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Abstract: Biomass and bioenergy play a central role in Europe’s Green Transition. Currently, biomass
is representing half of the renewable energy sources used. While the role of renewables in the energy
mix is undisputed, there have been many controversial discussions on the use of biomass for energy
due to the “food versus fuel” debate. Using previously underutilized lands for bioenergy is one
possibility to prevent this discussion. This study supports the attempts to increase biomass for
bioenergy through the provision of improved methods to identify underutilized lands in Europe.
We employ advanced analysis methods based on time series modelling using Sentinel-2 (S2) data
from 2017 to 2019 in order to distinguish utilized from underutilized land in twelve study areas in
different bio-geographical regions (BGR) across Europe. The calculated parameters of the computed
model function combined with temporal statistics were used to train a random forest classifier (RF).
The achieved overall accuracies (OA) per study area vary between 80.25 and 96.76%, with confidence
intervals (CI) ranging between 1.77% and 6.28% at a 95% confidence level. All in all, nearly 500,000 ha
of underutilized land potentially available for agricultural bioenergy production were identified in
this study, with the greatest amount mapped in Eastern Europe.

Keywords: Sentinel-2; time series analysis; harmonic regression; underutilized land

1. Introduction

Biomass as a source of renewable energy production plays an essential role in Europe’s
Green Transition [1]. The European Union’s (EU) Revised Renewable Energy Directive
requests 32% of EU’s energy production to originate from renewables. Moreover, bioenergy
represents a valuable option to support the implementation of the Sustainable Develop-
ment Goals (SDGs) of the United Nations (UN), especially SDG Nr. 7: “Ensure access to
affordable, reliable, sustainable and modern energy for all” and Nr. 13: “Take urgent action
to combat climate change and its impacts” [2]. The IPCC special report on the impacts of
global warming 1.5◦ also highlights the importance of bioenergy “due to its multiple roles
in decarbonizing energy” [3]. The IPCC report and the EU explicitly state that bioenergy
should be produced in a sustainable manner at all levels along the entire value chain and
must not affect agricultural or food systems, biodiversity and various other ecosystem
functions and services [3,4]. One approach to prevent the food vs. fuel competition is the
use of contaminated, underutilized and/or marginal land that cannot be used for food or
feed production but still retains the potential to produce biomass feedstock for bioenergy
purposes [2,5,6]. Several studies concluded that using these lands for bioenergy production
could have positive environmental and socio-economic impacts [7–10].

Generally, a land is considered to be underutilized when there is no sign of any human
intervention over a certain period. The Food and Agriculture Organization (FAO) of the
United Nations (UN) [11], for example, uses an idle period of five years in its definition.
In this study, we used a period of three years due to the availability of S2 data from 2017
onwards. With the availability of satellite image time series of high temporal resolution,
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remote sensing offers the possibility to generate area-wide information on land use and
therefore the presence and absence of human interventions. The opening of the entire
Landsat data archive and the publicly accessible data of the S2 and Moderate Resolution
Imaging Spectroradiometer (MODIS) missions with global coverage, especially, increased
the use of dense satellite image time series for land use monitoring purposes [12]. Various
studies used MODIS data for large-area assessments of underutilized or abandoned (farm)
land in Europe and Asia due to their high temporal resolution [13–17]. Within Europe, the
former communist countries in the Eastern part of the continent have been the regions of
interest in these studies, since large agricultural areas were left fallow following the collapse
of the Soviet Union [13,18]. However, the main drawback of MODIS data lies in the spatial
resolution of 500 m, which prevents accurate and detailed regional and local assessments
in areas of small structured agriculture, typical of large parts of Europe. To bridge the gap
between continental assessment and high-resolution mapping requirements [19], Landsat
8 (L8) image time series from 2015–2019 with a spatial resolution of 30 m and a temporal
resolution of 16 days are used to generate a European-wide map of underutilized land. The
authors employed temporal features for random forest classification using Google Earth
Engine (GEE) [20]. Due to the pan-European extent, only temporal features like minimum,
maximum, standard deviation, etc., are used in this approach [19]. At the regional level,
Landsat time series data from 1986 until 2008 have been used [21] to map post-socialism
farmland abandonment in western Ukraine.

Being part of the EU’s Copernicus program since 2017, the S2 satellites provide both
higher spatial (10 m) and higher temporal (5 days) resolution optical data compared to
Landsat. The potential of Sentinel-2 data for mapping and monitoring land abandonment
has already been tested in several, mostly local studies, e.g., in Lithuania to map abandoned
farmland [22]. Similarly, [23] used all 10 m resolution S2 bands and four derived vegetation
indices of three observations to map farmland abandonment in western Slovakia. The
performance of S2 to map abandoned citrus plantations on a local level in Valencia (Spain)
was done [24] by employing mono-temporal S2 data in combination with airborne images
from 2019 with a very high resolution (VHR). On the regional level, [25] employed S2 time
series data from 2017–2020 to detect abandoned agricultural land in Valencia, including
five spectral indices to evaluate the performance of different machine learning and deep
learning classifiers [25].

Previous studies have shown that underutilized land (UU) has a different spectral
reflectance behavior over time compared to utilized land (U) due to missing human inter-
ventions [14,19,25]. Typical human interventions are mowing and ploughing, which result
in clear changes in the spectral reflectance of the respective patch of land. It was shown,
that UU land usually shows different magnitudes and standard deviations of changes over
time compared to utilized land due to the missing above-mentioned interventions [14,25].
Sometimes, however, temporal statistical features (TSFs) like minimum, maximum or stan-
dard deviation can be similar for different land use classes, while the temporal curve, which
can be represented by time series model features (TSMFs), is very different (see Figure 1).

The aim of this study is thus to derive alternative features based on a time series model
fitting of S2 imagery that captures the differences in spectral behavior of different land
use classes over the course of time, other than temporal statistics. The calculated model
function reconstructing the continuous spectral curve is described by a set of parameters,
which depend on the employed mathematical model. Examples of these model parameters
are the amplitude of the sinus or cosine, model variance or observation variance. Instead
of using the modeled images (i.e., synthetic images), we analyze the performance of the
model parameters to serve as classification input features to train a random forest classifier.

Therefore, the research questions to be analyzed in this study are:

1. Which S2 time series model features of which spectral bands work best for the
differentiation between utilized and underutilized land?

2. What is the level of accuracy that can be achieved in different bio-geographical regions
of Europe using a common classification approach?
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Figure 1. Sentinel-2 NDVI time series of different land use classes.

2. Materials and Methods
2.1. Study Area

The selection of the study areas was done by the project consortium of BIOPLAT-EU
(https://bioplat.eu accessed date 8 November 2021) based on statistical data and previous
knowledge of underutilized lands in these areas. The twelve study areas (see Figure 2) are
spread over three biogeographical regions (BGR) and thus cover much of the variability
of the appearance of underutilized lands, due to unequal environmental conditions (e.g.,
climate, soil etc.), to be expected within Europe, except for Scandinavia and the British and
Irish islands. Table 1 covers the main parameters of the study areas. Since the two study
areas in Germany as well as in Spain are adjacent, they are treated as one single study area
in the assessment, and no separate results will be reported. More detailed information on
the selection of study areas can be found here [26].

Table 1. Study area properties.

No. Study Area Country Biogeographical Region Main Reason for Selection

1 Dahme Spreewald Germany Continental
Post-sewage farms,
post-mining areas2 Spree-Neiße

3 Bacau
Romania Continental

Economically and topographically marginal land
4 Gorj Post-mining areas

5 Chernihiv
Ukraine Continental Post-socialist fallow land6 Khmelnytskyi

7 Bacs-Kiskun & Csongrad Hungary Pannonian Economically and climatically marginal land
8 Hungary-North

9 Val Basento Italy Mediterranean Areas not used due to
contamination10 Sulcis

11 Albacete Spain Mediterranean
Climatically marginal

(dry) areas12 Cuenca

https://bioplat.eu
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Figure 2. Locations of the study areas.

2.2. Data
2.2.1. Satellite Imagery

The Copernicus S2 mission provides high-resolution dense optical time series data for
the development of Earth-Observation-based environmental monitoring systems [27]. The
high temporal resolution of 5 days is obtained by having two satellites operating in the
orbit carrying identical sensor systems. The whole S2 system has been fully operational
since mid-2017, delivering imagery with 13 spectral bands [28]. In this study, S2 data
including all 10 m and 20 m spectral bands (see Table 2) from 2017–2019 were used to
derive the time series features used for the classification.

Table 2. S2 bands used in this study.

Band Central Wavelength (nm) Spatial Resolution (m)

B2 490 (blue) 10
B3 560 (green) 10
B4 665 (red) 10
B5 705 (red-edge) 20
B6 740 (red-edge) 20
B7 783 (red-edge) 20
B8 842 (near infrared) 10

B8A 865 (near infrared) 20
B11 1610 (short waved infrared) 20
B12 2190 (short waved infrared) 20

2.2.2. Training Data

The visual interpretation of Google Earth VHR image time series was the main source
for the compilation of a reference dataset for underutilized lands. Though being a static
product, the ”Land Use/Cover Area frame statistical Survey” (LUCAS) database proved
to be of valuable assistance for the identification of underutilized lands. LUCAS is a
harmonized in situ (terrestrial) LCLU data collection procedure [29]. Its classification
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key includes two LU classes that can serve as indicators for underutilized lands (U410
“Abandoned Areas” and U420 “Semi-Natural and Natural Areas not in Use”). Details and
the datasets can be obtained from the Eurostat Website [30]. LUCAS is conducted every
three years, with the most recent survey having taken place in 2018. All U410 and U420
points in the study areas were visually checked and converted into polygon information, if
the areas proved to be underutilized for the past three years according to data available in
Google Earth. Additional reference data for underutilized lands were also gathered for the
study areas in Germany, Hungary, Romania and Ukraine from local stakeholders.

A training dataset that covers all types of used land, in particular forests, settlements,
annual and permanent cropland and managed grassland, was generated using a ran-
dom point sampling approach with the following European-wide COPERNICUS Land
Monitoring Service Products:

1. High-Resolution Layers (HRL) Forest, Imperviousness and Water & Wetness
2. CORINE Land Cover (CLC) 2018 agriculture classes “Arable land” (21), “Permanent

crops” (22) and “Pastures” (23).

Due to their wall-to-wall structure and large amounts, no further visual interpretation
was needed for these training datasets. Since the above-mentioned datasets do not cover
the state of Ukraine, we used a separate land use classification provided by [31]. For the
classification, all training data for different types of used land were summarized in one
single class, e.g., the same label was assigned to all of them.

2.2.3. Reference Data for Exclusion of Specific Areas

As laid out in the introduction, the production of biomass for bioenergy purposes
should not affect any existing agricultural or food systems or jeopardize nature’s biodiver-
sity and various other ecosystem functions and services. Therefore, areas known to feature
these functions are removed from the results. This step can be seen as a “safeguarding”
procedure to ensure that, ideally, no areas used for food production are assigned to under-
utilized land. Due to the project’s ambition to generate close-to-practice results, we had to
include this step, removing known areas used for food or feed production, steep slopes
not suitable for bioenergy production and protected areas for example. All details on the
exclusion of specific areas can be found in [19], where the same procedure was applied.

For the assessment, only those parts within the selected study areas that are not
covered by these existing dataset are considered in the assessment and are referred as “area
of interest” (AOI) in the further course of this paper (see Table 3).

Table 3. Study areas and respective “areas of interest”.

No. Study Area Country Study Area
[ha]

Elimination Mask
[ha]

Area of Interest
[ha]

1 Dahme-Spreewald Germany 394,462 307,399 87,063 s2 Spree-Neiße
3 Bacau

Romania
530,235 407,225 123,010

4 Gorj 1,043,536 675,641 367,895
5 Chernihiv

Ukraine
581,309 230,082 351,227

6 Khmelnytskyi 1,254,216 400,755 853,461
7 Bacs-Kiskun & Csongrad Hungary 1,192,070 606,547 585,523
8 Hungary-North 1,219,271 639,779 579,492
9 Val Basento Italy 1,218,812 841,742 377,070

10 Sulcis 35,802 16,694 17,485
11 Albacete Spain 2,304,810 1,285,882 1,018,92812 Cuenca
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2.2.4. Reference Data for Validation

To report accuracies of the mapping results, validation data were derived based on
a stratified sampling approach. Based on an independent classification of underutilized
lands (the map produced by [19]), we sampled the same number of points per class, e.g.,
utilized and underutilized land, randomly. These points were then visually interpreted
using Google Earth VHR time series data using the same procedure described by [19] with
two adaptations: first, the minimum mapping unit (MMU) was changed to 0.5 ha to be in
line with the product definition, and second, the reference period was adapted to 2017–2019
instead of 2015–2019, since satellite image time series data from this period were employed.
The weights for each class were calculated using the ratio of the area of the respective
class from the independent classification [19] and the number of interpreted points. Using
such an approach, the resulting accuracy measures are unbiased. Compared to the study
of [19], it has been necessary to adapt two parameters for the visual interpretation of the
validation points: first, the minimum mapping unit (MMU) was changed to 0.5 ha, and
second, the reference period was adapted to 2017–2019 instead of 2015–2019, since satellite
image time series data from this period were employed. The final number of available
validation points per study area is given in Table 4.

Table 4. Number of validation points per study area.

Study Area Utilized Land Underutilized Land Total

Dahme-Spreewald & Spree-Neiße 173 22 195
Bacau 166 105 271
Gorj 193 107 300

Chernihiv 83 197 280
Khmelnytskyi 210 279 489

Bacs-Kiskun & Csongrad 314 86 400
Hungary North 250 150 400

Sulcis 61 139 200
Val Basento 85 215 300

Albacete & Cuenca 396 296 692

2.3. Methods

The entire mapping and validation approach is schematically shown in Figure 3. The
first component of the mapping procedure was the S2 imagery pre-processing. This step
included the transformation of S2 L1C top of atmosphere data to surface reflectance values
using the Sen2Cor processor provided by ESA [32], topographic normalization to correct
terrain effects influencing reflectance values as well as cloud and cloud shadow masking
using the FMask algorithm [33].

Following our research questions, the main focus of this study is on the selection
of the best image time series features for distinguishing underutilized and utilized land.
Therefore, all other parameters of the entire classification process, such as the S2 pre-
processing as well as the training data, the used classification algorithm (random forest)
and the post-processing are kept constant. In this study, we distinguish two categories of
time series features. First, “statistical temporal features” (STFs), which are calculated from
the time series of pre-processed images. These are, for example, minimum, maximum,
mean, median, standard deviation, trend, etc. The period used to calculate the STFs
depends on the research purpose and, therefore, can vary from days to years. STFs do
not require a time series model to be fit to the data stack. Instead, they are calculated
from the pixel values directly (either spectral values or combinations of them, such as
ratios or indices). STFs have been used successfully in the past, e.g., for forest disturbance
mapping [34]. The second group of time series features are based on a model fit, thus
called “time series model features” (TSMFs). These TSMFs correspond to the parameters
of the fitted model function. While STFs for different land use classes can be similar (see
Figure 1), TSMFs can vary significantly and thus be used for improved differentiation. The
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model used to derive TSMFs is variable, e.g., can be a harmonic regression model or a
more complex model, like a logistic or double logistic model. The number of TSMFs varies
with the selected model. For a harmonic regression model, the TMSFs are the three model
parameters defining the function (offset, sinus and cosine), the related three model variance
parameters and the observation variance.

Figure 3. Sentinel-2 NDVI time series observations (blue dots) and 1st order harmonic model (green
line) of different utilized land classes and underutilized land.

In this study, it was decided to use a harmonic model based on a Fourier series (a
series of superimposed sine and cosine functions), which has been used in various studies
based on image time series to model vegetation phenology [35–40]. TSMFs based on
harmonic regression techniques have already been used for crop type mapping [41–44] and
within various forest-related LCLU classification [45–48] and disturbance mapping [49,50]
approaches. Regarding the EO data used to derive TSMFs, the majority of these studies
used vegetation indices or components of the Tasseled Cap Transformation derived from
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Landsat time series data [41,45–47,49,50]. The authors of [42] employed MODIS NDVI
data and SAR Sentinel-1 data. Equally based on Landsat data, but using spectral bands
solely to calculate harmonic time series models, the authors of [49] developed a forest
disturbance mapping and LCLU classification approach. More recently, a couple of studies
have been published evaluating the use of harmonic TSMFs based on S2 spectral bands
and/or indices time series data for different LCLU applications [44,48].

The basic formula of a Fourier series is written as:

f̃
(
tj
)
= a0 +

M

∑
i=1

ai cos
2πtj

T
+ bi sin

2πtj

T
(1)

In this formula, f̃
(
tj
)

corresponds to the modeled reflectance value; a0 is the mean
reflectance value over the modeled time series; ai and bi are the amplitudes of the cosine and
sinus wave of the harmonic component i; and M is the number of harmonic components
used (M ≥ 1), i.e., the order of the harmonic function. T describes the length of the time
period, and tj corresponds to a certain point in time.

Based on Equation (1), for the actual observations of a time series the following
equation applies:

f
(
tj
)
= f̃

(
tj
)
+ ε
(
tj
)

(2)

where f
(
tj
)

is the observed value, and the term ε
(
tj
)

corresponds to the residual error. The
observation variance used in this study is the variance of all residual errors.

The harmonic model was used to calculate the time series model for two reasons. The
first reason is performance. Logistic and double logistic models are non-linear models and,
therefore, only approximate solutions can be calculated. They are highly demanding in
computational power, and the accuracies of these approximate solutions rely heavily on
the initial conditions and the quality of the raw input time series data [51,52].

The second reason is that we expect a harmonic model behavior in underutilized land.
If a patch of land is untouched, e.g., it is not influenced by any human induced activities,
such as mowing or ploughing, natural processes causes the spectral value’s temporal
trajectory to behave similarly to a 1st order harmonic curve (M = 1) during the growing
season. This is shown in Figure 4 for several land use categories and for underutilized land.
In contrast, the temporal spectral behavior of cropland, especially when harvested during
the growing season, as well as managed grassland with related mowing events, show more
changes and therefore do not fit a 1st order harmonic model. Hence, we decided to use a 1st
order harmonic model (M = 1) to calculate the time series model. Moreover, regarding the
length of the time period T, this value was set for study areas located in the Mediterranean
region from April until the end of October, and for all other study areas observations from
the beginning of May until the end of October were used. This selection was necessary to
remove data affected by snow, low sun illumination and deep shadows.

The harmonic model was calculated for each spectral band and each year separately.
This resulted in a TSMF set of four features per band. They are: offset a0, amplitude of
cosine ai, amplitude of sinus bi and the observation variance (i.e., the average residual error).
These four features times three years times ten bands leads to 120 TSMFs for each study
area. In addition to these 120 TSMFs, the temporal standard deviation of the Normalized
Difference Vegetation Index (NDVI) was calculated for each year separately and added to
the pool of classification input features. Therefore, the final feature dataset per study area to
train the random forest (RF) classifier was composed of 123 features. No time series model
of the NDVI or any other vegetation index or band combination was calculated. As laid out
in Section 1, the objective was to investigate the performance of spectral bands. Moreover,
since all 10 m and 20 m S2 bands are included in the investigation, the information of
indices or band combinations is already included and therefore available for the classifier.
However, the NDVI temporal standard deviation was included as an additional feature
because previous studies showed that this feature is very valuable for the detection of
human-induced activities [19,53].
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Figure 4. Workflow of the underutilized land mapping approach.

RF is an ensemble learning method belonging to the group of non-metric decision
tree classifiers. It constructs several independent decision trees modeling the relationship
between the predictor (classification input features) and response variable (used versus
underutilized land). The final response is calculated using the majority vote [54–56]. In this
study, all classifiers are generated with 500 trees, and the employed reference data were
split into a set of training data (90%) and a set of RF internal model validation data (10%).
Though the accuracies of the results are assessed in an independent validation, this internal
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validation was used as an a priori indication on the performance of the classification to
evaluate the need for modifications in the training process.

In the process of training, RF allowed us to calculate the importance of each feature for
the classification, i.e., which features comprise a lot of valuable information to distinguish
between the response variables [57]. Since computation time does not only depend on the
number of trees but also on the number of predictor variables, a threshold of 0.01 for this
feature importance was defined to narrow down the number of predictor variables. The
threshold value marks the percentage of importance that must be reached by a feature to
be included in the final set of features used by the classifier. Consequently, this resulted in
a different number of features contributing to the classification for each study area. In the
final post-processing step, a MMU of 0.5 ha was applied.

3. Results
3.1. Feature Importance

The first part of this chapter presents the results of the feature importance analysis,
per BGR. As laid out in Section 2.3, the input feature set for each study area to train the RF
classifier consists of 123 features, 120 TSMFs (4 parameters × 10 bands × 3 years) and 3 STFs
(standard deviation of NDVI per year). According to Table 1, six study areas are located
in the Continental, four in the Mediterranean and two in the Pannonian BGR. Therefore,
the maximum number of time a certain parameter can be used for classifications within a
BGR is not identical for all BGRs. For the Continental BGR the maximum is 15, considering
that the two German study areas are classified in the same run (5 study areas × 3 years),
for the Mediterranean BGR it is 12 (4 study areas × 3 years) and for the Pannonian BGR it
is 6 (2 study areas × 3 years). To compare the BGRs directly, Figures 5–7 depict the relative
frequency of usage of each TSMF for the RF classification in the respective bio-geographical
region (BGR).

Figure 5. Relative frequency of use of each TSMF for RF classifications of the 15 study areas in the Continental BGR
according to the feature importance reported.

Figure 6. Relative frequency of use of each TSMF for RF classifications of the 12 study areas in the Mediterranean BGR
according to the feature importance reported.
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Figure 7. Relative frequency of use of each TSMF for RF classifications of the six study areas in the Pannonia BGR according
to the feature importance reported.

For all three BGRs, the offset and observation variance of the model are most important
to distinguish utilized and underutilized land. While for the Continental region (Figure 5)
and Pannonian region (Figure 7) the offset of the short-waved infrared bands (B11 and
B12) are of highest importance, the near infrared and red-edge bands (B5, B6, B7, B8, B8A)
are more relevant in the Mediterranean region (Figure 6). For the visible domain of the
electromagnetic spectrum (B2, B3, B4), the results reveal that only the observation variance
of these three bands is of importance for the classification in all three BGR’s, with the
red band (B4) being used more often than the green (B3) and blue (B2) bands. It can also
be observed that the observation variance has a higher importance in the dryer BGRs
(Mediterranean and Pannonian, Figures 6 and 7) than in the humid Continental region
(Figure 5). Apart from the B11 and B12 amplitude of cosine in the Pannonian region,
all three figures indicate that the amplitude of both the cosine and the sinus are of less
importance than the offset and observation variance.

In addition to the TSMFs, the temporal standard deviation of the NDVI per year as
one TSF complemented the input feature dataset to train the RF classifier. The analysis of
the frequency of this feature among the most important features strongly depends on the
BGR. In the Pannonian BGR the temporal standard deviations of the NDVI significantly
contributed to the classification with 5 out of 6 NDVI TSF features included according to
the RF feature importance report (83%). In the Mediterranean region, almost 60% of the
combinations (7 out of 12) included the standard deviation of the NDVI in the classification.
In the Continental region, however, it was found to be less important, with presence in
only about one third of the combinations (5 out of 15).

3.2. Classification Results

This chapter describes the classification results. Table 5 provides the area of detected
underutilized lands, their shares of the entire AOI as well as the average and median size
of single patches per study area. The largest absolute area of UU land has been detected in
the Spanish study area, followed by Chernihiv in Ukraine and Gorj in Romania. The least
absolute area was detected in Sulcis (Italy) and Hungary-North. The absolute figures are
important for the stakeholders and users in order to decide on investments in the bioenergy
sector. However, since the size of AOIs differs significantly, it is difficult to draw any
conclusions from the overall area of underutilized land expected in the individual BGRs or
countries. Therefore, the area share of underutilized lands per AOI was calculated. The
highest shares can be found in Ukraine and Romania, followed by Spain and Sulcis, in Italy
(see Table 5). In terms of patch size, the average patch size is largest in Chernihiv (Ukraine),
with 11.12 ha followed by the Spanish study area (5.65 ha), and the second Ukrainian study
area, with 5.01 ha. Regarding the average patch sizes per BGR, the continental BGR has the
largest patch size, but with a large internal variation (2.76 ha in Germany versus 11.12 ha
in Chernihiv). The smallest patch sizes were found in the Pannonian BGR. Since the mean
value is sensitive to outliers, the median value is also reported. Splitting the data into a
lower and an upper half, this value is expected to indicate more reliably what the “typical”
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UU patch size is. Results show the same pattern as for the average size, and the highest
median values are found in the Continental BGR, followed by the Mediterranean BGR and
the Pannonian BGR. However, the median values lie within a range of 0.45 ha across all
study areas, with the smallest value (0.95 ha) for Bacs-Kiskun & Csongrad and the highest
value for Chernihiv (1.40 ha).

Table 5. Area of interest, underutilized land area, underutilized land area share of AOI as well as average and median size
of underutilized lands per study area.

BGR Study Area AOI [ha] UU [ha] UU Share of
AOI [%]

Average UU
Patch Size [ha]

Median UU
Patch Size [ha]

Continental

Dahme-Spreewald &
87,063 4892.48 5.62 2.76 1.06Spree-Neiße

Bacau 123,010 21,591.98 17.55 3.42 1.16
Gorj 367,895 84,959.75 23.09 4.38 1.19

Chernihiv 351,227 107,762.80 30.68 11.12 1.40
Khmelnytskyi 853,461 78,488.61 9.20 5.01 1.37

Overall 1,782,656 303,443.57 17.02 5.62 1.22

Mediterranean

Val Basento 377,070 22,326.93 5.92 3.13 1.10
Sulcis 17,485 2273.83 11.90 4.63 1.14

Albacete & Cuenca 1,018,928 164,751.48 16.17 5.65 1.19
Overall 1,415,106 189,352.25 13.38 4.47 1.14

Pannonian
Bacs-Kiskun & Csongrad 585,523 4845.72 0.83 1.89 0.95

Hungary-North 579,492 2252.32 0.39 2.52 1.05
Overall 1,165,015 7098.04 0.61 2.21 1.01

3.3. Accuracy Assessment

This part of the results reports the achieved unbiased classification accuracies cal-
culated based on the validation data listed in Table 4. In addition, count-based accuracy
measures are reported in the Table 6 for comparison. In Table 7 the achieved overall accura-
cies (OA), commission errors (CE) and omission errors (OE) are reported. In brackets, the
values for the respective confidence intervals (CI) at the 95% confidence level are reported.
This means that with a probability of 95%, the respective accuracy value lies within the CI
around the given value. For example, the highest OA with 96.76% and a confidence interval
(CI) of 1.83% for Hungary-North means that with a probability of 95%, the OA in Hungary-
North lies between 94.93 and 98.59%. The second highest OA was reported for Albacete &
Cuenca (94.89%), followed by the second Hungarian study area, Bacs-Kiskun & Csongrad
(92.34%). The smallest OAs are slightly above 80% and were obtained for both Italian
and Romanian study areas. Considering the before-mentioned food versus fuel debate,
we considered the CE to be more critical than OA because high CEs mean that a lot of
underutilized lands detected by the mapping approach actually are used. According to
Table 6, the lowest CEs were achieved in Hungary-North (0%/no CE), followed by Val
Basento (2.77%) and Sulcis (5.83%). The highest CEs are reported for Dahme-Spreewald
& Spree-Neiße (91.45%) and the two study areas in Romania, Gorj (43.93%) and Bacau
(20.53%), respectively.
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Table 6. Achieved unbiased accuracy measures and their CI at a 95% confidence level per study area.

Study Area OA [%]
(CI)

U: OE [%]
(CI)

U:CE [%]
(CI)

UU: OE [%]
(CI)

UU: CE [%]
(CI)

Dahme-Spreewald & Spree-Neiße 90.98
(3.93)

1.13
(0.19)

8.07
(3.97)

98.80
(1.72)

91.45
(15.82)

Bacau 91.86
(3.28)

3.58
(1,33)

6.03
(3.59)

30.86
(12.83)

20.53
(7.92)

Gorj 88.47
(3.60)

3.63
(0.88)

9.00
(3.79)

67.31
(9.95)

43.93
(10.94)

Chernihiv 80.36
(5.24)

22.89
(7.71)

26.14
(8.66)

18.27
(6.76)

10.56
(4.50)

Khmelnytskyi 81.74
(3.60)

11.50
(2.64)

17.63
(4.89)

28.39
(5.75)

19.40
(4.89)

Sulcis 80.25
(6.28)

3.49
(2.62)

26.12
(8.93)

37.71
(8.05)

5.83
(4.48)

Val Basento 81.28
(4.78)

2.77
(2.14)

27.07
(7.41)

33.53
(6.11)

2.77
(2.14)

Albacete & Cuenca 94.89
(1.83)

0.76
(0.29)

4.75
(1.94)

42.62
(10.04)

10.23
(3.92)

Bacs-Kiskun & Csongrad 92.34
(2.67)

0.01
(0.01)

7.66
(2.67)

99.21
(2.28)

15.79
(16.85)

Hungary North 96.76
(1.77)

0.00
(NA)

3.24
(1.77)

99.24
(0.41)

0.00
(0.00)

Table 7. Achieved count-based accuracy measures and their CI at a 95% confidence level per study area.

Study Area OA [%]
(CI)

U: OE [%]
(CI)

U:CE [%]
(CI)

UU: OE [%]
(CI)

UU: CE [%]
(CI)

Dahme-Spreewald & Spree-Neiße 90.26
(13.90)

8.89
(6.56)

7.69
(3.88)

63.64
(33.37)

38.46
(15.79)

Bacau 88.19
(4.10)

8.43
(4.42)

10.59
(4.64)

17.14
(5.82)

13.86
(6.77)

Gorj 87.00
(3.75)

3.11
(3.23)

15.00
(4.73)

30.84
(6.70)

7,50
(5.81)

Chernihiv 78.83
(5.07)

18.63
(5.37)

26.14
(8.66)

23.23
(5.98)

16.36
(5.42)

Khmelnytskyi 79.86
(3.57)

17.62
(4.41)

26.07
(5.64)

22.10
(3.88)

14.68
(4.38)

Sulcis 81.05
(5.86)

3.28
(4.28)

37.23
(8.23)

25.18
(5.15)

1.89
(2.60)

Val Basento 79.33
(4.29)

4.71
(4.28)

41.73
(4.64)

26.98
(4.09)

2.48
(2.41)

Albacete & Cuenca 85.40
(2.47)

4.55
(2.39)

18.00
(3.51)

28.04
(3.75)

7.79
(3.46)

Bacs-Kiskun & Csongrad 81.75
(8.64)

0.96
(3.45)

18.37
(3.89)

81.40
(11.05)

15.75
(16.85)

Hungary North 65.75
(2.39)

0.00
(NA)

35.40
(4.77)

91.33
(4.83)

0.00
(0.00)

4. Discussion
4.1. Feature Importance

To our knowledge, there are no other studies employing TSMFs for the differentiation
of underutilized and utilized lands. Thus, we have to broaden the discussion of the
feature importance to other vegetation and agricultural classification approaches while
recognizing the limited comparability. Our finding, that offset and observation variance
are the most valuable information sources, was also reported by [48], who used TSMFs
from S2 spectral bands and spectral indices time series to estimate the canopy height.
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Figures 5–7 also show that the difference between utilized and underutilized land mainly
occurs in the red, near infrared, red-edge and shortwave infrared bands. This is in
line with previous studies on the vitality of vegetation [58]. A study applying a mono-
temporal classification approach [24] also reported high importance for the near infrared
and shortwave infrared S2 bands as well as derived indices from these bands to map
land abandonment.

The importance of the observation variance supports the hypothesis stated in Section 2.3,
i.e., that we expect the temporal spectral behavior of underutilized land to fit a harmonic
model better that utilized land (see Figures 1 and 3). Regarding the amplitudes of the
cosine and the sinus, Figures 5–7 suggest that they contain less relevant information for
the differentiation of the target classes. This implies that the maximum of the modeled
curve and the time of reaching during the growing season can be quite similar for some
utilized and underutilized lands. This implication is supported by Figure 3, e.g., comparing
underutilized land and maize.

The importance of the temporal standard deviation of the NDVI for the study areas
in the Mediterranean and Pannonian BGR indicates that especially in BGRs, charac-
terized by dry climate, STF comprise valuable information to differentiate between
utilized and underutilized land. The reason may be found in the agricultural practice
of irrigating cropland, which is necessary in wide areas of the Mediterranean BGR to
increase crop yields. Similar results in this respect were also found in earlier works of
the authors [19].

4.2. Classification Results

The greatest amount of underutilized land, not only in terms of absolute area but
also of area share, was mapped in the eastern part of the Continental BGR (study areas in
Romania and Ukraine). This result is perfectly in line with previous assessments [13,14].

In comparison to the use of Landsat data [19,59] or MODIS data [13,14], employing
S2 image time series has two major advantages: the revisit interval and the higher spatial
resolution, which enables a much smaller MMU. Table 5 shows that the average patch
size in all study areas, except Cernihiv, is below 10 ha, and the median does not even
exceed 2 ha. Comparing this with results achieved by [19], where a MMU of 10 ha was
used with Landsat 8 time series data, it can be deduced that a great amount of potentially
underutilized lands mapped in this study could never have been detected with a lower
resolution data.

In addition to the feasibility of mapping smaller underutilized land patches, the higher
spatial resolution of S2 images also allowed us to delineate the boundaries of the identified
underutilized land patches more accurately. Figure 8 shows a comparison of underutilized
land delineated in this study and the pan-European approach using Landsat 8 time series
data employed by [19].

4.3. Accuracy Assessment

Generally, the quality of a calculated time series model strongly depends on the num-
ber of valid observations (e.g., valid pixel values) and the quality of these observations.
Invalid observations are induced by clouds, cloud shadows, haze or snow. Pixels repre-
senting these conditions are filtered and eliminated through a separate pre-processing
algorithm. It further needs to be considered that adjacent S2 granules overlap vertically and
horizontally, leading to more observations for certain parts of a granule, thus increasing
the amount of potentially useful observations. Figure 9 shows how the conditions of the
atmosphere, which are highly diverse across Europe, and the overlapping of S2 granules
impact the available number of valid pixels in the case the following study regions: Gorj
(left), Dahme-Spreewald & Spree-Neiße (middle) and Sulcis (right).



Remote Sens. 2021, 13, 4920 15 of 20

Figure 8. Comparison of the pan-European mapping approach based on L8 [19] and the detected underutilized lands in
this study based on S2 in the Sulcis study area (Background: S2 image from 18 July 2019).

Figure 9. Number of valid pixels during the vegetation period for the study areas Gorj, Dahme-Spreewald & Spree-Neiße
and Sulcis per year for the period 2017–2019.
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The number of valid pixel values strongly affects time series modeling: if there is a
large gap in the time series, it is more likely to miss a change caused by human intervention.
In this case, the classification algorithm also fails to recognize these patterns. This situation
would result in higher omission errors for the utilized land class and higher commission
errors for the underutilized land class. Figure 9 clearly highlights the fact of the significantly
reduced availability of valid pixels for the German study areas, explaining the low OE and
CE obtained for this study area (see Table 6).

A further source of misclassifications that needs to be kept in mind is the method of
generating training data for utilized land. As mentioned in Section 2.2.2, existing datasets
are used to generating training data for the utilized category using a random sampling
approach. Since the sampled points were not revised manually, errors may be present
in the training data. Moreover, the existing products have different MMUs compared to
the results produced within this study, which can also lead to errors in the training data.
Finally, most of the existing datasets represent status products of 2018 as compared to the
three-year interval captured in our study.

Looking at Table 6, it can be noticed that for both study areas in Hungary an extremely
high OE for UU land is reported while the CE for UU land is low. One reason for this might
be found in the training data. Since the CE is low, the conclusion can be drawn that the
UU training data does not represent the entire variety of UU lands in these study areas.
Therefore, it is to be expected that there is a considerable amount of underutilized land not
detected with the proposed approach.

For the German study areas, not only a high OE but also a high CE are obtained for UU
land. One possible explanation could be the lower number of valid observations available
to calculate the harmonic model (see Figure 9). A second reason, specifically for the high
OE, can be found in inaccurate pre-processing due to difficult atmospheric conditions.
Valid pixels influenced by remaining clouds, haze or snow, lead to a higher observation
variance. This may induce the classifier to assign the specific pixel that actually represents
underutilized land to the utilized class. A third reason could be the similar spectral curve
of maize, which is very common in this region of Germany, and underutilized land (see
Figure 4). The high CI at the 95% confidence level (15.82%) is related to the low number
of validation points for the underutilized class (see Table 4). As in the case of these two
districts, Dahme-Spreewald and Spree-Neiße, it is challenging to generate a validation
dataset with a reasonable amount of points representing underutilized lands, since the
area of underutilized land in the reference map [19] used for stratification is small. This
limited number of validation points automatically leads to higher confidence intervals.
Moreover, the small area of underutilized lands leads to a small weight for underutilized
validation points, while the weight of utilized points is comparably high. The consequence
of this can be observed very well when comparing unbiased (Table 6) and count-based
(Table 7) accuracy measures. The much lower count-based underutilized land CE of 38.46%
illustrates the impact of a small amount of wrongly classified utilized validation points
with a high weight on the unbiased CE.

After the Dahme-Spreewald & Spree-Neiße study area, the highest CE was achieved
for Gorj. A possible cause for this might be the small structured agriculture found in
large parts of the study area, leading to mixed-pixels representing both utilized as well as
underutilized land (see Figure 10)
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Figure 10. Example of small structured agriculture in the study area Gorj, in Romania: (a) optical VHR, (b) Sentinel-2 image
from 20 August 2018.

5. Conclusions

In this study, S2 satellite image time series from 2017–2019 were employed to map
underutilized lands in twelve different study areas in six different European countries
across three biogeographical regions. The mapping approach was based on TSMFs derived
from a 1st order harmonic function. The time series model was calculated for each year
(2017–2019) and each S2 band (10 m and 20 m bands). In addition, the temporal standard
deviation of the NDVI complemented the dataset. It was successfully demonstrated that the
retrieved model parameters offset, the amplitude of the cosine, the amplitude of the sinus
and the observation variance in combination with the temporal standard deviation of the
NDVI can serve as predictor variables for a RF classification approach to map underutilized
land. With this study we aimed to investigate the following research questions:

1. Which S2 time series model parameters of which spectral bands work best for the
differentiation between utilized and underutilized land?

2. What is the level of accuracy that can be achieved in different bio-geographical regions
of Europe using a common classification approach?

Regarding the first research question, the study revealed that, regardless of the BGR,
the TSMFs offset and observation variance are of great relevance to distinguish between
utilized and underutilized land. In particular, the importance of the observation variance
supports our hypothesis that utilized land does not fit a harmonic model well due to human
interventions, such as mowing or ploughing. Concerning the importance of different
spectral bands, it turned out that the near infrared, red-edge and short waved infrared
bands comprise more important information than the bands sensitive to the visible domain.
The importance of the temporal standard deviation of the NDVI strongly depends on the
BGR. All in all, nearly 500,000 ha of underutilized land were detected across all study areas,
with the greatest amounts found in the Mediterranean BGR and in Eastern Europe.

The topic of the second research question is the achievable accuracy. In terms of OA,
the results range between 80.25% and 96.76%, with the highest OA achieved for Hungary-
North (around 96%), followed by the study area in Spain (around 94%). The lowest accuracy
was obtained for Sulcis, in Italy, followed by Chernihiv, in Ukraine (both slightly over
80%). Despite the unequal environmental conditions, it was successfully shown that the
same mapping approach works very well in different BGRs. The produced maps provide
a valuable basis for further assessment of using so far underutilized land for sustainable
bioenergy production and, consequently, supporting Europe’s Green Transition.
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