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Abstract: Coastal wetland ecosystems, one of the most important ecosystems in the world, play
an important role in regulating climate, sequestering blue carbon, and maintaining sustainable
development of coastal zones. Wetland landscapes are notoriously difficult to map with satellite
data, particularly in highly complex, dynamic coastal regions. The Liao River Estuary (LRE) wet-
land in Liaoning Province, China, has attracted major attention due to its status as Asia’s largest
coastal wetland, with extensive Phragmites australis (reeds), Suaeda heteroptera (seepweed, red beach),
and other natural resources that have been continuously encroached upon by anthropogenic land-
use activities. Using the Continuous Change Detection and Classification (CCDC) algorithm and
all available Landsat images, we mapped the spatial–temporal changes of LRE coastal wetlands
(e.g., seepweed, reed, tidal flats, and shallow marine water) annually from 1986 to 2018 and analyzed
the changes and driving forces. Results showed that the total area of coastal wetlands in the LRE
shrank by 14.8% during the study period. The tidal flats were the most seriously affected type, with
45.7% of its total area lost. One of the main characteristics of wetland change was the concurrent
disappearance and emergence of wetlands in different parts of the LRE, creating drastically different
mixtures of wetland quality (e.g., wetland age composition) in addition to area change. The reduction
and replacement/translocation of coastal wetlands were mainly caused by human activities related
to urbanization, tourism, land reclamation, and expansion of aquaculture ponds. Our efforts in
mapping annual changes of wetlands provide direct, specific, and spatially explicit information on
rates, patterns, and causes of coastal wetland change, both in coverage and quality, so as to contribute
to the effective plans and policies for coastal management, preservation, and restoration of coastal
ecosystem services.

Keywords: coastal wetlands; land cover types; Landsat; land cover conversion; driving forces;
wetland persistence

1. Introduction

As the ecotone between terrestrial and marine ecosystems, coastal wetlands offer a
myriad of ecosystem services and play a key role in maintaining coastal biodiversity and
human welfare [1,2]. However, human activities coupled with climate change have led to
the degradation and loss of coastal wetlands, thereby devaluing ecosystem services [3]. In
China, 58% of the coastal wetlands (8.01×104 km2) disappeared between 1950 and 2014 [4],
which led to changes in coastal landscape, species diversity, soil properties, and wildlife
habitat [5,6].
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Understanding the causes, processes, and results of coastal wetland landscape evolu-
tion is very important for their protection. In the past few decades, human activities and
climate change, as manifested through land reclamation, sea reclamation, and sea level rise,
have greatly reduced the area of coastal wetlands, with obvious ecological consequences [7].
The important value and significant loss of coastal wetlands in China have attracted the
attention of academia, government agencies, and land resource managers [2]. Many studies
have investigated land-use changes in coastal wetlands but have mainly focused on the
results and causes of land use changes [1,8]. However, few studies have attempted to
map annual land-cover transition processes of coastal wetlands using long-term satellite
observations [9]. Knowing when, where, and how the land cover has changed is essen-
tial for biodiversity conservation, urban planning, habitat assessment, and tracking of
biogeochemical cycles [10].

The monitoring of wetlands has always been challenging because they are highly
dynamic over space and time [11,12]. Technical and methodological constraints for monitor-
ing wetlands persist [13], although many researchers have attempted wetland classification
through land surveys and satellite remote sensing [14–16]. The most typical method for
detecting changes in wetlands has been to compare images from two or more dates. How-
ever, the time between images acquired in such analyses is often multiple years, which may
miss critical, rapidly changing dynamics in between and impedes the analysis of driving
forces [17,18].

Various remote sensing methods for land use and land cover (LULC) change detection
based on dense time series have been developed in recent years to take advantage of the
open Landsat archive (Wulder et al. 2012), including the Landsat-based detection of Trends
in Disturbance and Recover (LandTrendr) [19], the vegetation change tracker (VCT) [20],
and the Continuous Change Detection and Classification (CCDC) algorithm [21]. Com-
pared with LandTrendr and VCT, the CCDC algorithm uses all spectral bands in Landsat
images to detect many kinds of surface change by fitting multiple surface reflectance mod-
els with sines and cosines simultaneously and providing land cover maps for any given
time [22,23].

The LRE wetland has the second largest reed swamp in the world, and it is the southern
feeding boundary for the wild Grus japonensis (red-crowned crane) and the world’s largest
breeding site for Larus saundersi (Saunders’ Gull) [24]. As a coastal wetland ecosystem
with high ecological value, the LRE has been degraded in recent years by artificial (pond
culture, reclamation of land) and natural disturbances. We used all available Landsat data
from 1986 to 2018 to classify LULC change in the LRE area using the CCDC algorithm. We
focused on the changes in coastal wetlands, including the tidal flats, shallow marine water,
seepweed, and reeds. We aimed to answer the following questions: 1) How suitable is the
CCDC method for detecting changes in coastal wetlands? 2) What are the temporal trends,
spatial distributions, and transformation directions of LULC change in coastal wetlands?

2. Data and Methods
2.1. Study Area

The LRE is located in the north of the Bohai Sea (Figure 1), with a coastline 240 km long
and covering an area of about 3500 square km [25]. The LRE has a temperate monsoon
climate. The average annual precipitation is 612 mm, and 70%–80% of the total precipitation
occurs between July and September [26]. The LRE wetland became a national nature reserve
in 1998 and a Ramsar site in 2005. The boundaries of national nature reserve are defined
by Wetland of International Importance (Ramsar Sites) (https://rsis.ramsar.org/ris/1441
(accessed on 25 November 2021)). The study area has a unique red beach (from the color of
the saline seepweed), extensive reed wetlands, and spectacular artificial aquaculture ponds
(Figure 1).

https://rsis.ramsar.org/ris/1441
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downloaded from level 2 products of USGS Earth Resources Observation and Science 
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with established correction algorithms [28]. Then, the CFMask algorithm, a method for 

cloud and cloud shadow detection and removal in Landsat imagery, was used to remove 

clouds, cloud shadows, and snow for each Landsat image to reduce noise prior to 

characterizing LULC [29,30]. We downloaded the CCDC version 12.30 from the Global 

Environmental Remote Sensing (GERS) Laboratory to generate the LULC maps 

(https://github.com/GERSL/CCDC (accessed on 1 December 2021)). A diagram of the 

workflow is shown in (Figure 2). 

Figure 1. Location of study area in 2018 (data sources: Google satellite imagery). The right panels show (A) seepweed, (B)
reeds, and (C) aquaculture ponds. The green line represents the boundaries of national nature reserve.

2.2. Data Preparation and the CCDC Algorithm
2.2.1. Data Acquisition and Preprocessing

We collected a total of 803 Landsat images for the LRE covering the period 1986–2018
with the Landsat footprint of p120r32 (World Reference System path (p) and row (r)).
We used Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus
(ETM+), and Landsat 8 Operational Land Imager (OLI) data from United States Geolog-
ical Survey (USGS) [27], with the percentage of cloud cover below 80%. All data were
downloaded from level 2 products of USGS Earth Resources Observation and Science
Center’s Science Processing Architecture (ESPA), which converted raw digital numbers
to six surface reflectance bands (Blue, Green, Red, NIR, SWIR1, and SWIR2) and one
thermal band (brightness/surface temperature) values. All images were atmospherically
corrected with established correction algorithms [28]. Then, the CFMask algorithm, a
method for cloud and cloud shadow detection and removal in Landsat imagery, was
used to remove clouds, cloud shadows, and snow for each Landsat image to reduce noise
prior to characterizing LULC [29,30]. We downloaded the CCDC version 12.30 from the
Global Environmental Remote Sensing (GERS) Laboratory to generate the LULC maps
(https://github.com/GERSL/CCDC (accessed on 25 November 2021)). A diagram of the
workflow is shown in (Figure 2).

https://github.com/GERSL/CCDC
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Figure 2. Overall flowchart of this study.

2.2.2. The CCDC Algorithm and Its Implementation

We mapped regional LULC changes for annual timesteps using the CCDC algorithm
(Zhu and Woodcock 2014). We selected 1 July as the anniversary date due to the images of
1 July having little cloud, no ice or snow cover, and it being the growing season of plants
in the study area, which improved the classification accuracy. Specifically, CCDC uses a
robust iteratively reweighted least squares (RIRLS) method to iteratively fit observations
to the LULC dynamic time-series model that incorporates seasonality, trends (for gradual
changes), and breaks (for abrupt changes). The model uses a data-driven threshold ap-
proach to identify breaks on the included Landsat bands. In successive dates of images
when the spectral signature deviates from the fitted model predictions, CCDC can identify
breaks or changes [21]. New observations are added, and their residuals are compared
with the RMSE (Root-Mean-Square Error) of the history period. If the error of the new
observation is higher than three times the RMSE, it is flagged as a potential change. Once
six successive observations are flagged, a change is identified and a new stable model
is initialized.

A reference land cover map, based on 2018 Landsat 8 data and field survey data, was
developed in a prior study with an overall accuracy of 95% and used to train the CCDC
algorithm. We followed guidance to optimize the selection of training data based on [29],
using a total of 20,000 pixels proportionally distributed across eight land cover categories,
resulting in 600–8000 pixels per category. Categories included: seepweed, built-up area,
forest land, reed field, paddy field, tidal flats, shallow marine water (shallow marine water,
river), and aquaculture ponds (aquaculture ponds, reservoirs).

2.3. Accuracy Assessment

To assess the accuracy of the synthetic Landsat images, we compared the 2018 clas-
sification results against Google Earth images. We selected 9899 pixels proportional to
the areal extent of each land cover as the validation dataset. We kept the minimum linear
distance between any two pixels at 250 m (we selected this distance to reduce the potential
for auto correlation) [31]. The user accuracy, producer accuracy, overall accuracy, and
kappa coefficient of each land cover were calculated [32]. We aimed to achieve a traditional
target of an overall accuracy >85% [33] to detect the rates of change.

3. Results
3.1. Thematic Classification Characterization

We used the thematic map output for 2018 (Figure 3) and the 9899 validation points
as the basis to assess the accuracy of the Random Forest Classifier (RFC) model. Table 1
shows that the overall accuracy for this map was 0.88, with an average producer accuracy
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(PA) of 0.79, an average user accuracy (UA) of 0.85, and a kappa coefficient of 0.847. These
accuracy levels fit our target and satisfied our study needs. Shallow marine water had the
highest PA (0.98) and UA (0.95), followed by reed field (PA=0.94, UA=0.89). Forest land
had a very small presence in the region, and its relatively lower PA (0.46) and UA (0.71)
had limited impact on the overall accuracy estimate.
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Figure 3. The thematic map output in 2018. The embankment or coastal dam is evident in the 2018
image, along with other new features.

Table 1. The accuracy assessment of classification. SH: seepweed; BA: built-up area; FL: forest land; PA: reed field; PF:
paddy field; TF: tidal flats; SMW: shallow marine water; AP: aquaculture ponds.

SH BA FL PA PF TF SMW AP Total User’s
accuracy

SH 91 2 0 0 0 3 1 4 101 0.90
BA 3 989 29 37 21 63 18 144 1304 0.76
FL 0 3 27 4 4 0 0 0 38 0.71
PA 2 40 1 1241 67 13 9 21 1394 0.89
PF 0 19 2 14 379 2 0 12 428 0.89
TF 23 33 0 7 0 893 50 96 1102 0.81

SMW 1 4 0 4 0 137 4146 73 4365 0.95
AP 0 73 0 15 1 52 23 1003 1167 0.86

Total 120 1163 59 1322 472 1163 4247 1353 9899
Producer’s accuracy 0.76 0.85 0.46 0.94 0.80 0.77 0.98 0.74 0.88

3.2. Changes of Coastal Wetlands in the LRE Area

The area of coastal wetlands in the LRE showed a substantial reduction (Figure 4a)
during the study period, decreasing from 2852 km2 to 2431 km2, and its proportional area
decreased from 82.7% to 70.3%. Losses in tidal flats and shallow marine water accounted
for most of the decrease in coastal wetlands (9.4% and 3.3% of the total area, respectively)
(Figure 4b), while built-up area, aquaculture ponds, and paddy fields increased in extent
(7.5%, 3%, and 1.6%, respectively).
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Figure 4. Changes of different land cover types from 1986 to 2018. Coastal wetlands, including seepweed, reed fields, tidal
flats, and shallow marine water (a). Area of individual land cover types (b) SH: seepweed; BA: built-up area; FL: forest land;
PA: reed field; PF: paddy field; TF: tidal flats; SMW: shallow marine water; AP: aquaculture ponds.

We used a Sankey diagram to represent the direction and proportional area of land
cover change (Figure 5). A large area of tidal flats was converted to aquaculture ponds,
built-up area, paddy fields, and reeds fields. The aquaculture ponds changed greatly, with
abandonment and emergence occurring simultaneously. Shallow marine water was mainly
converted into built-up area and aquaculture ponds. The total area of reeds, paddy fields,
and forest increased while seepweed reduced.
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3.3. Spatial–Temporal Dynamics of Coastal Wetlands
3.3.1. Vegetated Coastal Wetlands

The area of seepweed showed a net decrease over the study period (Figure 6A), and
was mainly replaced by reeds, which accounted for 32% of the total area of seepweed lost,
followed by aquaculture ponds, built-up area, and shallow marine water (Figure 7A). In
contrast, the expansion of seepweed mainly occurred in area of shallow marine water and
tidal flats, which accounted for 85% of the expanded area (Figure 7B).
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reeds. Seepweed converted to other cover types (A); other cover types converted to seepweed (B);
reeds converted to other cover types (C); and other cover types converted to reeds (D). SH: seepweed;
BA: built-up area; PA: reed field; PF: paddy field; TF: tidal flats; SMW: shallow marine water;
AP: aquaculture ponds; O: other covers.

The areal extent of reeds showed an increasing trend over time (Figure 6B). This
increase was mainly from tidal flats, accounting for 51% of the reed increase, followed
by aquaculture ponds and agricultural land, accounting for 17% and 16%, respectively
(Figure 7D). The expansion of reeds primarily occurred in the national nature reserve,
distributed on both sides of the lower reaches of Liao River. Reeds were mainly lost along
the edges of the national nature reserves (Figure 7C), primarily replaced by agricultural
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land and aquaculture ponds, accounting for 33% and 21%, respectively, of the decrease in
the extent of reeds.

3.3.2. Tidal Flats and Shallow Marine Water

The extent of tidal flats declined continuously through the study years, resulting in
a loss of 324 km2 (46%) (Figure 6C). The area transformed from tidal flats to aquaculture
ponds was relatively large, 205.96 km2, accounting for 49% of the loss in tidal flats, fol-
lowed by built-up area (66.66 km2) and paddy fields (59.19 km2) (Figure 8A). Paddy field
encroachment occurred around the delta reservoir on the east side of the LRE, while the
encroachment of built-up area mainly occurred in the port of Panjin.
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There was little change in the shallow marine water area before 2005, but then the
total area decreased sharply from 2010 to 2014, with a loss of 81 km2 (Figure 6D). The loss
was mainly caused by the expansion of built-up land, covering an area of 77 km2, which
accounted for 53% of the loss in extent of shallow marine water (Figure 8B).

3.4. Existence Time of Vegetated Coastal Wetlands

Vegetated coastal wetlands (seepweed and reeds) were highly dynamic between 1986
and 2018, as shown by the substantial presence of young-aged wetlands (Figures 9 and 10).
The seepweed occupied an area of 42.3 km2 in 1986 and shrank to 35.4 km2 by 2018
(Figure 6A). Seepweed that persisted throughout the study period (>32 years old) ac-
counted for 23.4 km2 and areas of newer seepweed accounted for 12 km2, or more than
one-third of the total seepweed area in 2018. The rate of expansion of seepweed escalated
over time, as the results indicated increased total area of new seepweed with each succes-
sive eight-year interval (Figure 9). Some seepweed expansion was quite temporary, with
9.7 km2 retreating during the study period.

Reeds increased from 462.2 km2 in 1986 to 486.9 km2 by 2018. The area of reeds
that persisted during the entire study period was 422.7 km2 and the area of the newly
expanded reeds was 64.2 km2, or 13.9% of the area in 1986 (Figure 10). The newly emerged
reeds lost again during the study period were 31.2 km2. A notable area of reeds, 31.2 km2,
represented a temporary expansion that receded again before the end of the study period.
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4. Discussion
4.1. Driving Forces of Coastal Wetland Changes
4.1.1. Seepweed

The area of seepweed showed an overall downward trend. The construction of
embankments and Delta Reservoir have a great influence on the seepweed. For the
former, large amounts of silt and nutrients were deposited on the outside of the tidal
flats after building an embankment in 1990 in Panjin [34]. Consequently, the soil salinity
and nutrients in the peripheral area of the embankment promoted the establishment of
seepweed vegetation communities in the wetlands outside the bank dike (Figure 3). The
water environment in the inner part of the levee gradually changed from saltwater to
freshwater, and some wetlands were converted to paddy fields, contributing to loss of
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seepweed. In addition, recession of seepweed was also associated with the Delta Reservoir
(Figure 3), which was built in 1998. The changes in land use from farmland development
and reservoir construction were concentrated in the wetlands on the east bank of the
LRE [35]. After the completion of the reservoir, the freshwater flowing to the sea from
upstream decreased, which altered the soil salt content and material and energy exchange
in the habitat of the seepweed.

Aquaculture ponds and built-up area also played major roles in the shrinking of the
seepweed. In recent years, with the increasing economic benefits of freshwater fish, crab,
and shrimp aquaculture, the aquaculture industry has developed rapidly. Aquaculture on
tidal flats directly encroached on the seepweed space by land reclamation; water pollution
associated with aquaculture industry had a great impact on seepweed growth as well.
Physical replacement of the seepweed by buildings was mainly distributed in Panjin Port.
The seepweed grew in long strips on the tidal flats before 1995, which has been altered by
the construction of Panjin Port. In addition, sediment elevation has a great influence on
seed germination of seepweed [36]. The seeds buried at shallow depths generally have
higher rates of germination and emergence, and could only germinate and emerge with
sediment burial depth <5 cm [36]. Depth of seed burial can influence morphological traits
of the plants, and excessive burial may even prevent seedlings from emerging above the
sediment surface due to lack of oxygen or light and insufficient temperature for germination
or growth.

4.1.2. Reeds

The area of the reeds increased over time, though increases and decreases occurred in
different places at the same time (Figure 7C,D). The decline in reeds occurred mainly at
the edges of the national nature reserve, affected by human activities including land recla-
mation, oil production, and tourism. Expansion of reeds was mainly in the nature reserve,
benefiting from the legal support and government policies associated with environmental
governance and protection. The Ramsar Wetland, established in 2005, brought attention to
the reeds in the reserve, and a series of conservation measures have resulted in an increase
in the area of reeds.

The declining trend of reeds can be attributed to the rapid population growth in the
LRE area, which has brought large-scale development of farmland and oilfield exploitation
since the 1980s [37]. Farmland reclamation not only encroached on a large number of
reed fields, but also led to shortages in freshwater resources. The exploitation of the Liao
River oilfield has destroyed the drainage and irrigation system of reed marsh wetlands by
constructing wells, roads, and other production and living facilities, resulting in secondary
salinization and rapid degradation of the reeds. Tourism has also brought a series of
problems to reeds in the form of unreasonable tourism infrastructure construction, and
the establishment of some routes and tourist attractions has an impact on the ecological
environment [38].

4.1.3. Tidal Flats and Shallow Marine Water

Tidal flats underwent the largest, most consistent loss in area in the LRE because
of human activities associated with the expansion of aquaculture ponds, building and
infrastructure construction, and paddy fields (Figure 8A). The continuous decline of tidal
flats was directly related to the continuous expansion of built-up area and aquaculture
ponds. LRE area has a long coastline and abundant natural resources. Many farmers devel-
oped tidal flats, and collectively and personally occupied wetland resources at will due to
the lack of policy constraints in the 1980s, resulting in resource waste and environmental
deterioration. As a result of the establishment of the embankment, the marine water in
the delta plain transitioned to freshwater, where a large number of tidal flats had been
reclaimed into paddy fields (Figure 8A).

The area of shallow marine water declined rapidly after 2010, mainly due to the
construction of Panjin Port and the relocation of the new government in Yingkou city.



Remote Sens. 2021, 13, 4900 11 of 14

The Panjin Port, completed in 2000, and the wharf, completed in 2010, covering an area
of 230,000 m2, replaced the tidal flats in the west side of the LRE. Modified shorelines,
presence of ship berths, and reclaimed land from the sea altered the nature of the tidal flats
and shallow marine water permanently. To the east of Daliao River Estuary lies Yingkou
City, which was built up from wetlands with tidal flats and depressions. Yingkou moved
the new municipal government building here in 2015 for its superior geographic location.
Relocating the new municipal government led to a shift in the center of operations and
commerce in Yingkou. Prior to this, the area was made up of aquaculture ponds, tidal
flats and water catchment, but the construction of the new government facilities led to a
surge in built-land starting from 2006, occupying a large number of aquaculture ponds and
tidal flats.

4.2. Planning and Conservation

How to balance the protection of natural resources while supporting the economic
development of coastal wetland resources is one of the most critical problems of the LRE.
Because the loss of reeds tends to occur near the edges of national nature reserves, the
government should consider defining buffer zones around the protected areas [39,40].
At present, the transition zones at national nature reserves are narrow, which may be
insufficient to protect the wetlands in the nature reserves from human activities external
to the reserves. Wide buffer zones with grasses or other vegetation could be established
around protected areas.

The expansion of the Yingkou City has encroached on wetlands, aquaculture ponds
and beaches, leading to a series of coastal issues. At present, there is a long strip of
seepweed in the coastal area of Yingkou City that is very close to urban land. If the urban
area continues to expand and wetlands are not protected, the seepweed in this area will
likely disappear. If the government has interest in protecting coastal wetlands, our results
indicate that proactive efforts will be needed to stop further loss of wetland habitats and
functions in the face of further economic development in and around the LRE.

The results showed that for vegetated coastal wetlands, seepweed and reeds showed
cyclical change. When they are encroached by other land covers, they can be restored by
natural factors or human intervention, or they can also be bred in other places. However,
for tidal flats and shallow marine water, their changes are often unidirectional, and it is
difficult for them to recover once they are destroyed. Therefore, the government should
not only maintain the vegetated coastal wetlands, but also formulate stricter plans on the
protection of tidal flats and shallow marine water to reduce the loss of area.

4.3. Advantages and Limitations

The Landsat archive provides long-term coverage of the Earth dating back to the
1970s. A single Landsat satellite passes over the same location every 16 days; however,
there often have been two Landsat satellites in orbit simultaneously, with offset overpass
schedules that provide 8-day revisits [21,41]. The combination of dense time series from
Landsat and the CCDC algorithm seemingly performed well in mapping the continuous
changes of LRE coastal wetlands. However, we made an assumption that the level of
accuracy we measured for the 2018 map was representative and consistent across all the
years of our study, an assumption we acknowledge would be difficult to test. Wetlands
are known to pose challenges for remote classification, as we stated in the introduction.
They are typically difficult to map well because they are very dynamic. Accordingly, their
spectral characteristics can change with high temporal frequency in concert with changes
in water inundation and fluctuations in vegetation growth [42]. Another caveat is that
rates of change reported that were smaller than the error rates measured for a given cover
type might not actually represent change. For example, with a user’s accuracy of 0.89
and a producer’s accuracy of 0.94 for reed field, we cannot be certain that the smaller
rates of change that occurred in the intervals prior to 2014 were not due to mapping error
(Figure 6B). However, we have a more convincing case for the credibility of small rates of
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change when they can show a consistent or a long-term trend, such as for tidal flats with
graph C in Figure 6.

Our work demonstrates how a continuous monitoring approach can provide insights
into wetland dynamics that, before now, have been difficult to acquire for sizeable ge-
ographic extents. Studying the dynamics in a landscape as complex as the LRE was
undoubtedly challenging, and the results show the types of information needed for effec-
tive management of wetland resources can be provided through this approach. Compared
with previous studies [12,13], our study showed more detailed transformation processes of
coastal wetlands, including the timing and locations of change, and how the wetlands were
replaced. As a result, we demonstrated that losses and gains in vegetated coastal wetlands
occurred simultaneously. Most of the previous work has focused on the degradation and
encroachment of coastal wetlands [34,43]. However, we found that the vegetated coastal
wetlands expanded in some places.

We have shown that continuous long-term monitoring of coastal wetland changes can
provide information on the persistence of wetland communities, an important measure
of wetland quality. For vegetated coastal wetlands, community persistence can be related
to the richness of biodiversity, soil organic matter, and ecosystem functions. Following
disturbance, restored wetlands take time to recover the qualities that provide suitable
habitats for wildlife. For example, surveys of coastal mangroves showed that newly
restored mangroves had higher sand content, lower soil organic matter, lower total carbon,
and lower total nitrogen than the original mangroves [44]. Some studies have shown that
it takes about three to four years to create wetlands where birds can breed, but longer to
reach a more natural state [45,46]. Wetland soil properties, such as soil organic matter,
total organic carbon, and total nitrogen, generally increased with increased age of wetland
vegetation, which also influenced water quality [47,48]. The ability to spatially track the
persistence of coastal wetlands provides valuable information on the timing and locations
of change, the types of transformations associated with the wetlands, and general trends in
land cover change needed by resources managers.

5. Conclusions

In this study, we used the CCDC algorithm to characterize continuous land cover
change information with all available Landsat data, and explored the evolution of processes
and driving forces of land cover change in the LRE area. This study showed how a
continuous monitoring approach can provide the detailed information needed by managers
and planners for a highly dynamic coastal landscape.

The results revealed that coastal wetlands (i.e., tidal flats, shallow marine water,
reed field and seepweed) experienced drastic changes in the LRE area, with decreases in
wetland area of 421 km2 (12.4%) between 1986 and 2018. Coastal wetlands were mainly
converted from tidal flats and shallow marine water to built-up area and aquaculture
ponds, evidence that the reduction in coastal wetlands in the LRE was mainly caused by
human activities. For vegetated coastal wetlands, the total area of seepweed decreased
by 7 km2 (16.32%) over the study years while total area of reeds increased by 24 km2

(5.34%), driven by human activities and natural causes (sedimentation). In addition, we
mapped their persistence, which is important for indicating the evolution of wetland
quality as it relates to biodiversity and carbon sequestration capacity in the region. Such
detailed information on the rates, patterns, and causes of the evolution of coastal wetlands
is critical for regional planners and resources managers interested in wetland protection
and sustainable development of ecosystem services.
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