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Abstract: This study analyses long-term trends in temperature and wind climatology based on ERA5
data. We study climatology and trends separately for every decade from 1980 to 2020 and their
changes during this period. This study is focused on the pressure levels between 100–1 hPa, which
essentially covers the whole stratosphere. We also analyze the impact of the sudden stratospheric
warmings (SSW), North Atlantic Oscillation (NAO), El Nino Southern Oscillation (ENSO) and Quasi-
biennial oscillation (QBO). This helps us to find details of climatology and trend behavior in the
stratosphere in connection to these phenomena. ERA5 is one of the newest reanalysis, which is widely
used for the middle atmosphere. We identify the largest differences which occur between 1990–2000
and 2000–2010 in both temperature climatology and trends. We suggest that these differences could
relate to the different occurrence frequency of SSWs in 1990–2000 versus 2000–2010.
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1. Introduction

The study of processes in the middle atmosphere is essential for understanding the
dynamics of the whole atmosphere. The most monitored parameter for describing condi-
tions and changes in the middle atmosphere is undoubtedly air temperature. Temperature
is connected not only with dynamics, but also with chemical processes. That is why we
need to know the detailed behavior of this parameter during the last 40 years. Temperature
changes in the middle atmosphere have been detected in recent decades. Between 1979
and 2018, satellite data showed a global stratosphere cooling by approximately 1–3 K [1].
However, this cooling is not linear and was more pronounced in the first half of this period,
particularly in the lower stratosphere. Temperature trends in the lower stratosphere are
also affected substantially by the ozone depletion and its potential recovery. They may
be affected by many phenomena such as NAO (North Atlantic Oscillation), SSW (sudden
stratospheric warming) or the presence of aerosols from volcanic activity. For example,
the eruption of the Pinatubo volcano in 1991 caused temporary warming of this layer for
two years [2]. The negative temperature trends around −0.2 to −0.3 degrees per decade in
the lower stratosphere are confirmed by [3] based on the MERRA2 and ERA5 reanalysis
data for 1980–2019. The temperature changes in the higher parts of the middle atmosphere
are discussed in more detail in many studies, e.g., [4,5], confirming the cooling of the
stratosphere and mesosphere. Chemistry–climate models can also be used to analyze
temperature trends, with the possibility of simulations of different radiative forcing and
ozone-depleting substances emissions, e.g., [6,7].

The stratospheric horizontal wind is another key factor which is worthy of research.
The stratospheric wind, zonal and generally much weaker meridional, is characterized
by high variability. The problem with analyzing stratospheric wind is the lack of direct
observations in the middle and higher stratosphere. Long-term oscillations analysis based
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on ground-based microwave Doppler Wind Radiometer (WIRA) measurements between
5 hPa and 0.02 hPa shows a strong seasonality with higher amplitudes during the winter [8].
Naturally induced variability, especially zonal wind response to the 11-year solar cycle,
has been analyzed by [9]. The influence of geomagnetic activity on the zonal wind in
the Northern Hemisphere (NH), especially in relation to the polar vortex, is assessed
by [10]. Stratospheric wind contributes significantly to the distribution of ozone as a part
of the meridional Brewer–Dobson circulation [11]. The winter meridional wind at northern
midlatitudes has been investigated by [12]. As ozone is the main source of heat through the
absorption of solar radiation, its distribution has a major impact on temperature trends in
the stratosphere. Regional changes in the amount of ozone in the stratosphere between 2001
and 2018 are described, e.g., by [13]. Seasonal ozone depletion in the Antarctic stratosphere
is closely linked to the polar vortex, e.g., [14].

Disrupting the polar vortex, especially in the Northern Hemisphere, SSW fundamen-
tally changes temperature and wind conditions in the relevant areas. Major SSWs are
observed typically five or six times per decade [15]. The effect of SSW on zonal wind and
temperature has been described, for example, by [16,17].

An important phenomenon affecting the equatorial zonal wind in the stratosphere
is the quasi-biennial oscillation (QBO). QBO has an irregular mean period of about
28 months [18]. Wind amplitude during QBO reaches a peak of around 30 m/s at 20 hPa
at the equator, based on the MERRA2 dataset [19]. Changes in QBO in CMIP6 climate
projections are discussed by [20]. As the QBO index is usually used data sourced from
the Singapore wind observations, when we want to use them as a global QBO index for
climatological or trend studies, this limitation has to be taken into account.

Another feature of weather and climate variability with an impact on temperature and
zonal wind in the stratosphere over the Northern Hemisphere could be the North Atlantic
Oscillation (NAO). This parameter is very important for the NH dynamics, especially
in the troposphere. Its impact on the stratosphere should be visible mainly in the lower
stratosphere.

As previously mentioned, mainly direct observations (satellite or ground based) or
chemistry-climate models (WACCM, etc.) have been used for analyzing temperature and
wind climatology and trends. These datasets, especially the observations, are not always
consistent in time or space and some gaps can occur. That is why reanalysis are used
for these studies. We will use ERA5 reanalysis, which is one of the newest broadly used
reanalysis in atmospheric studies.

This study shows us the climatology and trends in the stratosphere during the last four
decades. It will also show a brief comparison between the GPS RO observations, MERRA-2
reanalysis and ERA5 reanalysis. Analyzing all grid points instead of zonal averaging will
provide an overview of which regions should be analyzed in more detail.

2. Materials and Methods

We use ECMWF (European Center for Medium-Range Weather Forecasts) reanalysis
ERA5. Its detailed description can be found in ERA5 data documentation or in [21], avail-
able online: https://software.ecmwf.int/wiki/display/CKB/ERA5+data+documentation
(accessed on 18 July 2021). Data have been downloaded from: https://cds.climate.copernicus.
eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=form (accessed
on 2 August 2021). ERA5 is available from 1980 until the present on an hourly basis, but in
the present study we use monthly mean values for each parameter (temperature, zonal
wind). ERA-5 has the resolution 0.75 × 0.75.

Modern Era Retrospective-Analysis for Research and Applications (MERRA2, details
in [22]), was downloaded from https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl (ac-
cessed on 18 April 2019). MERRA2 has the resolution of 0.5 degree in latitude and 2/3 in
longitude and is available from 1980 until the present.

As observations, we used data from the global positioning system (GPS). The radio
occultation (GPS RO) technique is an active limb-sounding observation of the Earth’s atmo-
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sphere. The neutral atmospheric profiles retrieved from COSMIC-1 radio occultation (RO)
data have been demonstrated to be very useful for studying atmospheric processes [15,23].
GPS (GNSS) RO data are highly accurate; they were used among others to calibrate AMSU
instruments onboard satellites [23]. That is why they can be useful for analyzing atmo-
spheric dynamics, including trend analysis in the troposphere and stratosphere. The
vertical resolution of the geometrical optics (GO) method [24] in the stratosphere is about
1.5 km due to Fresnel radius limitations, but the full spectrum inversion (FSI) [25] can
provide superior resolutions. The archived GPS RO data have been calculated by applying
FSI to COSMIC GPS RO profiles at altitudes from ground level up to 30 km. We used the
COSMIC GPS RO profiles available at the RISH Kyoto home webpage http://database.
rish.kyoto-u.ac.jp/arch/iugonet/GPS/index.html#COSMIC%20FSI%20Data (accessed on
18 May 2020).

We analyze temperature and zonal wind from 1980 to 2020 divided into four sub-
periods (decades). By comparing results between these decades, we can identify changes
between different decades and look for possible reasons for these changes. We computed
winter (DJF for the NH and JJA for the SH) climatology and trend for each grid point for
40–90◦N/S at several pressure levels (1, 5, 10, 30 and 100 hPa). These levels represent
different parts of the stratosphere from the stratopause on the top to the tropopause in the
bottom. The winter season was chosen because dynamics during summer season are not
so pronounced. Trend is computed as a linear ordinary least squares fit. The uncertainty
estimates of the trends are set at a 95% confidence level. We do not use zonal averages
because information about the structure of the results can be lost; therefore, individual
grid points are analyzed. We use a time series of several stratospheric phenomena such
as QBO, NAO, ENSO or SSW to identify the possible influence of each parameter on the
climatology or trend.

3. Results

We analyze temperature and wind climatology and trends using ERA5 reanalysis
during 1980–2020. Temperature climatology and trend from ERA5 reanalysis is compared
with MERRA2 for the period 1980–2020. Figure 1 shows that the main features for clima-
tology and trend analysis at 1, 10, 50 and 100 hPa are very similar in terms of location
or amplitude. If we look at the trend comparison, the biggest differences can be found
for 1 hPa, but for the lower pressure levels the main features are similar even when the
amplitude is different. We also analyze a comparison of two reanalyses with GPS RO for
the limited period 2010–2020, see [26]. From the comparison of two main reanalyses for a
longer period and with GPS RO for a shorter period, we can say that at least down from
10 hPa ERA5 is suitable for our analysis. We can also find detailed information about
comparison GPS RO and other reanalysis in [27], especially in chapter 3.7.2. Unfortunately,
ERA5 is not included in [27].

Figures 2 and 3 show temperature climatology and their differences for five pressure
levels and four decades. At 1 and 5 hPa we can identify a two-cell structure for all
decades. Lower temperature is observed over Canada and the Northern Pacific and higher
temperature over the Northern Atlantic and Euroasian continent. At 30 and 100 hPa,
this structure is not so pronounced but is still visible. In the Southern Hemisphere, the
temperature field is consistent because winter conditions in the SH are more stable than
in the NH. We can identify a negative difference between the decades of 2000–2010 and
1990–2000 (−4 K difference) on the NH at 1 and 5 hPa. On the other hand, there is a positive
difference (4 K) between the same decades at lower pressure levels (100 and 30 hPa). This
result shows that the temperature behavior is different in the lower and upper stratosphere.
Furthermore, we identify strong positive differences between the decades of 2000–2010
and 1990–2000 on the SH at 1 hPa, but negative one at 5 hPa. This change reaches up to
almost 8 K. At lower pressure levels the differences are much smaller (around 1 K).

http://database.rish.kyoto-u.ac.jp/arch/iugonet/GPS/index.html#COSMIC%20FSI%20Data
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Figure 1. Temperature climatology (upper panels) and trends (lower panels) for January during 1980–2020 at 1, 10, 50 
and 100 hPa using ERA5 and MERRA-2. 

 
Figure 2. Temperature climatology (K) for 1980–1990, 1990–2000, 2000–2010 and 2010–2020 using ERA5 reanalysis at 1, 5, 
10, 30 and 100 hPa. 
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tween the decades of 1990–2000 and 1980–1990. At 1 hPa, a negative change is located over 
the Euroasian continent and a positive change is located over the North Atlantic at 30 and 
100 hPa. The location of cells can be seen on the opposite sides (negative over the Atlantic 
and positive over Asia). The next feature which should be mentioned is the difference 
between the decades of 2000–2010 and 1990–2000. At 1 hPa on the SH the difference is 
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ference between the decades of 2010–2020 and 2000–2010 at lower levels, while at higher 
levels (5 hPa) a positive difference occurs. 

Figure 3. Difference of temperature climatology (K) between decades for 1, 5, 10, 30 and 100 hPa using ERA5 reanalysis.

Figures 4 and 5 analyze temperature trends and their differences between decades.
There is a negative trend cell over the Northern Atlantic at 1 and 5 hPa in the first three
decades but in lower levels (30 and 100 hPa) this trend is smaller. In the 2000–2010 decade
in particular we can observe a positive trend on the NH. Trends on the SH oscillate around
0 K/decade. Only at 1 hPa the trend is positive in the 1980–1990 and 2000–2010 decades. If
we focus on the differences between decades, we identify cell structure on the NH between
the decades of 1990–2000 and 1980–1990. At 1 hPa, a negative change is located over the
Euroasian continent and a positive change is located over the North Atlantic at 30 and
100 hPa. The location of cells can be seen on the opposite sides (negative over the Atlantic
and positive over Asia). The next feature which should be mentioned is the difference
between the decades of 2000–2010 and 1990–2000. At 1 hPa on the SH the difference
is positive but at lower heights the difference is negative. It is probably related to the
same change in temperature climatology. Furthermore, we can identify a strong negative
difference between the decades of 2010–2020 and 2000–2010 at lower levels, while at higher
levels (5 hPa) a positive difference occurs.
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Now, zonal wind will be analyzed, which is another very important parameter in
the stratosphere. Figures 6 and 7 show zonal wind averages and their difference between
decades. The main result is that we can see almost no structure on the SH for all pressure
levels and decades. This confirms that general circulation on the SH is stable without
any large disturbances. On the NH, we identify westerly wind cell over the Northern
Atlantic, especially at higher pressure levels (1 and 5 hPa). If we focus on the difference, a
complex structure occurs between 1990–2000 and 1980–1990 at almost all pressure levels.
The same structure can be seen between 2010–2020 and 2000–2010. Furthermore, we can
see a negative difference between 2000–2010 and 1990–2000 at 5, 10 and 30 hPa. This feature
is supported by negative change between 2000–2010 and 1980–1990. This can indicate that
we should focus on the 2000–2010 decade.
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and 2010–2020 using ERA5 reanalysis at 1, 5, 10, 30 and 100 hPa.

Figures 8 and 9 show zonal wind trends and their changes between decades. In the
first two decades we can see cell structure on the NH at higher levels (1–10 hPa) and almost
no structure on the SH. On the other hand, especially in 2010–2020, there are positive trend
structures on the SH. In 2000–2010 there is a strong negative trend on the NH at 5, 10 and
30 hPa. The differences between the decades of 1990–2000 and 1980–1990 are negative over
the America and North Atlantic sector and positive over Asia at 1, 5 and 10 hPa on the NH,
but are mostly negative at 30 and 100 hPa. The opposite structure can be seen between
2000–2010 and 1990–2000. The positive change is visible on the NH between the decades of
2010–2020 and 2000–2010.
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4. Discussion

Comparisons of observations or model simulations with results from reanalysis
datasets are an important aspect of evaluating and understanding stratospheric dynamics
and providing confidence for future predictions. The biggest problem with the comparison
of our results with other studies is that trends or climatology, especially for temperature, are
as a rule presented as global or zonal means, whereas we present results for individual grid
points. If we look at our results, e.g., Figure 2 or Figure 4, we can identify cell structures.
This is due to the presence of a stationary planetary wave with zonal wavenumber 1 [28].
Such information is lost during zonal averaging. On the other hand, if we consider [27],
the main features for temperature and wind climatology agree in terms of their amplitude
in specific regions (polar region or middle latitudes).

Temperature and zonal wind climatology (Figures 2 and 6) are in general agreement
with other studies [9,27,29–31]. We can identify cell structure on the NH at the higher
altitudes and this structure is much weaker in the lower stratosphere. The structure in
climatology on the SH is much less pronounced because the dynamics on the SH are stable
and almost without major SSWs.

Figure 4 shows temperature trends over the last four decades. Even if we cannot
compare results directly, we can see agreement between studies which confirm stratospheric
cooling and tropospheric warming [1 or 6] and our results where trends are negative at the
higher levels and positive at about 100 hPa.

The analysis of changes in climatology and trends during the last four decades is also
very important for understanding the influence of different phenomena in the stratosphere.
Figure 10 shows several important phenomena, which could significantly influence the
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stratospheric dynamics and vice versa. Variations of NAO and probably ENSO are much
lower during the 2000–2010 decade. This coincides with our results where the zonal wind
climatology differences between the decade of 2000–2010 are much larger than those among
other decades. The QBO influence is probably not pronounced in our results. A detailed
description of QBO can be found in [32]. The only disruption of QBO was found in 2016
and the possible reason for this is discussed in [33]. The behavior of solar radio flux F107
is similar for the first three decades but solar activity is clearly weaker during 2010–2020.
F107 was recently very carefully analyzed by Clette [34], who found a sudden upward
jump of F10.7 between 1980 and 1981; this has practically no impact on our study. The
influence of F10.7 does not seem to be pronounced in our results.
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Now we will focus on the SSW. The WMO major warming definition is used [35].
This phenomenon has been derived from MERRA2 reanalysis. Because the occurrence of
SSW is not regular, we use them for climatology comparison only. This phenomenon can
influence climatology and trends much more than other phenomena because an increase in
temperature, particularly during major SSWs, can reach up to 60 K and together with the
zonal wind reversal can last for several weeks. Examples of the behavior of temperature
and zonal wind during major SSWs in 2009 and 2002 can be found in [36]. We can see
that temperature in 2009 increased more than 60 K and this condition remained for almost
5 weeks. The same situation was observed for many major SSWs. It is probable that this
increase will affect temperature climatology in winter significantly. Figure 11 shows that
during the 1990–2000 decade, only two major SSWs occurred, while during the 2000–2010
decade there were many more major SSWs. This discrepancy is probably responsible
for large differences between the decades of 1990–2000 and 2000–2010 for temperature
and zonal wind climatology and trends. These results are supported by the fact that the
occurrence of major SSWs in 2010–2020 decreases. In the future, we would like to compare
the above results on the role of SSW with results derived from other reanalysis and with
observations or climate model data to appear in the near future.
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