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Abstract: Snow-induced radiative forcing (SnRF), defined as the instantaneous perturbation of the
Earth’s shortwave radiation at the top of the atmosphere (TOA), results from variations in the
terrestrial snow cover extent (SCE), and is critical for the regulation of the Earth’s energy budget.
However, with the growing seasonal divergence of SCE over the Northern Hemisphere (NH) in the
past two decades, novel insights pertaining to SnRF are lacking. Consequently, the contribution of
SnRF to TOA shortwave radiation anomalies still remains unclear. Utilizing the latest datasets of
snow cover, surface albedo, and albedo radiative kernels, this study investigated the distribution of
SnRF over the NH and explored its changes from 2000 to 2019. The 20-year averaged annual mean
SnRF in the NH was −1.13 ± 0.05 W m−2, with a weakening trend of 0.0047 Wm−2 yr−1 (p < 0.01)
during 2000–2019, indicating that an extra 0.094 W m−2 of shortwave radiation was absorbed by the
Earth climate system. Moreover, changes in SnRF were highly correlated with satellite-observed TOA
shortwave flux anomalies (r = 0.79, p < 0.05) during 2000–2019. Additionally, a detailed contribution
analysis revealed that the SnRF in snow accumulation months, from March to May, accounted for
58.10% of the annual mean SnRF variability across the NH. These results can assist in providing a
better understanding of the role of snow cover in Earth’s climate system in the context of climate
change. Although the rapid SCE decline over the NH has a hiatus for the period during 2000–2019,
SnRF continues to follow a weakening trend. Therefore, this should be taken into consideration in
current climate change models and future climate projections.

Keywords: Northern Hemisphere; snow-induced radiative forcing; energy budget

1. Introduction

Snow cover is an integral component of the cryosphere and represents one of the
three essential climate variables (ECVs) for snow in the Global Climate Observing System
(GCOS) [1], which plays a crucial role in the Earth’s climate system by regulating the
surface energy budget [2–4]. As a result of the high reflectivity of snow cover, the presence
or absence of snow cover plays a key role in the regulation of the heating and cooling
patterns of the Earth’s surface, more than any other land surface category. For example,
as the surface air temperature increases, the snow cover extent (SCE) retreats and the
surface albedo decreases. Consequently, the land surface reflects less solar radiation back
to space and retains more energy. The reduced reflected shortwave radiation at the top of
the atmosphere (TOA) is known as snow-induced radiative forcing (SnRF) [2,5,6], which is
critical for regulating Earth’s energy budget.
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As reported by Flanner et al. [2] and Chen et al. [6], SnRF (W m−2) can be calculated
by combining observations of SCE, surface albedo contrast (∆α) between snow-covered
and snow-free surfaces, and TOA flux variations with surface albedo change (∂F/∂α). The
time (t) dependence of SnRF, within a region R (here, the Northern Hemisphere; NH) of
area A, can be expressed as Equation (1) [2,5]:

SnRF(t, R) =
1

A(R)

∫
R

S(t, r)
∂α

∂S
(t, r)

∂F
∂α

(t, r)dA(r), (1)

where S (t, r) is the range of snow cover over the NH; α (t, r) is the surface albedo; ∂α/∂S(t, r)
is the rate of variation of the surface albedo with changes in snow cover; and ∂F/∂α(t, r)
is the response of the TOA net shortwave radiation anomalies to surface albedo changes.
According to Flanner et al. [2] and Chen et al. [6], we assumed that ∂α/∂S and ∂F/∂α
were constant for the temporally and spatially varying snow cover S and surface albedo
α, respectively. Furthermore, ∂α/∂S could be replaced by the surface albedo contrast ∆α
driven by the snow cover anomaly, and ∂F/∂α could be substituted by albedo radiative
kernels [2,5,6], wherein the albedo radiative kernels are expressed as the TOA shortwave
flux anomalies associated with a 1% change in surface albedo.

The contribution of SCE to the Earth’s energy budget has received substantial attention
in recent decades. Several studies have estimated SnRF at regional and global scales. For
example, SnRF in snow accumulation and melting seasons over the NH was observed
to be 0.01 and 0.12 W m−2 during 1982–2013, respectively [3]. However, SCE reduction
was observed to result in the absorption of approximately 0.22 W m−2 extra shortwave
radiation in the NH during 1979–2008, which is nearly equal to the radiative forcing caused
by Arctic sea ice shrinkage [2]. Similarly, driven by advanced snow end dates, SnRF in
the NH was weakened by approximately 0.16 W m−2 from 2001 to 2013 [5]. As per the
representative concentration pathway (RCP) 8.5 scenario, a reduction in SCE over the
NH may lead to an extra absorption of 0.47–0.60 W m−2 of shortwave radiation in the
21st century [7]. The above-mentioned studies have proved the contribution of SCE to
Earth’s radiation budget. However, owing to the uncertainty of input datasets, with a poor
quality of the surface albedo dataset, incomplete spatial coverage of snow cover dataset,
and short time span of direct TOA radiation observations, significant differences exist in the
SnRF estimations from climate models, reanalysis datasets, satellite products, and ground
observations. For example, estimates of the SnRF over the NH from the moderate resolution
imaging spectroradiometer (MODIS) were approximately 18% lower than the comparable
estimates from the coarse-resolution advanced very high resolution radiometer (AVHRR)
during 2001–2008 [8]. Moreover, SnRF is a key parameter for the calculation of snow-
albedo feedback (SAF), which may have significant effects on climate projection studies.
For example, SAF exhibits a five-fold spread across the coupled model intercomparison
project phase 5 (CMIP5) models, ranging from 0.03 to 0.16 W m−2 K−1 [9]. In addition,
SAF from ground observations is apparently higher than the comparable results from the
reanalysis dataset [10]. Therefore, an accurate estimation of SnRF is required for measuring
the influence of snow cover on Earth’s radiation budget [2,8], reducing the bias of SAF
calculation, and improving climate projections [7,9].

SnRF is determined by several factors, including SCE change, surface albedo anomalies
induced by snow cover anomalies (which rely on snow-covered and snow-free surface
albedo), solar insolation, and atmospheric states, which determine the propagation of
surface albedo changes to the TOA radiation flux [2]. Compared with other variables, snow
cover change is the most important driving factor of SnRF. Without snow cover, the ground
absorbs approximately four to six times more energy from the sun [11,12]. Instead of a
continuous rapid decline in SCE, a recent study reported a notable seasonal divergence
of terrestrial SCE across the NH over recent decades [13]. Considering the importance of
snow cover for estimating SnRF, quantifying and understanding its spatial and temporal
variations is essential for determining its contribution to the Earth’s energy budget.
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Optimizing the snow cover and surface albedo inputs utilizing satellite observations
is a key approach for improving the accuracy of SnRF [14]. To quantify SnRF and explore
its contribution to TOA shortwave radiation anomalies driven by the latest SCE features
in the NH, a novel estimation of SnRF using satellite observations at the best achievable
spatial and temporal resolutions is urgently required. Therefore, the objective of the present
study was two-fold: (1) to quantify the changes in SCE and resulting SnRF; (2) to determine
the contribution of SnRF to TOA energy budget anomalies. To achieve these objectives,
we first investigated the latest SCE anomalies over the NH. Furthermore, we chose the
surface albedo dataset with the best performance resulting from a cross-comparison of SCE
changes. Finally, we calculated the SnRF based on the selected surface albedo and explored
its spatial distribution and spatial–temporal changes, as well as its influence on the Earth’s
energy budget.

2. Materials and Methods
2.1. Materials

To meet the requirements of the SnRF calculation, three variables—snow cover extent,
surface albedo, and albedo radiative kernels—were employed in this study.

2.1.1. Snow Cover Extent Dataset

To detect SCE anomalies in the NH and to implement them as input parameters for
the estimation of SnRF, a monthly snow chart dataset, calculated from the NH SCE CDR
v01r01 [15] and the snow cover range from the MODIS/Terra monthly SCE in 0.05◦ climate
modeling grid (CMG) cells (MOD10CM) [16], were employed in this study.

NHSCE Snow Charts

Monthly snow charts were obtained from the NH SCE CDR v01r01 and utilized to
determine the long-term SCE anomaly in the NH from 1972 to 2020. These snow chart data
are widely implemented in large-scale SCE anomaly studies, owing to their consistency
and long time span [15].

MOD10CM

MOD10CM is an aggregation of MODIS/Terra Snow Cover Daily L3 Global 0.05◦

CMG (MOD10C1) products [17], providing the monthly mean snow cover percentage
in each 0.05◦ grid cell from February 2000 to the present. The monthly composite of
daily MOD10C1 is essential in climate change studies because of the persistent cloudiness
and limited spatial coverage of MODIS daily snow cover products, particularly at high
latitudes [18]. In this study, MOD10CM was utilized as the snow-cover range in the
SnRF calculation.

Compared with other snow cover products, MOD10CM is the only consistent, objec-
tive snow cover estimate retrieved from optical satellite observations in the past 20 years
with a relatively fine spatial resolution. The 20-year averaged snow cover percentage in
the NH calculated from MOD10CM during 2000–2019 is displayed in Figure 1. To match
the limited spatial coverage of the surface albedo dataset, high latitudes above 75◦ N were
excluded in this study.

2.1.2. Land Surface Albedo Dataset

The surface albedo, defined as the ratio of the reflected radiation flux to the incoming
radiation flux, is one of the most important parameters for calculating SnRF, as it indicates
the amount of solar radiation reflected back to space because of snow cover [2,5,7,8,19],
and has been further designed as one of the GCOS ECVs [20].
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Figure 1. 20-year averaged snow cover percentage (%) in each grid cell across the Northern Hemisphere from 2000 to 2019. 
January and February 2000 comprised monthly means during 2001–2019. 
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To quantify ∆α, required for estimating SnRF, the broadband directional surface
albedo (ALBB-DH) produced by the Copernicus Climate Change Service (C3S) at a spatial
resolution of 1 km during 2000–2019 [21] and the MODIS Terra and Aqua combined
bidirectional reflectance distribution function (MCD43GF) at a spatial resolution of 1 km
during 2001–2017 [22] were implemented in this study. C3S ALBH-DH is the land surface
albedo, and MCD43GF is the snow-free surface albedo. Thus, we obtained yearly and
monthly ∆α by subtracting MCD43GF from C3S ALBH-DH in the corresponding period.

The broadband directional surface albedo (ALBB-DH) produced by the Coperni-
cus Climate Change Service (C3S) [21] is the best option for surface albedo inputs in
SnRF estimation because of its fine spatial resolution (1 km) and complete spatial cover-
age. However, the C3S ALBH-DH is a newly released dataset. To verify the fitness of
C3S ALBH-DH for SnRF estimation, we employed two widely utilized surface albedo
datasets, including the global land surface satellite (GLASS) [23] and the Cloud, Albedo,
and Surface Radiation datasets from AVHRR data Edition 2 (CLARA-SAL-A2) [24,25] for
cross-comparison analysis.

C3S ALBH-DH Surface Albedo Dataset

The C3S ALBH-DH is a global 10-daily gridded surface albedo dataset with a spatial
resolution of 1 km covering 1998–2020, calculated from the Systeme Probatoire d’Observation
de la Terre-VEGETATION (SPOT-VGT) and the Project for On-Board Autonomy-Vegetation
(PROBA-V) [21]. In this study, the integrated black-sky surface albedo computed over the
total spectrum (0.4–4.0 µm) from 2000 to 2019 was utilized for analysis. Compared with
other surface albedo datasets, such as GLASS, CLARA-SAL-A2, MODIS, the Advanced
Polar Pathfinder (APP-X), and the International Satellite Cloud Climatology Project (ISCCP),
C3S ALBH-DH is ideal for continental-scale SnRF estimation because of its fine spatial
resolution, long time span, and spatial completeness.

GLASS Land Surface Albedo Dataset

The GLASS surface albedo dataset was developed by integrating AVHRR and MODIS
version 6 radiance data through a temporal filter scheme [23]. The GLASS surface albedo
dataset provides surface albedo at total shortwave, visible, and near-IR spectral ranges
under actual atmospheric conditions. To meet the objectives of the present study, 8-day
GLASS total shortwave black-sky surface albedo data at a spatial resolution of 0.05◦,
from 2000 to 2019, were utilized in this study. The GLASS surface albedo dataset has
previously been used to quantify the albedo-induced radiative forcing of snow melting
over Greenland [26] and snow cover phenology changes over the NH [3,5].
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CLARA-SAL-A2 Land Surface Albedo Dataset

The CLARA-SAL-A2 surface albedo dataset was generated based on a homogenized
AVHRR radiance time series and was created using algorithms to derive surface albedo for
different land use types, including snow, sea ice, open water, and vegetation. Currently,
CLARA-SAL-A2 is the only available long-time-span surface albedo product that is com-
pletely dependent on AVHRR imagery [24,25]. For the purpose of the present study, the
monthly means of CLARA-SAL-A2 at a spatial resolution of 0.25◦ from 2000 to 2019 were
employed in the analysis.

MCD43GF Snow-Free Surface Albedo Dataset

To obtain the climatology of monthly mean snow-free surface albedo required in SnRF
estimation, a global gap-filled snow-free surface albedo dataset retrieved from the MODIS
Terra and Aqua combined bidirectional reflectance distribution function (MCD43GF) at
a spatial resolution of 1 km during 2001–2017 [22] was utilized in this study. MCD43GF
provides spatially complete surface albedo values after removing the presence of snow
cover, which are computed by MODIS spectral bands 1–7, as well as shortwave infrared,
visible, and near-infrared bands. For the present study, the daily broadband snow-free
black-sky surface albedo data from 2001 to 2017 were used.

2.1.3. Albedo Radiative Kernels Datasets

The albedo radiative kernel, expressed as the TOA shortwave flux anomaly associated
with a 1% change in surface albedo, is a key input variable for estimating SnRF. Compared
with analytical models, the radiative kernel approach has significant advantages in separat-
ing the radiative responses to land surface albedo induced by snow cover changes from
other climate parameters, enhancing the accuracy for capturing the functional dependence
of planetary albedo on surface albedo [9].

To reduce uncertainties in SnRF estimation, three albedo radiative kernels, the National
Center For Atmospheric Research (NCAR) Community Atmosphere Model 3 (CAM3)
gridded at a horizontal resolution of 2.81◦ [27], the Geophysical Fluid Dynamics Laboratory
(GFDL) Atmospheric Model 2 (AM2) gridded at a horizontal resolution of 2.50◦ [28], and the
sixth generation atmospheric general circulation model (ECHAM6) gridded at a horizontal
resolution of 1.875◦ [29], were used in this study. The intra-annual variability of the
three albedo radiative kernels is displayed in Figure 2.
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2.1.4. TOA Radiation Budget Dataset

To explore the contribution of SnRF to TOA energy budget anomalies, the clear-sky
upward TOA shortwave (0.2–5 µm) flux, retrieved from the Clouds and Earth’s Radiant
Energy Systems (CERES) Energy Balanced and Filled (EBAF) products [30] at a spatial reso-
lution of 1.0◦, from 2000 to 2019, was implemented. The CERES EBAF clear-sky shortwave
flux is spatially complete, and is inferred from both CERES and MODIS measurements
conducted monthly [31].

2.1.5. Data Preparation

A summary of the datasets implemented in this study is presented in Table 1. To cater
to the requirements of the SnRF calculation, the snow cover range, land surface albedo, and
albedo radiative kernels were regridded at a spatial resolution of 0.05◦ using the gdalwarp
reprojection and warping utility (https://gdal.org/programs/gdalwarp.html, acessed on
28 November 2021).

Table 1. Summary of datasets used in the study.

Variable Dataset Horizontal
Resolution

Temporal
Resolution Time Span Purpose

Snow cover
MOD10CM 0.05◦ Monthly 2000–2019 SCE change detection

NH SCE CDR v01r01 – Monthly 1966–2019

Surface albedo

GLASS 0.05◦ 8-day 2000–2019

Albedo contrast calculation
CLARA-SAL-A2 0.25◦ 5-day 2000–2019
C3S-ALBH-DH 1-km 10-day 2000–2019

MCD43GF 0.0083◦ Daily 2001–2017

Albedo radiative kernels
CAM3 2.81◦ Monthly –

Radiative kernel calculationAM2 2.50◦ Monthly –
ECHAM6 1.88◦ Monthly –

TOA shortwave flux CERES EBAF 1.88◦ Monthly 2000–2019 Contribution analysis

For datasets with a spatial resolution coarser than 0.05◦, we used “cubicspline” in
the resampling process; for datasets with spatial resolution finer than 0.05◦, we utilized
“average” in the resampling process, which computes the weighted average of all con-
tributing pixels (excluding NODATA) at 0.05◦. Moreover, to match the temporal resolution
(monthly) of albedo radiative kernels, both the 10-day C3S-ALBH-DH and daily MCD43GF
were reproduced to generate monthly mean values.

2.2. Methods
2.2.1. Z-Score Normalization

Z-score normalization was implemented to normalize the different variables in the cross-
comparison analysis. For variable X, the Z-score (Zx) was calculated using Equation (2) [32].

Zx =
X − µx

δx
, (2)

where µx is the average value of X and δx is the standard deviation of X.

2.2.2. Linear Slope

The linear slope measures the rate of change in the dependent variable as the indepen-
dent variable changes, which can be calculated using Equation (3):

Slope =
∆y
∆x

, (3)

where ∆y is the change in dependent variable y and ∆x is the change in independent
variable x.

https://gdal.org/programs/gdalwarp.html
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2.2.3. Pearson Correlation Coefficient

The Pearson correlation coefficient (r) was utilized to quantify the degree of correlation
between two variables. For variables X and Y, r was calculated using Equation (4):

rx,y =
cov(x, y)

δxδy
, (4)

where cov(x, y) is the covariance of variable x and variable y; δx is the standard deviation
of variable x; and δy is the standard deviation of variable y.

2.2.4. Relative Contribution Calculation

We assumed that the variability in the annual mean SnRF was attributed to SnRF
anomalies in each month. Furthermore, regression analysis was utilized to quantify the
contribution of SnRF in each month to the annual mean SnRF variability during 2000–2019
using Equation (5):

SnRFz =
m

∑
i=1

βi × SnRFiz + ε, (5)

where SnRFz is the Z-score of the normalized annual mean SnRF during 2000–2019; SnRFiz
is the Z-score normalized SnRF in month i (i = 1, 12); βi is the regression coefficient for
SnRFiz; and ε is the residual error.

Furthermore, the relative contribution (Ci) of SnRFiz to SnRFz was confirmed using
Equation (6):

Ci =

∣∣∣βi × Xiz_slope

∣∣∣∣∣∣β1 × SnRF1z_slope

∣∣∣+∣∣∣β2 × SnRF2z_slope

∣∣∣+ · · ·+
∣∣∣β12 × SnRF12z_slope

∣∣∣ , (6)

where SnRFiz_slope is the linear slope of SnRFiz, which can be calculated using Equation (3).
The regression analysis is an effective approach for solving collinearity problems

in contribution analysis [33] and has been applied in gross primary production trend
analysis in the Three-North region of China [34], as well as for determining the interannual
evapotranspiration sensitivity to climate change across the Yellow River basin [35].

3. Results

To explore the contribution of changes in SCE to TOA shortwave radiation perturba-
tion in the NH, we first investigated the SCE anomalies during 2000–2019. Further, we
verified the performance of the C3S surface albedo through a cross-comparison with the
snow cover dataset. Finally, we calculated the variabilities of the annual mean SnRF and
identified the dominant month that controlled the annual mean SnRF.

3.1. Characteristic of SCE Variability in the NH during 2000–2019

The Z-score anomalies of annual mean SCE in the NH, including North America (NA)
and Eurasia (EU), are displayed in Figure 3a. The climatology of SCE in each month and
the associated changes during 2000–2019 are exhibited in Figure 3b,c, respectively. Changes
were calculated by the monthly mean SCE during 2000–2019 minus the comparable values
in the referencing period, 1972–2000.

As displayed in Figure 3a, the well-documented rapid SCE decline over the NH since
the late 1960s [36–38] has experienced a hiatus in recent years, especially during 2000–2019,
both in NA and EU. The SCE in the NH declined at a speed of −0.52 × 106 km2 per decade
(p < 0.05) during 1972–2000, but displayed negligible changes during 2000–2019. The
ignorable SCE anomalies from 2000 to 2019 disagree with climate projections, wherein the
SCE will continue to shrink in the future [37,39,40].
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Figure 3. (a) Z-score anomalies of annual mean SCE in the NH, including North America (NA) and Eurasia (EU), during
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in (a) represents the period 2000–2019. Changes in (c) were calculated by the monthly mean SCE during 2000–2019 minus
the comparable values in the referencing period, 1972–2000.

The seasonal variability of SCE in the NH is presented in Figure 3b. The maximum
SCE in the NH occurred in January (47.78 ± 1.59 106 km2) during 2000–2019. Mean-
while, the minimum SCE in the NH occurred in August (2.59 ± 0.63 106 km2) during the
same period. Based on the seasonal cycle of SCE, and published studies, such as those
by Chen et al. [13] and Brutel-Vuilmet et al. [41], the months from March to August were
defined as the snow melting season and the months from September to February were
the snow accumulation season. Detailed SCE changes per month further revealed that, in
comparison with 1972–2000, SCE anomalies between accumulation and melting seasons
were markedly different during 2000–2019 (Figure 3c). In the melting season, SCE in the
NH declined from 1.86 × 106 km2 in June to 0.19 × 106 km2 in March. Conversely, SCE
increased in the accumulation season over the NH during the same period, ranging from
0.26 × 106 km2 in September to 2.35 × 106 km2 in October. The distinct SCE anomalies in
each month indicate that, instead of a rapid SCE decline, the intra-annual SCE variability is
a new characteristic of snow cover in recent years.
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3.2. Validation of C3S Surface Albedo Dataset in SnRF Calculation

A cross-comparison was conducted for SCE and surface albedo anomalies between
March and June, which presented the minimum and maximum negative changes in SCE
over the NH during 2000–2019.

3.2.1. Performance of C3S ALBH-DH in March during 2000–2019

The 20-year averaged March snow cover percentage and surface albedo from C3S
ALBH-DH, GLASS, and CLARA-SAL-A2 during 2000–2019 are displayed in Figure 4.
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during 2000–2019. Any missing values were replaced with monthly means from 2000 to 2019.

As displayed in Figure 4a, the snow cover percentage in March presented a clear lati-
tudinal distribution from low to high latitudes. Compared with the snow cover percentage,
the surface albedo in March exhibited substantial spatial variability, as satellite-retrieved
broadband surface albedo combined snow cover and other surface (mostly vegetation)
within the same grid cell. Moreover, the 20-year averaged surface albedo in March from
C3S ALBH-DH (Figure 4b), GLASS (Figure 4c), and CLARA-SAL-A2 (Figure 4d) displayed
similar spatial distributions. In addition, the snow cover and surface albedo exhibited
similar peaks and valleys from 2000 to 2019 (Figure 4e), with peaks occurring in 2011 and
2018, corresponding to the extremely low temperature and heavy snowfall induced by the
Arctic Oscillation event [42,43].
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The Z-scores of SCE for March and surface albedo from C3S ALBH-DH, GLASS,
and CLARA-SAL-A2, and linear scatter plots between the Z-scores of SCE for March and
surface albedo during 2000–2019 are displayed in Figure 4e,f, respectively. The performance
of surface albedo is largely determined by its spatial resolution. Compared with GLASS
(r = 0.72, p < 0.05) and CLARA-SAL-A2 (r = 0.64, p < 0.05), C3S ALBH-DH (r = 0.76, p < 0.05)
displayed an improved linear correlation coefficient with SCE during 2000–2019 (Figure 4f).
This indicates that C3S ALBH-DH skillfully captured the SCE variability and performed
better than GLASS and CLARA-SAL-A2 during 2000–2019. Moreover, uncertainty in snow
cover data [36,37] and changes in snow morphology [44] may reduce its correlation with
surface albedo. However, C3S ALBH-DH still captured SCE anomalies in March during
2000–2019.

3.2.2. Performance of C3S-ALBH-DH in June during 2000–2019

The 20-year average snow cover percentage in June and the surface albedo from C3S
ALBH-DH, CLARA-SAL-A2, and GLASS from 2000 to 2019 are exhibited in Figure 5.
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Figure 5. The 20-year averaged (a) snow cover percentage (%) in June during 2000–2019 and 20-year averaged surface
albedo in June from (b) C3S ALBH-DH, (c) GLASS, and (d) CLARA-SAL-A2 during 2000–2019. (e) Z-scores of SCE and
surface albedo in June during 2000–2019; (f) linear scatter plots between Z-scores of SCE and surface albedo in June during
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The SCE in June decreased nearly twice as rapidly as the widely acknowledged sea
ice extent shrinking in September during 1979–2011 [38] and exhibited a sustained rapid
decrease during 2000–2019 (Figure 3c). To verify the ability of C3S ALBH-DH at capturing
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the rapid SCE decline in June, we first investigated the spatial distribution of the snow cover
percentage and surface albedo in June. Further, we calculated the correlation coefficient
between changes in the SCE and surface albedo in June during 2000–2019.

As shown in Figure 5a, snow cover in June was mostly distributed at high latitudes
in NA and EU. Meanwhile, the surface albedo from C3S ALBH-DH (Figure 5b), GLASS
(Figure 5c), and CLARA-SAL-A2 (Figure 5d) in snow-covered regions exhibited similar
spatial distributions. Driven by the SCE decline in June (−1.8992 × 106 km2 decade−1,
p < 0.01), the June surface albedo from C3S ALBH-DH, CLARA-SAL-A2, and GLASS
demonstrated similar decreasing trends of 0.0732 decade−1 (p < 0.01), 0.0725 decade−1

(p > 0.05), and 0.0505 decade−1 (p > 0.05), respectively. Compared with C3S ALBH-DH,
changes in surface albedo from both CLARA-SAL-A2 and GLASS were not significant at
the 5% level. Meanwhile, the linear correlation coefficient between C3S ALBH-DH surface
albedo and SCE in June was 0.49 (p < 0.05) during 2000–2019. Although positive correlation
coefficients with SCE were also observed using GLASS (r = 0.48, p < 0.05) and CLARA-
SAL-A2 (r = 0.39, p > 0.05), C3S ALBH-DH performed better in terms of representing the
June snow cover decline in the NH during 2000–2019.

3.3. Estimation of SnRF over the NH

Applying the albedo radiative kernel approach using Equation (1), we first calculated
the SnRF during 2000–2019. Further, we compared the SnRF estimates with direct TOA
shortwave flux observations and explored the relative contribution from each month to the
annual mean SnRF from 2000 to 2019.

3.3.1. Estimated SnRF over the NH during 2000–2019

The spatial distributions of the 20-year annual mean SnRF in the NH under clear-sky
conditions, and the changes that occurred during 2000–2019, are displayed in Figure 6a,b.
The intra-annual cycles of SnRF in the NH during 2000–2019 are displayed in Figure 6d.
Changes in SnRF were expressed as linear trends multiplied by the time interval, following
Flanner et al. [2].
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Figure 6. The 20-year (a) annual mean SnRF, (b) changes in annual mean SnRF, (c) interannual variability of annual mean
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The 20-year annual mean SnRF in NH was estimated to be −1.13 (±0.05) W m−2 from
2000 to 2019 (Figure 6a,c), with high values of SnRF distributed at high latitudes in NA and
EU, the Pamir Mountains, and East Siberia. Moreover, the change in SnRF over the NH
was estimated to be −0.1033 (± 0.0081) W m−2 from 2000 to 2019. The absolute value of
SnRF is decreasing, indicating a generally receding trend of radiative cooling in the NH
from 2000 to 2019. Meanwhile, the minima of annual mean SnRF occurred in 2009 and
2011, coinciding with the large-scale El Niño and Arctic Oscillation events, particularly in
2009 [42]. Conversely, the peaks occurred in 2015 and 2019, corresponding to La Niña and
extremely high temperatures [45].

The intra-annual cycles of SnRF in the NH during 2000–2019 indicated that the SnRF
peaks at approximately −3.83 (± 0.14) W m−2 in April, when both solar irradiance and SCE
over the NH are high. Compared with the SnRF in the NH during 1979–2008 [2], the peak
of SnRF was much lower. The detailed SnRF anomalies in each month revealed that SnRF
significantly decreased from February to June, indicating a weakened radiative cooling
effect over the NH during these months in 2000–2019. The most significant SnRF decline
occurred in May at 0.3681 W m−2 (p < 0.01) from 2000 to 2019. Meanwhile, SnRF weakened
by 0.1714 W m−2 (p < 0.01) in June and 0.1559 W m−2 (p < 0.05) in March. Conversely,
SnRF exhibits negligible changes in snow accumulation months, especially in October,
November, January, and February. The contrasting SnRF changes in snow accumulation
and melting seasons may lead to unbalanced intra-annual shortwave radiative distribution,
which should be considered in climate change projections.

3.3.2. Direct Estimates of TOA Shortwave Flux Anomalies

The 20-year averaged annual mean TOA shortwave flux and changes calculated from
CERES EBAF observations from 2000 to 2019 are displayed in Figure 7a,b. The variability
of annual mean TOA upward shortwave flux and its linear correlation with SnRF are
exhibited in Figure 7c,d, respectively. To match the SnRF definition, an upwelling flux was
defined as negative in the present study.
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The observed annual mean TOA upward shortwave flux changes (Figure 7b) were
highly consistent, both spatially and temporally, with SnRF anomalies (Figure 6b) across
the NH during 2000–2019. Similar to SnRF, the TOA upward shortwave flux increased
at high latitudes in NA and EU, indicating less TOA shortwave flux back to space and
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more shortwave radiation absorption by the Earth climate system from 2000 to 2019. In
comparison, the TOA upward shortwave flux was enhanced in the mid-latitudes of Central
Asia, northeastern China, and Central United States during 2000–2019, which agrees with
previous findings of large scale cold snaps, heavy snowfall, and glacier events across
the United States, Europe, and East Asia, and the observed long-term large-scale cooling
trends for land surface temperature in winter over at mid-latitudes [46,47]. Meanwhile, the
interannual variability of the annual mean TOA upward shortwave flux increased at a rate
of 0.181 Wm−2 decade−1 (p < 0.05), which is consistent with the estimated SnRF anomalies
during the same period (Figure 6c). The correlation coefficient between the SnRF and TOA
upward shortwave flux in the NH was 0.79 (p < 0.05), highlighting the contribution of SnRF
to TOA upward shortwave anomalies in the NH from 2000 to 2019. The strong correlation
between SnRF and TOA upward shortwave flux indicates that changes in SnRF may further
influence and control the local and regional energy budgets owing to climate change.

3.3.3. Attribution of SnRF Anomalies over the NH during 2000–2019

Changes in the annual mean SnRF could be positively represented by SnRF every
month by utilizing a multiple linear regression equation with different coefficients, as
displayed in Equation (5). To attribute the annual mean SnRF changes and explore the
dominant month that controlled the annual mean SnRF, we calculated the relative contribu-
tion of SnRF in each month to the annual mean SnRF anomalies over the NH from 2000 to
2019. Applying a ridge regression analysis with Equation (5), the relative contribution of
SnRF in each month to the annual mean SnRF anomalies over the NH during 2000–2019
was calculated, as displayed in Figure 8.

Remote Sens. 2021, 13, 4938 14 of 18 
 

 

 
Figure 8. (a) Z-score of annual mean SnRF over the NH during 2000–2019 and its relative contribution from each month. 
(b) The 20-year averaged relative contribution from each month to annual mean SnRF anomalies over the NH from 2000 
to 2019. 

The Z-score of the annual mean SnRF over the NH during 2000–2019 is displayed in 
Figure 8a. The resulting contributions from the SnRF in each month to the annual mean 
SnRF anomalies were significantly different, wherein the SnRF in melting seasons con-
trolled the annual mean SnRF variability from 2000 to 2019. Detailed 20-year averaged 
relative contributions from each month to the annual mean SnRF anomalies (Figure 8b) 
further revealed that May accounted for 23.17% of the annual mean SnRF variability over 
the NH, followed by March (18.11%) and April (16.82%) during 2000–2019. The SnRF in 
accumulation seasons contributed insignificantly towards the annual mean SnRF from 
2000 to 2019. Although the SCE over the NH significantly increased in October (Figure 
3a), the SnRF in October remained low because of low insolation during that month.  

Based on the results of SCE and SnRF anomalies over the NH, we inferred that the 
annual mean SnRF over the NH exhibited a continuous weakening trend from 2000 to 
2019, despite the negligible changes in the annual mean SCE. With a rapid SCE decline in 
snow melting seasons, the SnRF weakened during the melting seasons, especially in May. 
Conversely, although SCE increased in accumulation seasons, the low insolation and solar 
incidence angle led to a low SnRF, contributing little to the annual mean SnRF. 

4. Discussion 
Snow-induced radiative forcing SnRF quantitatively estimates the influence of snow 

on the energy balance of the Earth–atmosphere system and reflects the importance of 
snow in the mechanism of potential climate change. Therefore, estimating the SnRF is val-
uable for climate change and climate projections studies. Consequently, quantifying the 
SnRF and providing support for accurate simulations of the climate change response were 
the major objectives of the present study. 

Previous studies have proved that SCE in the NH has experienced a rapid decrease 
since satellite observations began in the late 1960s [3,36–38]. Climate projections suggest 
that the SCE will continue shrinking in the future [37,39], coincident with hemispheric 
warming, indicating the positive feedback of surface reflectivity on climate [2,36,37]. Dif-
ferently to the SCE projections, the rapid SCE decline over the NH has experienced a hia-
tus in recent years, especially during 2000–2019. Therefore, novel investigations into SCE 
variability and its contribution to the Earth energy budget are necessary. Due to the lim-
ited spatial coverage of the surface albedo dataset, high latitudes above 75°N were ex-
cluded in this study. 

The method utilized in this study is appropriate for optimizing the input parameters 
(e.g., snow cover, surface albedo, and albedo radiative kernels) in SnRF calculations to 
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The Z-score of the annual mean SnRF over the NH during 2000–2019 is displayed
in Figure 8a. The resulting contributions from the SnRF in each month to the annual
mean SnRF anomalies were significantly different, wherein the SnRF in melting seasons
controlled the annual mean SnRF variability from 2000 to 2019. Detailed 20-year averaged
relative contributions from each month to the annual mean SnRF anomalies (Figure 8b)
further revealed that May accounted for 23.17% of the annual mean SnRF variability over
the NH, followed by March (18.11%) and April (16.82%) during 2000–2019. The SnRF in
accumulation seasons contributed insignificantly towards the annual mean SnRF from 2000
to 2019. Although the SCE over the NH significantly increased in October (Figure 3a), the
SnRF in October remained low because of low insolation during that month.
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Based on the results of SCE and SnRF anomalies over the NH, we inferred that the
annual mean SnRF over the NH exhibited a continuous weakening trend from 2000 to
2019, despite the negligible changes in the annual mean SCE. With a rapid SCE decline in
snow melting seasons, the SnRF weakened during the melting seasons, especially in May.
Conversely, although SCE increased in accumulation seasons, the low insolation and solar
incidence angle led to a low SnRF, contributing little to the annual mean SnRF.

4. Discussion

Snow-induced radiative forcing SnRF quantitatively estimates the influence of snow
on the energy balance of the Earth–atmosphere system and reflects the importance of snow
in the mechanism of potential climate change. Therefore, estimating the SnRF is valuable
for climate change and climate projections studies. Consequently, quantifying the SnRF
and providing support for accurate simulations of the climate change response were the
major objectives of the present study.

Previous studies have proved that SCE in the NH has experienced a rapid decrease
since satellite observations began in the late 1960s [3,36–38]. Climate projections suggest
that the SCE will continue shrinking in the future [37,39], coincident with hemispheric
warming, indicating the positive feedback of surface reflectivity on climate [2,36,37]. Differ-
ently to the SCE projections, the rapid SCE decline over the NH has experienced a hiatus
in recent years, especially during 2000–2019. Therefore, novel investigations into SCE
variability and its contribution to the Earth energy budget are necessary. Due to the limited
spatial coverage of the surface albedo dataset, high latitudes above 75◦ N were excluded in
this study.

The method utilized in this study is appropriate for optimizing the input parameters
(e.g., snow cover, surface albedo, and albedo radiative kernels) in SnRF calculations to
enhance climate change studies and climate projections in the NH. Although we employed
the best achievable satellite observations, several issues and limitations exist. Unlike previ-
ous research, this study utilized C3S ALBH-DH in SnRF estimation, which provides a better
correlation coefficient with SCE anomalies, both in March and June, during 2000–2019.
Using C3S ALBH-DH in SnRF estimation greatly reduced the uncertainty in the SnRF
calculation induced by surface albedo biases that exist at coarser spatial resolution, such as
in GLASS [5] and MODIS [2,7]. To verify the performance of the C3S ALBH-DH climate
studies, we utilized GLASS and CLARA-SAL-A2 for a comparison. As CLARA-SAL-A2
solely provides black-sky surface albedo (integration of the bidirectional reflectance dis-
tribution function over the viewing hemisphere), the cross-comparison analysis focused
on this. Consequently, SnRF in this study only represents the shortwave (solar spectrum)
component of the snow-induced radiative forcing. However, compared with SnRF us-
ing white-sky surface albedo (integration of the directional albedo over the illumination
hemisphere), the comparable value using black-sky surface albedo has a slightly larger
value of 4.32% [2,9]. As the difference between black-sky and white-sky surface albedo
is systematic, this difference is not likely to influence the spatial and temporal changes
in SnRF.

The albedo radiative kernel approach facilitates the estimation of SnRF in this study.
However, unsolved spectral variations were excluded from this study. Snow induces a
greater albedo contrast in the visible region than that in the near-infrared region, whereas
the albedo radiative kernels are generated with spectrally uniform surface albedo perturba-
tions, and with spectrally varying surface fluxes. A sensitivity analysis by Flanner et al. [2]
observed that unsolved spectral variations may result in a 5% difference between the re-
sults from the entire broadband and separate components. Thus, the excluded unresolved
spectral variations in the radiative kernel technique did not influence the major conclusions
of our study.

Except for SnRF in clear-sky conditions, the comparable results in all-sky conditions
also require further attention. However, published studies using both all-sky and clear-sky
albedo radiative kernels have reported that the all-sky SnRF exhibits similarly inter-annual,
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intra-annual, and spatial pattern variabilities to clear-sky SnRF, except for a 30% difference
in magnitude [2,11,48]. Therefore, this study solely utilized clear-sky albedo radiative
kernels in SnRF calculation, which is not likely to influence the major conclusions of
this study.

5. Conclusions

Based on satellite observations, this study explored the latest SCE changes over the
NH, quantified SnRF, and determined its influence on TOA shortwave anomalies from
2000 to 2019. These results provide insights into the role of snow cover in the Earth’s
climate system in the context of climate change.

A hiatus in the rapid decline of SCE has been observed in recent years, especially dur-
ing 2000–2019. In this study, detailed SCE analysis in each month revealed contrasting SCE
anomalies between the accumulation and melting seasons over the NH during 2000–2019
compared with those during 1972–2000. A cross-comparison between the snow cover
percentage and three surface albedo values in March and June, namely those from C3S
ALBH-DH, CLARA-SAL-A2, and GLASS, from 2000 to 2019, demonstrated the reliability
of C3S ALBH-DH for estimating SnRF. Compared with GLASS (r = 0.72, p < 0.05) and
CLARA-SAL-A2 (r = 0.64, p < 0.05), the C3S ALBH-DH (r = 0.76, p < 0.05) displayed a
better linear correlation coefficient with snow cover percentage in March. Meanwhile,
the performance of C3S ALBH-DH (0.49, p < 0.05) in June was better than that of GLASS
(r = 0.48, p < 0.05) and CLARA-SAL-A2 (r = 0.39, p > 0.05) during 2000–2019.

Utilizing the MOD10CM snow cover range, C3S ALBH-DH surface albedo, and
three albedo radiative kernels, this study estimated the SnRF from 2000 to 2019. The
20-year annual mean SnRF in the NH was estimated to be −1.13 (±0.05) W m−2 from
2000 to 2019. Meanwhile, changes in SnRF during 2000−2019 were estimated to be 0.094
(±0.0081) W m−2, indicating a generally weakening trend of radiative cooling over the
NH. The coefficient of determination between SnRF and the TOA upward shortwave flux
over the NH from 2000 to 2019 was 0.79 (p < 0.05), highlighting the contribution of SnRF to
TOA upward shortwave anomalies over the NH. In addition, the ridge regression analysis
revealed that SnRF in the snow accumulation seasons dominated the annual mean SnRF
variability over the NH during 2000–2019. May accounted for the greatest (23.17%) annual
mean SnRF variability over the NH, followed by March (18.11%) and April (16.82%).

A generalized analysis observed that, although the annual mean SCE exhibited neg-
ligible changes from 2000 to 2019, the notable seasonal SCE changes led to a continuous
weakening of SnRF over the NH, which should be considered when performing climate
projection studies. Therefore, the results presented in this study are beneficial for climate
change studies. Owing to the continuous seasonal variability and spatial heterogeneity of
SCE in the NH, the monitoring, modeling, and prediction of SnRF are urgently required to
reduce their bias in climate projections and CMIP models.
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