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Abstract: GF-6 is the first optical remote sensing satellite for precision agriculture observations in
China. Accurate identification of the cloud in GF-6 helps improve data availability. However, due
to the narrow band range contained in GF-6, Fmask version 3.2 for Landsat is not suitable for GF-6.
Hence, this paper proposes an improved Fmask based on the spectral-contextual information to solve
the inapplicability of Fmask version 3.2 in GF-6. The improvements are divided into the following six
aspects. The shortwave infrared (SWIR) in the “Basic Test” is replaced by blue band. The threshold
in the original “HOT Test” is modified based on the comprehensive consideration of fog and thin
clouds. The bare soil and rock are detected by the relationship between green and near infrared (NIR)
bands. The bright buildings are detected by the relationship between the upper and lower quartiles
of blue and red bands. The stratus with high humidity and fog_W (fog over water) are distinguished
by the ratio of blue and red edge position 1 bands. Temperature probability for land is replaced by
the HOT-based cloud probability (LHOT), and SWIR in brightness probability is replaced by NIR.
The average cloud pixels accuracy (TPR) of the improved Fmask is 95.51%.

Keywords: cloud detection; GF-6 WFV; Fmask; spectral-contextual

1. Introduction

With the widespread application and deeper exploration of remote sensing application
technology, the acquisition and interpretation of multi-spectral satellite data play a pivotal
role in the field of interdisciplinary technology. However, the extraction of feature informa-
tion in remote sensing images is disturbed by clouds to varying degrees due to the influence
of climate and the sensitivity of the visible bands and NIR band to clouds [1,2]. GF-6, the
first optical remote sensing satellite for precision agricultural observations in China [3,4], is
not capable of penetrating clouds and fog [5]. Clouds will hinder the radiation transmission
between the sensor and the ground objects [6]. The radiation transmission obstruction will
make the available information in the images missing and affect atmospheric correction,
registration of remote sensing images, as well as image post-processing such as aerosol
inversion and terrain classification and recognition, which significantly reduce the effi-
ciency and accuracy of data usage [7,8]. Hence, accurate detection of clouds is particularly
important for the processing and application of GF-6 Wide Field of View (WFV) data.

At present, cloud detection algorithms in remote sensing images mainly include
spectral-contextual-based threshold methods [9–12], texture features-based methods [13–15],
and machine learning-based methods [16–19]. The threshold method is mainly used for
MODIS (Moderate Resolution Imaging Spectroradiometer) data and Landsat imagery. It
mainly uses the difference between cloud pixels and non-cloud pixels in reflectance, radi-
ance and brightness temperature to identify cloud pixels [20]. When Landsat imagery was
studied, Eric Vermote et al. [16] used the LEDAPS atmospheric correction tool to generate
an internal cloud mask in the form of a cloud detection; Irish et al. proposed an automatic
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cloud-cover assessment (ACCA) that is applicable to most of parts of the world, but it is
easy to mistake brighter snow for a cloud, especially in areas with abundant snow such
as Antarctica [21,22]; Sun Lin et al. proposed a new Universal Dynamic Threshold Cloud
Detection Algorithm (UDTCDA) supported by a prior surface reflectance database, which
simulates the relationship between apparent reflectance and surface reflectance under
different observations and atmospheric conditions [6]. The establishment of a dynamic
threshold cloud detection model can effectively reduce the influence of atmospheric factors
and mixing factors, and effectively perform cloud detection with different sensors [6]. The
widely used Fmask version 3.2 cloud detection algorithm utilizes the images’ spectral
information to complete cloud detection by selecting a fixed optimal threshold, combining
statistical ideas and object-oriented cloud matching methods [23]. The cloud detection
algorithm for separating clouds from bright surfaces based on parallax effects, proposed
by David Frantz et al. [24], is effective in distinguishing bright surfaces from clouds using
three highly correlated NIR bands observed at different viewing angles, in combination
with cloud displacement indices. Although those threshold methods are simpler and more
efficient to use, they are highly dependent on the selection of the sensor’s bands, threshold
and physical parameters [7]. At the same time, it is difficult to directly apply to remote
sensing images covering relatively narrow wavelengths such as GF-1, GF-2 and GF-6. In
contrast to threshold methods, the cloud detection algorithms based on texture features are
mainly determined by the larger similarity of images textures within the cloud coverage
area and the larger difference between the surface textures outside the cloud coverage area
and the cloud textures. Texture features commonly used in cloud detection research in-
clude fractal dimension, gray level co-occurrence matrix, autocorrelation function, bilateral
texture filtered, grey travel length, Tamura texture features, etc. [25], whose selection is the
key to the cloud detection method based on texture features. However, the accuracy is often
unsatisfactory due to the complexity of the feature information in the image. In addition,
in the field of machine learning, clustering algorithms and neural networks are commonly
used for cloud detection in remote sensing images. Weiland et al. proposed a data-driven
approach to semantic segmentation of cloud and cloud shadow. This method is applied to
Landsat and Sentinel2 data, so that the pixel segmentation accuracy of clouds and cloud
shadows reaches 89% [26]. Li et al. proposed a cloud-detection method based on deep
convolutional neural networks (DCNN), which is applied to GF-1 data, with an overall
detection accuracy of 96.98% [27]. Wang et al. proposed a U-shaped network (MS-UNet)
based on multi-scale feature extraction, which can effectively segment thin clouds and
broken clouds [28]. However, these methods also have certain limitations [29]. For example,
deep learning algorithms in machine learning require a large number of targeted datasets
as training sample data. However, cloud detection data for remote sensing images are
mainly derived from manual annotation, which is time-consuming, laborious and difficult
to accurately annotate. The available datasets are less, which limits cloud detection of
remote sensing images in the field of machine learning to a certain extent [7].

Compared with most satellites, the GF-6 WFV data covers a narrower wavelength
range in spite of occupying eight spectral channels. It has fewer directly usable cloud
detection methods, mostly improving algorithms based on GF-6 WFV data. In 2020, Dong
et al. improved the method by adding discrete surface indices and brightness indices with
the help of a cloud detection algorithm based on automatic threshold generation, which
can better distinguish clouds from bright surfaces in GF-6 WFV data [30]. In the same year,
Wang et al. improved the land cover-based cloud detection (LCCD) algorithm by setting
different thresholds for different surface types, aiming at performing cloud detection on GF-
6 WFV data [31]. Among the above two detection methods, the improved threshold-based
cloud detection algorithms require a predetermined hyperspectral database as support and
are susceptible to the influence of clouds elements that are not completely culled in the
priori database. The improved LCCD algorithm requires different thresholds for different
surface types. Both of these require extremely important prerequisites. A simple and
efficient cloud detection method is an indispensable key to quantitative remote sensing
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research. The Fmask cloud detection method, as a cloud detection algorithm with wider
application and higher efficiency in the threshold method, has been favored in recent years.
Jiang et al. performed principal component transformation on the image and realized
comparative analysis by changing the fixed threshold in Fmask version 3.2 to an adaptive
threshold, which improved the local accuracy of cloud detection in terms of distinguishing
clouds and ice [32]. Zhu et al. extended Fmask version 3.2 to Sentinel 2 and Landsat 8
images in 2015 by removing the thermal infrared (TIR) band and adding the cirrus band
to improve the detection accuracy [33]. Qiu et al. further improved Fmask version 3.2 by
using spectral-contextual features, a morphology-based approach and the integration of
auxiliary data, making it more suitable for the cloud detection of Landsat 4-8 and Sentinel
2 [8,34]. However, it is not negligible that the Fmask algorithm requires wider spectrum
coverage, and some bands required do not exist in the GF-6 WFV data.

GF-6 WFV data lacks SWIR band, TIR band and cirrus band required by Fmask version
3.2. Therefore, this study makes full use of the combination transformation between the
existing bands in GF-6 to perform cloud detection on images with different underlying
surfaces containing different cloud types. The underlying surfaces of bright buildings
which have similar spectral-contextual information to clouds are analyzed separately,
and the laws of their spectral-contextual information are summarized. Potential cloud
pixels (PCPs) are distinguished from some vegetation-covered areas by thresholds of
normalized difference vegetation index (NDVI) inherited from the Fmask version 3.2
and blue band. The experiment concludes that it is very effective to distinguish bright
buildings from clouds by using the relationship between the upper and lower quartiles
of the blue band and the red band. When stratus and fog_W (fog over water) are studied,
the threshold between the upper and lower quartiles of the blue band and the red band
is adjusted. The fog_W represents the fog with high humidity over water. At the same
time, the combination of blue band and red edge position 1 band is used to identify and
distinguish them. Considering the situation of thick and thin clouds, the sensitivity of
identifying thin clouds at the edge of thick clouds is improved by setting the threshold
in the spectral detection and buffering three pixels outward in eight directions for the
cloud pixels detected. In addition, when calculating the cloud probability, temperature
probability for land (LTemperature_Prob) is replaced by the HOT-based cloud probability
(LHOT), and the SWIR in the water brightness probability (Brightness_Prob) is replaced
by NIR. The experimental results show that the detection results of this method are better
than the maximum between-class variance (OTSU), multi-threshold maximum between-
class variance (MMOTSU), support vector machines (SVM), k-means clustering algorithm
(K-means), and so on.

2. Materials and Methods
2.1. Fmask Version 3.2 Cloud Detection

Fmask Version 3.2 cloud detection first performs a series of spectral tests to separate
the PCPs and clear-sky pixels, by selecting those fixed optimal thresholds of NDVI, normal-
ized difference snow index (NDSI), “Whiteness” index, etc. [32]. Next, cloud probability
parameters are calculated based on statistical principles. The cloud probability mask of
water is obtained by calculating the brightness probability and the temperature probability,
while the cloud probability mask of the land is obtained by calculating the variability
probability and the temperature probability. Then, the PCPs are combined with the cloud
probability mask to find the potential cloud layers. Through flood-fill transformation,
the darkening effect of cloud shadows in the NIR band can be used to generate potential
shadow layers. Then, the optimal threshold is selected from the NDSI to find the potential
snow layers. Finally, the cloud geometric characteristics and cloud shadows are combined
to iterate the cloud height and control the matching accuracy, using the solar azimuth,
zenith angle, the viewing angle of the satellite sensor and the height of the clouds relative
to the ground as auxiliary data. Additionally, the appropriate threshold is set to complete
the matching of clouds and cloud shadows [23].
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In the spectral tests, the “Basic Test” mainly uses the Top of Atmosphere (TOA)
reflectance and brightness temperature (BT) in the SWIR band, combined both NDVI and
NDSI for testing. The “Whiteness” index uses the sum of the absolute difference between
the visible bands and overall brightness to capture cloud properties. The “HOT Test”
distinguishes the fog and thin clouds in the clear-sky pixels based on the difference in the
spectral response of the blue and red wavelengths to haze and clouds. The detection of
rocks and deserts uses the ratio of the NDSI and SWIR band to separate most of the bright
rocks from the clouds. The “Water Test” mainly divides all the elements into water pixels
and land pixels through the NIR band and NDVI [23].

The Fmask cloud detection algorithm is more suitable for routine usage with Landsat
images to detect clouds and cloud shadows compared with the 84.8% of ACCA [23].
However, the GF-6 WFV data cannot be used for “Basic Test”, “Rock and Bare Soil Test”,
etc. due to the lack of the SWIR and TIR bands required by the Fmask version 3.2. Therefore,
if you want to use the Fmask algorithm to process GF-6 WFV data, it is necessary to improve
the Fmask Version 3.2 according to the spectral-contextual information of the GF-6 WFV
data. So, we propose an improved Fmask algorithm for GF-6 WFV data cloud detection.

2.2. An Improved Fmask Algorithm for GF-6 WFV Cloud Detection
2.2.1. Data Introduction

GF-6 WFV data has eight bands. On the basis of the four conventional bands of blue,
green, red and NIR, red edge position 1, red edge position 2, an ultraviolet band and a
yellow band are added. The specific band information is shown in Table 1. Although
the data has eight bands, there are not many bands that can be used for cloud detection
because of the small spectral range it covers.

Table 1. GF-6 image data band information.

Bands Wavelength/µm Fwhm/µm Gains/(W/(m2. Sr µm)) Offset/(W/(m2. Sr µm))

Band1 0.45-0.52 0.07 0.0667 0.0
Band2 0.52-0.59 0.07 0.0517 0.0
Band3 0.63-0.69 0.06 0.0485 0.0
Band4 0.77-0.89 0.12 0.0298 0.0
Band5 0.69-0.73 0.04 0.0530 0.0
Band6 0.73-0.77 0.04 0.0445 0.0
Band7 0.40-0.45 0.05 0.0814 0.0
Band8 0.59-0.63 0.04 0.0559 0.0

It is not convenient to directly use in cloud detection research due to the large size of
the GF-6 data. Therefore, subgraphs with different underlying surfaces including buildings,
bare soil, cultivated land, woodland, water, etc., and different cloud types such as thin
clouds, thick clouds and broken clouds, are selected for detection according to requirements
in this study.

Performing a series of spectral tests on the bands of images is a key part of the Landsat
Fmask algorithm, but the wavelength range covered by GF-6 WFV data is only 0.40~0.89
µm, which limits the Fmask version 3.2 cloud detection. The experiment demonstrates
that improvements and the introduction of some indicators can make the Fmask algorithm
suitable for GF-6 WFV data.

In this research, we make full use of the existing bands of GF-6 WFV data for combi-
natorial transformation. NDVI inherited from the Fmask version 3.2 and the blue band
are used to solve the problem of the lack of bands in the "Basic Test"; the threshold is
modified to make it more suitable for the research objects in the "HOT Test"; for the case
where the research data does not have SWIR band, the underlying surfaces such as bare
soil, rock, and clouds are distinguished with the ratio of the green band to NIR band [20];
the detection of bright buildings is increased through the relationship between the upper
and lower quartiles of the blue and red bands; the detection of stratus and fog_W with
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high humidity is increased through the ratio of the blue band to the red edge position 1
band. When calculating the cloud probability, LTemperature_Prob is replaced by LHOT,
and the SWIR in Brightness_Prob is replaced by NIR. Since the Fmask version 3.2 [23] has
been fully documented, this article only describes the improved part for the spectral tests.

2.2.2. Identification of PCPS

1. Basic Test

BasicTest = NDVI < 0.8 & Band1 > 0.15,
Where,
NDVI =(Band4− Band3)/(Band4 + Band3)

(1)

The “Basic Test” of the of the Fmask version 3.2 is performed by the combination of
SWIR band, green band, TIR band and NDVI. However, unfortunately, the SWIR band
and TIR band are not available in GF-6 WFV data. This part of the improvement is mainly
carried out with the help of the blue band. Clouds have high reflectivity in the visible
bands due to the “white” characteristics of clouds in the spectral bands [33]. Among them,
the reflectivity of the clouds in the blue band is higher than 0.15 [20], which is different
from most typical ground objects. Therefore, the improved Fmask combines both NDVI
inherited from the Fmask version 3.2 and the blue band to separate the PCPs from the
vegetation-covered area.

2. HOT Test

HOT Test = Band1− 0.5 ∗ Band3− 0.11 > 0 (2)

In the range of the visible bands, the wavebands of most land surfaces under clear-sky
conditions are highly correlated, but the spectral response of thin clouds and fog in the
blue and red bands is quite different, which is more effective for separating fog and thin
clouds from clear-sky pixels [23]. Zhu et al. used the TOA reflectance values in blue and
red bands as inputs for regression, which can be effective in identifying fog and clouds.
Considering the relatively high reflectivity of turbid water in the visible bands, it is easy to
be confused with the results of the "HOT Test". In response to this problem, the detection
threshold is adjusted from 0.08 to 0.11 in this study combined with the GF-6 WFV data [20].

3. Rock and Bare Soil Test

Rock and Bare Soil Test = Band2/Band4− 0.85 > 0 (3)

The rock and bare soil in remote sensing images are easily confused with cloud pixels
because of their high reflectivity. The reflectivity of clouds and bare soil in the visible bands
tends to increase, while the reflectivity of clouds has a slight downward trend between
the visible bands and NIR band, which is different from that of rock and bare soil [23].
Therefore, the experiments are carried out with the ratio of green band to NIR band. The
results show that the ratio of cloud is greater than 1, while the ratio of rock and bare soil is
less than 1. Considering the thick and thin clouds, threshold is set to 0.85, which can better
eliminate the influence of bare soil [20].

4. Build Test

The spectral-contextual information of clouds and bright buildings in remote sensing
images is very similar, as shown in Figure 1. Bright buildings in the images will cause
accuracy of cloud detection methods based on spectral features to decrease. Therefore, how
to distinguish between clouds and bright buildings in the images is one of the key factors
to improve the accuracy of cloud detection.
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Figure 1. Spectral-contextual information of different typical objects in reflectance bands.

In the visible bands and NIR band, clouds and bright buildings cannot be effectively
distinguished by thresholds of a single band, but experiments have shown that the lower
quartile of clouds in the blue band is larger than the upper quartile of the red band. There
is little overlap between them. The corresponding bright buildings have large overlap in
the upper and lower quartiles of the blue and red bands, and the lower quartile of the blue
band is smaller than the upper quartile of the red band (Figure 2). The underlying surfaces
are divided into water and non-water. The dynamic threshold can be set by the difference
of the TOA reflectance, which could be used to distinguish between clouds and bright
buildings in GF-6 WFV data. The specific equation is as follows:

Build Test =(Band1, 25)− (Band3, 75) (4)
Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 23 
 

 

 

Figure 2. Boxplots of band 1 and band 3 radiances for clouds and various surfaces. 

( ) ( )Bui l d  = Band1, 25  -  Band Test 3, 75  (4) 

In Equation (4), (Band1, 25) represents the lower quartile of the blue band and 

(Band3, 75) represents the upper quartile of the red band. The explanation for quartiles is 

that in statistics, all values are arranged from small to large and divided into four equal 

parts. It should be noted that "all values" here refers to all radiances of the potential cloud 

pixels identified in the above steps in a certain band. When calculating the upper and 

lower quartiles of band 1, "all values" is all radiances in the blue band, which is obtained 

by the potential cloud pixels identified in the detected image. Similarly, when calculating 

the upper and lower quartiles of band 3, "all values" is all radiances of the red band, which 

is obtained by the potential cloud pixels identified in the detected image. According to the 

arranged values, the values at the three division points from small to large are the lower 

quartile, median, and upper quartile. The lower quartile is the 25th percentile value and 

the upper quartile is the 75th percentile value after a set of data is arranged. In general, 

(Band1, 25) and (Band3, 75) are to take the 25th percentile value and 75th percentile value, 

which are ordered by each row of the blue and the red bands. 

5. Stratus Test 

As cloud base height can be any value from 200 meters to 12,000 meters [23], the base 

of fog is at the earth's surface. Whether it is cloud or fog, the height relative to the ground 

will be affected by various factors such as humidity and temperature. Therefore, both 

cloud base height and fog base height are uncertain. The height relative to the ground 

alone is not enough to distinguish clouds from fog_W. The blue band in the visible band’s 

range has a larger scattering intensity and is most sensitive to fog, so it is often used to 

identify fog. 

In the GF-6 WFV data, a scene with both stratus with high humidity and fog_W are 

selected, and stratus and fog_W are identified by visual interpretation. As shown in Fig-

ure 3, sample labels are obtained by artificial vectorization of the identified stratus and 

fog_W images. The experimental research in this paper shows that there is a large differ-

ence on the ratio of blue band to red edge position 1 band between stratus and fog_W at 

higher humidity levels. According to the trend lines of the ratio of stratus and fog_W in 

the blue and red edge position 1 band in Figure 4, the ratio of stratus over water falls in 

Figure 2. Boxplots of band 1 and band 3 radiances for clouds and various surfaces.



Remote Sens. 2021, 13, 4936 7 of 21

In Equation (4), (Band1, 25) represents the lower quartile of the blue band and (Band3,
75) represents the upper quartile of the red band. The explanation for quartiles is that in
statistics, all values are arranged from small to large and divided into four equal parts. It
should be noted that “all values” here refers to all radiances of the potential cloud pixels
identified in the above steps in a certain band. When calculating the upper and lower
quartiles of band 1, “all values” is all radiances in the blue band, which is obtained by the
potential cloud pixels identified in the detected image. Similarly, when calculating the
upper and lower quartiles of band 3, “all values” is all radiances of the red band, which is
obtained by the potential cloud pixels identified in the detected image. According to the
arranged values, the values at the three division points from small to large are the lower
quartile, median, and upper quartile. The lower quartile is the 25th percentile value and
the upper quartile is the 75th percentile value after a set of data is arranged. In general,
(Band1, 25) and (Band3, 75) are to take the 25th percentile value and 75th percentile value,
which are ordered by each row of the blue and the red bands.

5. Stratus Test

As cloud base height can be any value from 200 meters to 12,000 meters [23], the base
of fog is at the earth’s surface. Whether it is cloud or fog, the height relative to the ground
will be affected by various factors such as humidity and temperature. Therefore, both cloud
base height and fog base height are uncertain. The height relative to the ground alone is
not enough to distinguish clouds from fog_W. The blue band in the visible band’s range
has a larger scattering intensity and is most sensitive to fog, so it is often used to identify
fog.

In the GF-6 WFV data, a scene with both stratus with high humidity and fog_W are
selected, and stratus and fog_W are identified by visual interpretation. As shown in Figure 3,
sample labels are obtained by artificial vectorization of the identified stratus and fog_W
images. The experimental research in this paper shows that there is a large difference on
the ratio of blue band to red edge position 1 band between stratus and fog_W at higher
humidity levels. According to the trend lines of the ratio of stratus and fog_W in the
blue and red edge position 1 band in Figure 4, the ratio of stratus over water falls in the
interval between 1.0 and 4.4, and the ratio of fog_W falls near 1. There is a clear distinction
between them. According to Figure 4, if we simply consider the fog_W, the lower limit of
the threshold should indeed be increased. However, it is also necessary to consider thin
clouds in the stratus with high humidity. The ratio of the blue band to red edge position 1
band of thin clouds is slightly higher than 1, but lower than 1.5. When the lower limit of
the threshold is set to 1.5, as shown in Figure 5, according to the arrow pointing and the
circled part, it can be seen that the thin clouds of the stratus with high humidity is difficult
to identify.

Therefore, considering the stratus, thin clouds and fog_W, the specific equation is as
follows:

Stratus Test = Band1/Band5 < 4.4&Band1/Band5 > 1.0 (5)

2.2.3. Cloud Pixels Probability Calculation

1. Cloud recognition is not an all-or-nothing state due to the complexity of clouds in
remote sensing images. Therefore, the distribution of cloud pixels in remote sensing
images can be further determined by calculating the cloud probability of PCPs to
better identify clouds. Because water pixels and land pixels have high variability, the
Fmask cloud detection algorithms of versions 3.2 and 4.0 are referred to calculate
cloud probabilities for water pixels and land pixels, respectively. Cloud probability
for water
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1 
 

 

 
  Figure 3. The comparison between the original images (Bands 3, 2, and 1 composite) and sample

labels obtained by manual vectorization with the help of visual interpretation. Visual interpretation
will vectorize the original images into clouds (white) and fog_W (black). The black circled in green is
the fog_W recognized by visual interpretation.

In the Fmask version 3.2, the cloud probability for water (wCloud-Prod) is determined
by the temperature probability (wTemperature_Prob) and Brightness_Prob. However, the
existing bands in the GF-6 WFV data cannot meet the requirements of wTemperature_Prob
and Brightness_Prob, so this part of this research has been modified to some extent. For the
Brightness_Prob over water, water is generally dark, especially in SWIR band reflectance,
and the existence of clouds over water can increase SWIR band reflectance greatly [23].
Brightness_Prob is normalized based on these two features in Fmask version 3.2. However,
due to the limitation of the GF-6 WFV data, the SWIR band is replaced by the NIR band
based on the similar band characteristics, as shown in Equation (6) [20]. In addition, for
water areas, the absence of wTemperature_Prob has little effects on the cloud detection
accuracy [34]. Therefore, wTemperature_Prob is ignored in this study.
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Figure 4. For GF-6 WFV data, the ratio of fog_W and stratus with high humidity over water in the blue band to the red
edge position 1 band.

 

2 

 
Figure 5. Comparison of results of different thresholds. The tail of the red arrow is the thin clouds in the image (Bands 3, 2,
and 1 composite), and the head is the recognition of the corresponding part of the tail after the threshold of the ratio of
the blue band to the red edge 1 band is increased to 1.5. The green circled is the recognition of thin clouds because of the
different thresholds.
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1 Brightness probability for water:

Brightness_Prob = min(Band4, 0.15)/0.15 (6)

wCloud_Probis is calculated by Brightness_Prob for water:

wCloud_Prob = Brightness_Prob (7)

Through the above detection, if the result is larger than 0.5, the water pixel is identified
as a cloud pixel. This fixed threshold works well for detecting clouds over water [23].

2. Cloud probability for land

Land pixels have higher variability compared with water pixels. Since the calculation
of the cloud probability for land (LCloud-Prob) in Fmask version 3.2 requires TIR band,
LTemperature_Prob can no longer be calculated. Therefore, the improvement of the LTem-
perature_Prob by Qiu et al. (2019) is referred to. LCloud-Prob is a combination of variation
probability (Variability-Prob) and the HOT-based cloud probability (LHOT) computed as
follows:

1) LHOT:

Clear-sky Land = PCP(false) and Water Test(false) (8)

LHOT = HOT−(HOTlow−0.04)/(
(

HOThigh+0.04
)
− (HOTlow−0.04)

)
where,(

HOTlow, HOThigh

)
= (17. 5, 82.5) percentile of clear-sky land pixels′HOT

(9)

In Equation (9), LHOT is the result of normalizing the HOT value based on the
clear-sky pixels, and the constant 0.04 is the differential assumption for the clear-sky
pixels HOT value [34]. LHOT is used as an alternative to LTemperature_Prob for GF-6
WFV data. According to the sensitivity analysis of the global cloud reference mask, the
17.5 and 82.5 percentiles are selected as the thresholds [23]. 17.5 and 82.5 percentiles are
inherited from the Fmask version 3.2, which can provide the HOT interval for clear-sky
land pixels [34]. The clear-sky land pixels are obtained after the identification of potential
cloud pixels and the calculation of cloud probability for GF-6 WFV of each scene. Therefore,
these two percentages are aimed at the HOT of the intermediate quantity (clear-sky land
pixels) obtained during the detection process.

2) The variability probability for land:

Variability_Prob = 1−max(abs(modified NDVI), Whiteness) (10)

In remote sensing images, land pixels contain richer information of features. Differ-
ent features increase the variability of land pixels, making it difficult to find a definite
normalized value. The Fmask cloud detection algorithm of version 3.2 uses NDVI, NDSI
and “Whiteness” to capture cloud pixels in the visible bands and NIR band range. For
GF-6 WFV data, the unusable index NDSI is removed, and the largest of the two indices
is subtracted by 1 to satisfy the spectral variability as shown in Equation (10). Note the
“whiteness” index was originally proposed by Gomez-Chova et al. (2007) [35]. Clouds
often appear as white features due to the “flat” reflectivity in the visible bands. Therefore,
the sum of the absolute difference between the visible bands and the overall brightness is
used to capture this type of cloud property, which is “Whiteness”. The original “Whiteness”
requires many narrow visible bands and is not suitable for Landsat sensors [23]. Therefore,
Zhu et al. improved the “Whiteness” and only required three narrow visible bands to
complete. By dividing the difference by the average value of the visible bands, the new
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“Whiteness” index works well for Landsat imagery and 0.7 (sensitivity analysis of the
global cloud reference dataset) appears to be an optimal threshold for excluding clear-sky
pixels that exhibit high variability in the visible bands [23]. In addition, the “Whiteness”
threshold with the highest average cloud overall accuracy is the optimal threshold obtained
by Zhu et al. based on 142 experimental images. The above “Whiteness” index is used to
exclude pixels that are not “white” enough to be clouds [23]. However, it should be noted
that the “Whiteness“ does not completely exclude features such as bare soil and rocks that
have “flat” reflectance in the visible bands. The “Whiteness Test“ is also applicable to GF-6
WFV data.

When dealing with saturated pixels, the spectral variability based on NDVI may not
be accurate [23]. In this case, the modified NDVI is used in Equation (10). The NDVI values
are modified as follows: if a pixel is in the red band is saturated and has an NIR band larger
than the red band, then Fmask provides a zero value for this pixel’s NDVI [23].

LCloud-Prob is calculated by combining both LHOT and Variability-Prob:

LCloud_Prob = LHOT ∗ Variability_Prob (11)

Land_threshold
= 82.5 percentile of LCloud_Prob(Clear-sky Land pixels)+0.2

(12)

Potential Cloud Layer is true if
(PCP(true) and Water Test(true) and wCloud_Prob > 0.5) or
(PCP(true) and Water Test(false) and LCloud_Prob > Land_threshold) or
(LCloud_Prob > 0.99 and Water Test(flase))

(13)

The threshold of clouds for land defined in Fmask version 3.2 is composed of a constant
0.2 based on sensitivity analysis and an upper limit of 82.5 percentile of the probability of a
clear-sky land pixels, as shown in Equation (12). At this point, through the calculation of
cloud probability and the PCPs identified in the previous step, Fmask generates potential
cloud layers by Equation (13). In addition, if the value of LCloud_Prod exceeds 99%, Fmask
will search for missing cloud pixels [23].

After the potential cloud layer is identified, Fmask version 3.2 spatially improves the
cloud mask. If five or more pixels in the 3 × 3 neighborhood of a pixel are cloud pixels, the
pixel is recognized as a cloud pixel; otherwise, it is recognized as a clear-sky pixel [23].

In addition, it is inevitable that there will be sporadic noise points in the results of
cloud detection due to the complexity and variety of ground features and the presence of
noise in the image. After using the improved Fmask algorithm to perform cloud detection
on GF-6 data, the results are filtered through opening and closing to complete the post-
processing of sporadic pixels and tiny holes in the image.

For the improved Fmask cloud detection algorithm, the flow chart is shown in Figure 6.
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3. Results and Discussion
3.1. Experimental Results

This part is mainly divided into qualitative evaluation and quantitative evaluation of
cloud detection results, in which the qualitative evaluation is compared and analyzed by
visual interpretation. On the one hand, the results detected by the improved Fmask are
compared and analyzed with real cloud images and the cloud detection results of Fmask
version 3.2. On the other hand, the results of cloud detection using the improved Fmask
are compared and analyzed with real cloud images and the cloud detection results of four
traditional methods, such as OTSU, MMOTSU, SVM and K-means. Quantitative analysis is
to intuitively evaluate the accuracy of cloud detection results of different methods through
calculation of precision evaluation index by confusion matrix [10].

In this paper, multi scene images of different regions of GF-6 WFV data are selected for
accuracy validation. In order to make the results more accurate and reliable, it is selected
that images with different underlying surface such as vegetation, water, buildings and
bare soil and containing various cloud types such as thick and thin clouds for detection.
Representative sub-images are selected for the qualitative and quantitative analysis of the
results due to the large size of the GF-6 WFV data.

This research is improved on the basis of the Fmask version 3.2. The Fmask both of
version 3.2 and the improved version are used to detect the representative subgraphs of
GF-6 WFV data. In order to adapt to GF-6WFV data, Fmask version 3.2 mainly omitted
the following parts: (1) SWIR, TIR and NDSI in “Basic Test” are all omitted, only NDVI
is left due to the lack of TIR band and SWIR band in GF-6 WFV data. (2) “B4/B5 Test”
is omitted because GF-6 WFV data lacks SWIR band. (3) The calculation of wTempera-
ture_Prob, Brightness_Prob, and LTemperature_Prob are omitted, and the modified NDSI
in the calculation of Variability-Prob is omitted due to the lack of SWIR band and TIR band
in the GF-6WFV data. Those results are compared and analyzed, as shown in Figure 7. In
Figure 7, the comparison shows that the Fmask version 3.2 has a large commission error of
cloud detection, especially when the underlying surface is bright, which is easily identified
as clouds. For thin clouds attached to the edges of thick clouds, the unimproved algorithm
can be very sensitive, to the extent that serious misclassifications occur. Unimproved
algorithms may cause serious commission errors because they are too sensitive. Overall,
the results of the Fmask version 3.2 are relatively unstable, with a high omission errors
and commission errors of clouds in the detection results. To address the above-mentioned
problems of the Fmask version 3.2 for GF-6 WFV data cloud detection, the algorithm is
improved, and the improved detection results are analyzed in this study.

3.2. Qualitative Analysis
3.2.1. Bright Building

When the underlying surface of the detected object is a building with high reflectivity,
its reflectivity is extremely similar to a cloud, which causes great interference in cloud
detection. In Figure 8 each row from left to right are the RGB form of the original subgraph,
the real cloud image, the results of the four traditional cloud detection methods of OTSU,
MMOTSU, SVM, and K-means, and the result of cloud detection by improved Fmask.
Among them, the yellow in the detection result is the commission errors and the green
is the omission errors. In comparison, the cloud detection results of the four traditional
methods of the images show high commission errors. Especially the OTSU, MMOTSU,
and K-means methods, they have no resistance to images with large quantities of bright
buildings. Additionally, the commission errors are extremely high, making the detection
results unusable.
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Figure 7. Comparison of detection results between Fmask version 3.2 and the improved Fmask algorithm. (a) (Bands 3,
2, and 1 composite) and (b) (Bands 3, 2, and 1 composite) are images of different regions of GF-6 WFV data, respectively
(The first image in each row). The second and third images in each row show the results of testing the same data by Fmask
vesion 3.2 and improved Fmask. The white represents the detected cloud, the black represents the background, and the blue
represents the detected cloud shadow.
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Figure 8. Comparison of the results of different cloud detection methods for images of bright building on the underlying
surface. The first image in each row shows a subset of GF-6 WFV data (Bands 3, 2, and 1 composite). The second image in
each row shows the distinction of the first image into cloud (white) and background (black) through visual interpretation.
The third to seventh pictures in each row show the results of testing the same data by different methods, such as OTSU.
Among them, the yellow represents what was actually non-cloud but was detected as cloud (commission errors), and the
green represents what was actually cloud but was detected as non-cloud (omission errors).
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3.2.2. Water Surface

Conventional cloud detection algorithms such as OTSU have relatively high omission
errors when detected objects are stratus with high humidity over water. The height of
stratus relative to the water is reduced due to the high humidity, so that the height of
stratus and fog_W cannot be used as a criterion to distinguish them from each other. In
addition, the reflectivity of the high-humidity stratus cannot be solely used as a necessary
condition for identifying due to it being lower than that of ordinary clouds. The improved
Fmask uses the ratio of the blue band to the red edge position 1 band to identify the stratus
with high humidity over water. On account to the higher scattering intensity of the blue
band, this ratio is further used to distinguish between stratus and fog_W. This algorithm
greatly reduces the omission errors of higher humidity stratus over water compared to
traditional algorithms such as OTSU, which can respond effectively to this type of cloud.
The rightmost column of Figure 9 shows the series of results of this study’s detection.
However, it should be noted that this study only distinguishes between stratus over water
and fog_W and does not distinguish between clouds and fog on land separately.
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Figure 9. Comparison of detection results of different methods for high-humidity fog and stratus over water.

3.2.3. Cultivated Land, Woodland, Bare Soil

When the underlying surfaces of the images are cultivated land, woodland, or bare
soil, the reflectance of bright ground surfaces, such as bright rocks, is more similar to clouds.
This poses a challenge for cloud detection. The spectral reflection of different ground objects
is in a mixed state and affect each other. The mixing of cloud pixels with bright surface
pixels such as bare soil, rocks, etc. causes great interference in cloud detection, resulting in
several traditional cloud detection algorithms having high commission errors. Experiments
show that there are differences in the ratio of the green band to the red band between bright
surfaces and clouds. Based on those features, the improved cloud detection algorithm of
Fmask comprehensively considers the conditions of thick clouds and thin clouds, which
sets corresponding thresholds to exclude the influence of bright ground surfaces such as
rocks in cloud detection. The rightmost column of Figure 10 is the result of cloud detection
by this research method. It can be seen from the comparison that this method is better than
traditional cloud detection algorithms such as MMOTSU.
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Figure 10. Compare the results of different cloud detection methods on images of cultivated land, woodland and bare soil
with bright surfaces.

3.2.4. Others

Due to their low density, thin clouds are easily affected by the reflectivity of the
underlying surface [36]. Whether it is a thin cloud attached to the edge of a thick cloud or a
thin cloud that exists alone, it is easy to be mistaken for non-cloud pixels. In Figure 11, the
detection results of traditional algorithms such as OTSU have high commission errors for
thin clouds attached to the edge of thick clouds, which makes it difficult to extract these thin
clouds effectively. In this study, we do not target the identification of thin clouds that exist
alone, only improving the detection of thin clouds attached to the edges of thick clouds.
Whether in the “Basic Test”, “HOT Test”, “Rock and Bare Soil Test”, or in the distinguishing
stage of stratus with high humidity and fog_W, the factors of thick cloud, thin cloud and
fog are comprehensively considered when setting the thresholds. In addition, according to
the recognition results, the detected cloud pixels are buffered three pixels outward in eight
directions. On the one hand, this can effectively fill the identification holes. On the other
hand, it can further identify thin clouds at the edge of thick clouds.

Affected by the relatively narrow wavelength range covered by GF-6 WFV data, it
is difficult for the Fmask algorithm to more effectively identify thin clouds alone. When
there are a large number of thin clouds alone to be detected, the algorithm in this study
still cannot reach the ideal detection accuracy.

3.3. Quantitative Analysis and Evaluation

In order to evaluate the algorithm more comprehensively and accurately, quantitative
analysis and comparison are essential. Because the amount of GF-6WFV data is large,
those subgraphs are selected which have different underlying surfaces (such as buildings,
bare soil, woodland, cultivated land and water surface) and include thick clouds and thin
clouds. Their detection results are quantitatively evaluated. The subgraphs are analyzed
and verified for accuracy with confusion matrix.
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Figure 11. Comparison of the results of different cloud detection methods for thin clouds attached to the edge of thick
clouds.Therefore, the improved Fmask cloud detection algorithm has a better recognition effect on thin clouds attached to
the edge of thick clouds and reduces the commission errors of clouds. As shown in the rightmost column of Figure 11, the
green color is significantly reduced, improving the overall accuracy of cloud detection.

In the confusion matrix, the columns represent the predicted category, and the rows
represent the true attribution category of the data. In short, the confusion matrix is a
2*2 situation analysis table, including TP (True Positive), FN (False Negative), FP (False
Positive), and TN (True Negative). This chapter analyses the accuracy of cloud detection
results with the help of TPR (True Positive Rate), PPV (Positive Predictive Value), TNR
(True Negative Rate), and F1 Score (Harmonic average of Precision and Recall), which are
calculated as follows.

TPR = TP/(TP + FN) (14)

PPV = TP/(TP + FP) (15)

TNR = TN/(FP + TN) (16)

F1 score = 2 ∗ TPR ∗ TNR/(TPR + TNR) (17)

With the help of ENVI, the vectorization process of the true color composite images
(Bands 3, 2, and 1 composite) is carried out. The results of the vectorization process are
used as the sample true classification labels of the confusion matrix, and the results of the
detection using OTSU, MMOTSU, K-means, SVM and the improved Fmask cloud detection
algorithm in this paper are used as the predicted classification results of the confusion
matrix. According to Equations (14)–(17), the accuracy evaluation indices of the detection
results from different detection methods are calculated to obtain Table 2.
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Table 2. Comparison of accuracy evaluation of cloud detection results with different methods.

Bright
Building

Detection method TPR/% PPV/% TNR/% F1 Score/%
OTSU 91.37 79.33 87.43 84.93

MMOTSU 70.90 87.00 78.70 78.13
SVM 74.80 100.00 100.00 85.58

K_MEANS 78.17 91.00 67.97 84.10
FMASK(Improved) 96.27 99.67 100.00 97.94

Woodland

OTSU 83.40 100 100.00 90.95
MMOTSU 66.33 97.00 95.83 77.36

SVM 88.67 99.00 98.97 93.55
K_MEANS 81.57 99.00 98.87 89.44

FMASK(Improved) 96.60 94.37 94.53 95.47

Cultivated
land

OTSU 81.37 100.00 100.00 89.73
MMOTSU 67.70 94.00 90.60 78.71

SVM 74.87 100.00 100.00 85.63
K_MEANS 86.67 99.67 99.60 92.72

FMASK(Improved) 93.83 99.67 99.67 99.66

Bare Soil

OTSU 81.73 100.00 100.00 89.95
MMOTSU 69.77 81.33 71.17 75.11

SVM 73.40 100.00 100.00 84.66
K_MEANS 73.73 99.00 98.90 84.52

FMASK(Improved) 92.07 99.67 99.63 95.72

Water

OTSU 73.10 98.33 97.73 83.86
MMOTSU 54.50 98.33 96.60 70.13

SVM 76.10 98.33 97.73 85.80
K_MEANS 70.57 98.33 97.27 82.17

FMASK(improved) 98.80 81.33 84.17 89.22

It can be seen from Table 2 that the improved Fmask cloud detection algorithm has
higher TPR in the detection results. For the cloud pixels, the average TPR of the improved
Fmask can reach 95.51%, compared with 82.19% of OTSU, 65.84% of MMOTSU, 77.57% of
SVM, and 78.14% of K-means. Among them, when the research object is stratus with high
humidity over water, the TPR of the improved Fmask reaches 98.80%, which significantly
improves the usability of the image. When the underlying surfaces contain more bright
buildings, it is obvious that the improved Fmask has achieved a better effect whether it
is TPR or TNR. In addition, when the underlying surface contains bare soil and rock and
other bright surfaces, the improved Fmask adds the process of “Rock and Bare Soil Test”
for this type of images in the spectral test, which improves the TPR. However, because this
study did not fundamentally solve the problem of thin clouds, the improved Fmask has
relatively high commission errors when there are many independent thin clouds in the
images. Under the premise of comprehensively considering the TPR and PPV, the F1-Score
of the improved Fmask for different underlying surfaces, such as buildings and woodlands,
exceeds 95.00%. When the underlying surfaces are cultivated land, the F1-Score of the
improved Fmask reaches 99.66%. When the detected object is stratus with high humidity
over water, the F1-Score is 89.22%, caused by the high omission errors of cloud pixels.
However, it is still higher than the comparable algorithms, such as OTSU.

The TPR obtained by different methods is analyzed separately, as shown in Figure 12.
According to the line chart, it can be clearly seen that the TPR detected by the improved
Fmask is higher than other traditional methods, and the detection results for different
types of underlying surfaces are relatively sfigure. When the research object is stratus with
high humidity over water, the improved Fmask cloud detection algorithm has obvious
advantages and high usability.
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4. Conclusions

This research improves the Fmask version 3.2 based on the GF6-WFV data. The
improved parts are mainly focused on the spectral-contextual information and probability
calculation, which are divided into six aspects. First, in response to the problem that the
GF-6 WFV data does not have bands required for the "Basic Test" in the Fmask version
3.2, the consideration of the multispectral remote sensing data and the available bands are
added. The detection is replaced with a combination of NDVI inherited from the Fmask
version 3.2 and blue band to complete the distinction between PCPs and typical features
such as vegetation. Second, the comprehensive consideration of fog and thin clouds for the
“HOT Test” in the improved Fmask is added. The threshold in the Fmask version 3.2 is
modified to better distinguish between thin clouds and fog. Third, the ratio of the green
band to the NIR band is used for the underlying surfaces with bare soil and rock to reduce
the commission errors. Fourth, for bright buildings, the relationship between the upper
and lower quartiles of the blue and red bands is used to increase TPR, so as to reduce the
commission errors of bright building images. Fifth, for stratus with high humidity, the
blue band and red edge position 1 band are combined to identify and distinguish stratus
from fog_W, which increases the detection of fog_W and stratus with high humidity and
significantly reduces the omission errors of stratus. Sixth, the land temperature probability
is replaced by the HOT-based cloud probability (LHOT), and SWIR in brightness probability
for water is replaced by NIR. The improved Fmask is used to detect GF-6 WFV data and
evaluate the accuracy of the results by qualitative and quantitative methods. Comparing
the results of different detection methods with the results of visual interpretation of GF-6
WFV data, the results of cloud detection are qualitatively verified. The experiment results
show that the improved Fmask can achieve better detection compared with traditional
cloud detection algorithms such as OTSU, MMOTSU, SVM, and K-means. The accuracy
of the detection results of traditional methods, such as OTSU and the improved Fmask
method, is evaluated with the aid of the confusion matrix. Through the analysis of the
quantitative evaluation results, it can be seen that the average TPR of the improved Fmask
for GF-6 WFV data can reach 95.51%, which is better than the 82.19% of OTSU, 65.84% of
multi-threshold OTSU, 77.57% of SVM, and 78.14% of K-means under the same conditions.
The improved Fmask achieves a 6.26% omission error for clear-sky pixels. The omission
errors of stratus with high humidity are relatively high but can be controlled within the
effective extraction range of cloud pixels.

For GF-6 WFV data, the improved Fmask still has the following problems.
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1. No snow and ice regions are detected in this study since the lack of snow and ice
regions in the GF-6 WFV data;

2. There is inevitably some bias in the process of accuracy evaluation caused by some
subjective human vectorization, because the real vectorized cloud images are obtained
by manual vectorization with the help of visual interpretation;

3. The effective band for detecting thin clouds is not explored due to the narrow wave-
length range covered by GF-6 WFV data; particularly, a poor detection results when
there are more thin clouds alone in the image.

To address the problems of the improved Fmask algorithm detection results, the
following work still needs to be conducted.

1. A simple distinction between clouds and snow can be made if snow and ice areas
appear in the subsequent GF-6 WFV data, although the data do not contain SWIR
bands that can be used for snow and ice detection. The distinction is performed that
clouds and cloud shadows are present in pairs while snow exists alone;

2. For thin clouds that exist alone, detection can be attempted by the combination of
improved Fmask algorithm and spatial texture features.

Author Contributions: X.Y. proposed the idea, implemented the methodology and wrote the
manuscript. L.S. and B.A. contributed to improving the methodology, and B.A. acted as the corre-
sponding author. X.T., H.X. and Z.W. helped to edit and improve the manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was jointly supported by the National Natural Science Foundation of China
[Grant No. 62071279, 41930535], the SDUST Research Fund [Grant No. 2019TDJH103], and the Major
Science and Technology Innovation Projects of Shandong Province (2019JZZY020103).

Data Availability Statement: The data are not publicly available due to restrictions privacy.

Acknowledgments: The authors would like to thank Land Satellite Remote Sensing Application
Center for providing the GF-6 WFV data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xiang, P.S. A Cloud Detection Algorithm for MODIS Images Combining Kmeans Clustering and Otsu Method. In Proceedings of

the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 6, p. 62199.
2. Dan, L.P.; Mateo-García, G.; Gómez-Chova, L. Benchmarking Deep Learning Models for Cloud Detection in Landsat-8 and

Sentinel-2 Images. Remote. Sens. 2021, 13, 992.
3. Lu, C.L.; Bai, Z.G.; Li, Y.C.; Wu, B.; Di, G.D.; Dou, Y.F. Technical Characteristic and New Mode Applications of GF-6 Satellite.

Spaceraft Eng. 2021, 30, 7–14.
4. Yao, J.Q.; Chen, J.Y.; Chen, Y.; Liu, C.Z.; Li, G.Y. Cloud detection of remote sensing images based on deep learning and condition

random field. Sci. Surv. Mapp. 2019, 44, 121–127.
5. Wu, Y.J.; Fang, S.B.; Xu, Y.; Wang, L.; Li, X.; Pei, Z.F.; Wu, D. Analyzing the Probability of Acquiring Cloud-Free Imagery in China

with AVHRR Cloud Mask Data. Atmosphere 2021, 12, 214. [CrossRef]
6. Sun, L.; Wei, J.; Wang, J.; Mi, X.T.; Guo, Y.; Lv, Y.; Yang, Y.K.; Gan, P.; Zhou, X.Y.; Jia, C.; et al. A Universal Dynamic Threshold

Cloud Detection Algorithm (UDTCDA) supported by a prior surface reflectance database. J. Geophys. Res. Atmos. 2016, 121,
7172–7196. [CrossRef]

7. Lu, Y.H. Research on Automatic Cloud Detection Method for Remotely Sensed Satellite Imagery with High Resolution. Master’s
Thesis, Xidian University, Xi’an, China, 2018. Unpublished work.

8. Mao, F.Y.; Duan, M.M.; Min, Q.L.; Gong, W.; Pan, Z.X.; Liu, G.Y. Investigating the Impact of Haze on MODIS Cloud Detection; John
Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; Volume 120, pp. 237–247.

9. Shin, D.; Pollard, J.K.; Muller, J.P. Cloud detection from thermal infrared images using a segmentation technique. Int. J. Remote.
Sens. 1996, 17, 2845–2856. [CrossRef]

10. Li, Z.W.; Shen, H.F.; Li, H.F.; Xia, G.S.; Gamba, P.; Zhang, L.P. Multi-feature combined cloud and cloud shadow detection in
GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [CrossRef]

11. Fisher, A. Cloud and Cloud-Shadow Detection in SPOT5 HRG Imagery with Automated Morphological Feature Extraction.
Remote Sens. 2014, 6, 776–800. [CrossRef]

http://doi.org/10.3390/atmos12020214
http://doi.org/10.1002/2015JD024722
http://doi.org/10.1080/01431169608949110
http://doi.org/10.1016/j.rse.2017.01.026
http://doi.org/10.3390/rs6010776


Remote Sens. 2021, 13, 4936 21 of 21

12. Gesell, G. An algorithm for snow and ice detection using AVHRR data an extension to the APOLLO software package. Int. J.
Remote Sens. 1989, 10, 897–905. [CrossRef]

13. Jia, L.L.; Wang, X.Q.; Wang, F. Cloud Detection Based on Band Operation Texture Feature for GF-1 Multispectral Data. Remote
Sens. Inf. 2018, 33, 62–68.

14. Wu, T.; Hu, X.Y.; Zhang, Y.; Zhang, L.L.; Tao, P.J.; Lu, L.P. Automatic cloud detection for high resolution satellite stereo images
and its application in terrain extraction. ISPRS J. Photogramm. Remote Sens. 2016, 121, 143–156. [CrossRef]

15. Cao, Q.; Zheng, H.; Li, X.S. A Method for Detecting Cloud in Satellite Remote Sensing Image Based on Texture. Acta Aeronaut.
Astronaut. Sin. 2007, 28, 661–666.

16. Vermote, E.; Saleous, N. LEDAPS Surface Reflectance Product Description; University of Maryland: City of College Park, MD, USA,
2007.

17. Li, P.F.; Dong, L.M.; Xiao, H.C.; Xu, M.L. A cloud image detection method based on SVM vector machine. Neurocomputing 2015,
169, 34–42. [CrossRef]

18. Tan, K.; Zhang, Y.J.; Tong, X. Cloud Extraction from Chinese High Resolution Satellite Imagery by Probabilistic Latent Semantic
Analysis and Object-Based Machine Learning. Multidiscip. Digit. Publ. Inst. 2016, 8, 963. [CrossRef]

19. Li, Z.W.; Shen, H.F.; Cheng, Q.; Liu, Y.H.; You, S.C.; He, Z.Y. Deep learning based cloud detection for medium and high resolution
remote sensing images of different sensors. ISPRS J. Photogramm. Remote Sens. 2019, 150, 197–212. [CrossRef]

20. Liu, X.Y.; Sun, L.; Yang, Y.K.; Zhou, X.Y.; Wang, Q.; Chen, T.T. Cloud and Cloud Shadow Detection Algorithm for Gaofen-4
Satellite Data. Acta Opt. Sin. 2019, 39, 438–449.

21. Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of Landsat-7 ETM+ automated cloud-cover assessment
(ACCA) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [CrossRef]

22. Irish, R.R. Landsat 7 automatic cloud cover assessment. SPIE Def. Commer. Sens. 2000, 4049, 348–355.
23. Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in landsat imagery. Remote Sens. Environ. 2012, 118,

83–94. [CrossRef]
24. Frantz, D.; Haß, E.; Uhl, A.; Stoffels, J.; Hill, J. Improvement of the Fmask algorithm for Sentinel-2 images: Separating clouds

from bright surfaces based on parallax effects. Remote Sens. Environ. 2018, 215, 471–481. [CrossRef]
25. Huang, Y. Cloud Detection of Remote Sensing Images Based on Saliency Analysis and Multi-texture Features. Master’s Thesis,

Wuhan University, Wuhan, China, 2019. Unpublished work.
26. Wieland, M.; Li, Y.; Martinis, S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network. Remote

Sens. Environ. 2019, 230, 11203. [CrossRef]
27. Li, X.; Zheng, H.; Han, C.; Zheng, W.; Chen, H.; Jing, Y.; Dong, K. SFRS-Net: A Cloud-Detection Method Based on Deep

Convolutional Neural Networks for GF-1 Remote-Sensing Images. Remote Sens. 2021, 13, 2910. [CrossRef]
28. Wang, H.; Wang, Y.; Wang, Y.; Qian, Y. Cloud Detection of Landsat Image Based on MS-UNet. Prog. Laser Optoelectron. 2021, 58,

87–94.
29. Cilli, R.; Monaco, A.; Amoroso, N.; Tateo, A.; Tangaro, S.; Bellotti, R. Machine Learning for Cloud Detection of Globally Distributed

Sentinel-2 Images. Remote Sens. 2020, 12, 2355. [CrossRef]
30. Dong, Z.; Sun, L.; Liu, X.R.; Wang, Y.J.; Liang, T.C. CDAG-Improved Algorithm and Its Application to GF-6 WFV Data Cloud

Detection. Acta Opt. Sin. 2020, 40, 143–152.
31. Wang, Y.J.; Ming, Y.F.; Liang, T.C.; Zhou, X.Y.; Jia, C.; Wang, Q. GF-6 WFV Data Cloud Detection Based on Improved LCCD

Algorithm. Acta Opt. Sin. 2020, 40, 169–180.
32. Jiang, M.M.; Shao, Z.F. Advanced algorithm of PCA-based Fmask cloud detection. Sci. Surv. Mapp. 2015, 40, 150–154.
33. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow

detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [CrossRef]
34. Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4-8 and Sentinel-2 imagery. Remote

Sens. of Environ. 2019, 231, 11205. [CrossRef]
35. Gomez-Chova, L.; Camps-Valls, G.; Calpe-Maravilla, J.; Guanter, L.; Moreno, J. Cloud-Screening Algorithm for ENVISAT/MERIS

Multispectral Images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4105–4118. [CrossRef]
36. Sun, L.; Liu, X.Y.; Yang, Y.K.; Chen, T.T.; Wang, Q.; Zhou, X.Y. A cloud shadow detection method combined with cloud height

iteration and spectral analysis for Landsat 8 OLI data. ISPRS J. Photogramm. Remote. Sens. 2018, 138, 197–203. [CrossRef]

http://doi.org/10.1080/01431168908903929
http://doi.org/10.1016/j.isprsjprs.2016.09.006
http://doi.org/10.1016/j.neucom.2014.09.102
http://doi.org/10.3390/rs8110963
http://doi.org/10.1016/j.isprsjprs.2019.02.017
http://doi.org/10.14358/PERS.72.10.1179
http://doi.org/10.1016/j.rse.2011.10.028
http://doi.org/10.1016/j.rse.2018.04.046
http://doi.org/10.1016/j.rse.2019.05.022
http://doi.org/10.3390/rs13152910
http://doi.org/10.3390/rs12152355
http://doi.org/10.1016/j.rse.2014.12.014
http://doi.org/10.1016/j.rse.2019.05.024
http://doi.org/10.1109/TGRS.2007.905312
http://doi.org/10.1016/j.isprsjprs.2018.02.016

	Introduction 
	Materials and Methods 
	Fmask Version 3.2 Cloud Detection 
	An Improved Fmask Algorithm for GF-6 WFV Cloud Detection 
	Data Introduction 
	Identification of PCPS 
	Cloud Pixels Probability Calculation 


	Results and Discussion 
	Experimental Results 
	Qualitative Analysis 
	Bright Building 
	Water Surface 
	Cultivated Land, Woodland, Bare Soil 
	Others 

	Quantitative Analysis and Evaluation 

	Conclusions 
	References

