete multivariate analysis method to calculate
the degree of similarity between the actual spatial distribution of the ground features and
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the classification results predicted by the classifier, which can more objectively and fairly
express the pros and cons of the results.

Pe = ∑n
i=1 ti pi

M ∗M
(13)

Kappa =
Po− Pe
1− Pe

, (14)

where ti is the number of actual results of ith category, pi is the number of prediction results
of the ith category, M is the total number of samples, and Po is the overall accuracy.

4.3. Experimental Results

We mainly validate the performance of the proposed RALC-Net through two exper-
iments. In the first experiment, we chose the three state-of-the-art network structures
of VGG16, Res34, and Res50 as the encoder to analyze the performance of the different
encoders and the RA module on the two datasets. In the second experiment, the proposed
RALC-Net was compared with four state-of-the-art road extraction methods based on deep
learning models, including SegNet [64], U-Net [56], DeeplabV3+ [57], and D-LinkNet [65],
which compare the extraction results of two input ways using only image data and using
multi-feature information.

4.3.1. Ablation Study on the Encoders and the RA Module

Figure 5 shows the visual comparison of different encoders on the Massachusetts
Roads Dataset. In the first three rows of Figure 5, the spectrum and texture of the rural roads
and non-road areas are very similar, and the continuous road network cannot be extracted
entirely. However, after the RA module is added to encoders, the local context perception
performance is used to extract crucial local information and improve the accuracy of
the results. The three original models show dissimilar performances in the fourth and
fifth rows. The Res50 model extracts relatively complete road network information, with
better visual outcomes than the Res34 and VGG16 models. After adding the RA module,
the three models effectively improve the fragmented and fractured conditions and obtain
complete road networks. In general, the performance of the Res50 model performance is
significantly better than the other two models through the comprehensive analysis of the
extraction results of the three models. At the same time, the experimental results verified
the challenging performance of the RA module.

As shown in Table 1, the quantitative comparisons of the three encoders after adding
the RA module include mIOU, F1-score, and Kappa coefficient. Before adding the RA
module, among the three encoder models, the mIOU, F1-score, and Kappa coefficient of the
VGG16 model were 0.5325, 0.6949, and 0.6824, respectively. However, the accuracy of the
Res34 model outperforms that of the VGG16 model, indicating that the residual connection
can effectively improve the performance of the model. Besides, the mIOU, F1-score, and
Kappa coefficient of the Res50 model are higher than the other two models, reaching 0.5563,
0.7149, and 0.7023. After adding the RA module, the accuracy of the three encoders has
been increased, and the use of the RA module improves the performance by 0.0383, 0.0108,
and 0.0271 in mIOU, respectively.
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Table 1. Quantitative comparison of different encoders adding RA module on the Massachusetts
Roads Dataset. The best results for each evaluation metric are highlighted in bold.

Encoder model mIOU F1 Kappa

VGG16 0.5325 0.6949 0.6824
Res34 0.5497 0.7094 0.6967
Res50 0.5563 0.7149 0.7023

VGG16 + RA module 0.5708 0.7268 0.7153
Res34 + RA module 0.5605 0.7184 0.7066
Res50 + RA module 0.5834 0.7369 0.7255

To further verify the feature extraction capabilities of different encoders and the
performance of the RA module, we compared the extraction effects of the three encoder
models on the DeepGlobe Roads Dataset. As shown in Figure 6, the results of the VGG16
model have a large number of fragmented patterns, and it is difficult to extract a complete
road network before the RA module is added. There are also fractured road fragments
in the results of Res34 and Res50 models. However, the extraction results of the Res50
model are better than the results of Res34 and VGG16 from visual comparison. After
adding the RA module, the VGG16 model effectively alleviated the “salt and pepper”
phenomenon, indicating that the RA module can highlight the local information of the
feature, maintain the boundary information of the road, and effectively distinguish the
road from the complex surrounding environment. In addition, the Res34 and Res50 models
also extract more complete road networks after adding the RA module.
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Table 2 shows the quantitative comparison of the three encoder models on the Deep-
Globe Roads Dataset. On the whole, the accuracy of the Res50 model is significantly
higher than the other two models, which not only illustrates the positive effect of residual
connections on the road extraction results but also verifies that the depth of the model
directly affects the accuracy of the results. After adding the RA module, the Res50 model
reaches the optimal performance, and the values of mIOU, F1-score, and Kappa coefficient
reached 0.5643, 0.7214, 0.7107. The experimental results show that the Res50 model has
outstanding feature extraction capabilities. Highlighting the characteristics of crucial local
information through the RA module can accurately distinguish the difference between the
road and the surrounding area and improve the road extraction results.

Table 2. Quantitative comparison of different encoders adding RA module on the DeepGlobe Roads
Dataset. The best results for each evaluation metric are highlighted in bold.

Encoder Model mIOU F1 Kappa

VGG16 0.5042 0.6703 0.6554
Res34 0.5094 0.6750 0.6638
Res50 0.5280 0.6911 0.6793

VGG16 + RA module 0.5558 0.7145 0.7031
Res34 + RA module 0.5351 0.6972 0.6857
Res50 + RA module 0.5643 0.7214 0.7107

4.3.2. Ablation Study on the Components of the Network

In this section, we use the Massachusetts Roads Dataset to compare the performance
of different components of the RALC-Net model. We take the Res50 network as the baseline
and then increase the RA module, multi-scale dilated convolution (MD), and multi-feature



Remote Sens. 2021, 13, 4958 14 of 20

information (MF), respectively. From Table 3, the addition of the RA module (the second
row of Table 3) improves the baseline from 0.5563 to 0.5834 in terms of mIoU, indicating
that the RA module has a good feature representation ability, can highlight the importance
of local perception context, and has a positive effect in the task of road extraction. The
mIOU increased from 0.5834 to 0.5872 and 0.5917, respectively, after adding multi-scale
dilated convolution and multi-feature information in the baseline (the third and fourth row
of Table 3). This consequence shows that the multi-scale spatial receptive field extracted
by the multi-scale dilated convolution module can abstract and fuse feature information
in different spatial dimensions to improve the accuracy of the result, and multi-feature
information can provide more helpful semantic information in the task of road extraction.
Finally, we combine all the components to obtain the best performance of the RALC-Net
model (the fifth row of Table 3), and the mIOU reaches 0.5961. In a word, every component
in the model is indispensable for obtaining a complete and accurate road extraction result.

Table 3. Ablation study on the Massachusetts Roads Dataset. The best results for each evaluation
metric are highlighted in bold.

Baseline RA MD MF mIOU F1 Kappa

1
√

0.5563 0.7149 0.7023
2

√ √
0.5834 0.7369 0.7255

3
√ √ √

0.5872 0.7399 0.7285
4

√ √ √
0.5917 0.7435 0.7322

5
√ √ √ √

0.5961 0.7470 0.7358

4.3.3. Road Extraction Using Multi-Feature Information

Due to the heterogeneity of the complex environment, the road has strong similarities
to the surrounding environment in texture and spectral features, which also makes it
difficult to extract a complete and continuous road extraction result. Therefore, we propose
to use feature information such as texture, color, and shape as the model’s inputs to
improve the ability of the network model to extract and abstract deep feature information.
In Section 3.4, we introduced the types and extraction methods of feature information used
in this article. To further demonstrate the impact of multiple feature information on the
road extraction, the proposed RALC-Net is compared with other state-of-the-art models
such as SegNet, U-Net, DeeplabV3+, and D-LinkNet in this experiment.

The visual comparisons of different models are shown in Figure 7, and this experiment
consists of two parts. One part of the experiment is to use only the original image as input
data to extract road information (Figure 7c,e,g,i,k), and the other part is to combine various
feature information with the original image as input data (Figure 7d,f,h,j,l). For SegNet and
U-Net, there is a salt and pepper phenomenon in the extraction map (Figure 7c,e) using
only image data. However, after adding multi-feature information, the result (Figure 7d,f)
effectively improves the salt and pepper phenomenon. As for DeeplabV3+, the outcome
using only image data (Figure 7g) is more easily misidentified in some areas where the
spectral and texture features are similar to the road, which leads to difficultly extracting
a complete and continuous road network. Compared with the result using only image
data, multi-feature information (Figure 7h) can obtain better prediction outcomes. As
shown in Figure 7, the proposed RALC-Net outperforms D-LinkNet having multi-scale
dilated convolution after adding multi-feature information, indicating that the advantages
of RALC-Net with dual-inputs make fuller use of multi-feature information and improve
the generalization ability of the model.
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Table 4 shows the quantitative comparisons of different models. In the first part of
the experiment (the first five rows of Table 4), we can see that the accuracy of D-LinkNet
is higher than the other models except for RALC-Net. This is because D-LinkNet has
an outstanding multi-scale dilated convolution module, which can extract feature maps
at different spatial scales and improve the model’s generalization ability. The proposed
RALC-Net achieves the best performance, with mIOU, F1-score, and Kappa coefficient
reaching 0.5917, 0.7435, and 0.7322, respectively. The evaluation metrics are better than
other models because the RALC-Net proposed in this paper includes a multi-scale dilated
convolution module and uses the RA module to highlight local information and contact
the spatial context, making the model more robust. In another part of the experiment
(the last five rows of Table 4), we take multi-feature information as input data. As shown
in Table 4, the results of SegNet, U-Net, DeeplabV3+, D-LinkNet, and RALC-Net are all
enhanced after adding multi-feature information. The experimental results show that we
can accurately distinguish the target road from other areas by using feature information
such as texture, color, and shape in a complex environment.
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Table 4. Quantitative comparison of different methods using only image data and using multi-feature
information. The best results for each evaluation metric are highlighted in bold.

Method mIOU F1 Kappa

part one

SegNet 0.5477 0.7077 0.6957
U-Net 0.5694 0.7256 0.7140

DeeplabV3+ 0.5439 0.7045 0.6917
D-LinkNet 0.5765 0.7313 0.7196
RALC-Net 0.5917 0.7435 0.7322

part two

SegNet using Multi-feature 0.5755 0.7305 0.7188
U-Net using Multi-feature 0.5800 0.7342 0.7228

DeeplabV3+ using Multi-feature 0.5632 0.7205 0.7080
D-LinkNet using Multi-feature 0.5813 0.7352 0.7239
RALC-Net using Multi-feature 0.5961 0.7470 0.7358

5. Discussion

In Section 4.3.1, we compare the feature extraction capabilities of different encoders
and analyze the feature representation capabilities of the RA module in the Massachusetts
Roads Dataset and the DeepGlobe Roads Dataset. The experimental results show that
taking the Res50 model as the basic structure of the network can reflect outstanding feature
extraction capabilities of the encoders and excellent feature representation capabilities of
the RA module. As shown in Figures 5 and 6, the three models after adding the RA module
are better than the three original models, which reduces the salt and pepper phenomenon
and further improves the continuity of road results. The RA module constructed using the
residual connection to contact spatial context and the attention mechanism to highlight
crucial local information can effectively retain road boundaries and improve the model’s
ability to extract and abstract feature maps. The RALC-Net model has the characteristics
of highlighting the local context by adding the RA module, which can further solve the
problem of discontinuous road extraction caused by spatial heterogeneity. Tables 1 and 2
show that the Res50 model combined with the RA module outperforms the other two mod-
els, with mIOU reaching 0.5834 and 0.5643, respectively. Therefore, comprehensively
considering both quantitative and qualitative results, the RALC-Net proposed in this paper
selects the Res50 model with excellent feature extraction capabilities as the basic encoder
of the network.

In Section 4.3.2, we conduct an ablation study on RALC-Net and comprehensively
analyze the necessity of each component of the network model. As shown in Table 3,
we discussed the performance of different components through five quantitative compar-
isons. The RA module can highlight local semantic information and has the best effect
on enhancing network performance. The result illustrates that local information plays a
vital role in road extraction, and the road network can be extracted more accurately by
preserving spatial topological information such as road texture and boundary, and multi-
feature information can provide more helpful semantic information for road extraction in
complex environments.

High-resolution remote sensing images include a wealth of feature information, and
feature information such as color, texture, and shape extracted from remote sensing images
helps accurately extract target features from a complex environment. The deep learning
model extracts high-level semantic features layer by layer through a multi-layer hierarchical
model. As the depth of the network model increases, the underlying feature information
is often easily overlooked. However, taking the feature information such as color, tex-
ture, and shape as the input of the deep learning model effectively solves this problem,
which successfully combines the low-level feature information with the high-level feature
information, enhancing the generalization ability and robustness of the network model.
As is shown in Figure 7, the visual results after adding multi-feature information have
been improved, indicating using multi-feature information can obtain more continuous
road network and reduce the salt and pepper phenomenon. Moreover, the accuracy of
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the extraction result of adding multi-feature information is also significantly better than
using only the original image to extract the feature information in Table 4. In Section 4.3.3,
we compare the results of RALC-Net with other state-of-the-art models in the second part
of the experiment. The experimental results show that the performance of RALC-Net
proposed in this paper is better than other models. This outcome also illustrates that the
dual-encoder model constructed in this paper has more robust feature extraction capabili-
ties. Compared with other single-encoder models, RALC-Net can obtain more accurate
road networks.

6. Conclusions

This study proposes a novel end-to-end residual attention local perception network
called RALC-Net, which extracts road information from high-resolution remote sensing
images. Specifically, the encoder–decoder structure is used to construct the network model,
and the Res50 model is selected as the encoding baseline. A residual attention module
is proposed by combining the residual connection and the attention mechanism. We
have verified the feature representation ability of the RA module on two public datasets
and analyzed the outstanding performance of the RA module from both qualitative and
quantitative perspectives. In addition, by integrating the multi-scale dilated convolution
module, the RALC-Net can extract comprehensively multi-scale feature information and
strengthen spatial context semantic information. It is also combined with the RA module
to enhance the performance of highlighting local perceptual information. At the same
time, the experimental results show that the dual-encoder structure can enhance the
feature extraction capability of the network. In addition, we use the low-level feature
information such as color, texture, and shape as the model input and combine the low-level
feature information with the high-level abstract semantic features to extract complete
road information from the complex environment. Compared with other state-of-the-art
models on the Massachusetts Roads Dataset, the experimental results indicate that multi-
feature information positively affects the road extraction result and further verify that the
RALC-Net proposed in this paper outperforms other models.

Although deep learning technology has made excellent achievements in image pro-
cessing, its “black box” nature, whose internal information cannot be interpreted, is still
challenging to explain. This article uses the characteristics of the attention mechanism to
have a specific positive effect on the interpretability of deep learning models, but there are
still certain limitations. Future research will address the interpretability problem of deep
learning by using other advanced technologies.
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