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Abstract: The fine particles produced during the desertification process provide a rich material source
for sand and dust activities. Accurately locating the desertified areas is a prerequisite for human
intervention in sand and dust activities. In arid and semi-arid regions, due to very sparse vegetation
coverage, the microwave surface scattering model is very suitable for describing the variation of top-
soil property during the process of desertification. However, the microwave backscattering coefficient
(MBC) trend of the soil during the desertification process is still unclear now. Moreover, the MBC of
a resolution unit usually involves the contribution of soil and vegetation. These problems seriously
limit the application of microwave remote sensing technology in desertification identification. In
this paper, we studied the soil MBC change trend during the desertification process and proposed a
microwave backscattering contribution decomposition (MBCD) model to estimate the soil MBC of
a resolution unit. Furthermore, a simple microwave backscattering threshold (SMSBT) model was
established to describe the severity of desertification. The MBCD and SMSBT models were verified
qualitatively through landscape photos of sampling points from a field survey in November 2018. The
results showed that the MBC would gradually decline with the deepening degree of desertification.
The MBCD model and the corresponding least squares method can be used to estimate the soil MBC
accurately, and the SMSBT model can accurately distinguish different degrees of desertification. The
results of desertification classification showed that more than 68% of the dry bottom of the Aral Sea
is suffering from different degrees of desertification.

Keywords: desertification; Aral Sea; microwave backscattering contribution decomposition; least
squares method

1. Introduction

The United Nations Convention to Combat Desertification (UNCCD) defined deserti-
fication as land degradation in arid, semi-arid, and dry sub-humid areas resulting from
various factors, including climatic variations and human activities [1–8]. The desertification
process produces many sand and dust particle grains, providing rich material for sand
and dust activities [9]. The Aral Sea region, one of the world’s worst disaster areas, is
suffering from a rapid process of desertification. The sand and dust particles aroused from
the dry bottom of the Aral Sea are rich in salt and toxic substances, resulting in both the
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widespread death of vegetation as well as various human diseases [10,11]. Location of
desertification spatial distribution is a prerequisite for human intervention in the process
of desertification. Due to the enormous advantages of remote sensing technology in de-
sertification monitoring, researchers developed various methods based on remote sensing
data and technology to identify the desertification process.

In 1998, Becker related the Normalized Difference Vegetation Index (NDVI) and
Microwave Polarization Difference Index (MPDI) to monitor vegetation and desertification,
suggesting the relationship between moisture and photosynthesis [12,13]. In other research,
Albedo and NDVI were used as indicators to classify different degrees of desertification [14].
Currently, researchers developed a variety of desertification indicators, such as NDVI,
Albedo, MSDI (Standard Deviation Index), shifting sand proportion, VFC (fraction of
vegetation cover), modified soil-adjusted vegetation index (MSAVI), bare soil index (BSI),
degradation index (DI), Soil Quality Index (SQI), Climate Quality Index (CQI), Vegetation
Quality Index (VQI), Management Quality Index (MQI), Environmental Sensitive Areas
Index (ESAI) and Bagnouls–Gaussen Aridity Index (BGI), and so on [4,6,15]. The spectral
mixture analysis (SMA) method was first proposed by Collado in 2002 and was used to
estimate the fraction of different land types coverage [16]. The use of the SMA method
significantly improved the accuracy of the desertification area estimation [17]. Collado
used least squares method to estimate the fraction of different land types. However, in a
study dominated by Asner, another method based on probability was proposed to estimate
the fraction of vegetation in the arid area [18]. In a case study of desertification in Africa,
four indicators, including vegetation cover, rain use efficiency (RUE), surface run-off, and
soil erosion, were used to monitor desertification [19]. In another case study, a simple
machine learning method was used to extract potential areas with desertification risk [20].
Sun uses the cost-distance method to assess the risk of desertification, Lin established
a fuzzy model to evaluate desertification, and Guo proposed a decision tree method to
discriminate desertification [7,21,22]. Qiao extracted the desertification information based
on an artificial neural network method, and the result shows that this method can reach up
to an accuracy of 84% [23]. Jia used a decision tree method to extract the desertification
information, Wei utilized the feature space combinations method to identify desertification,
and Feng distinguished desertification based on an object-oriented classification method,
and so on [24–28]. Silva used a method based on concepts of mathematical morphology,
vegetation index and classification of digital images to distinguish desertification [29].
Moreover, the soil moisture from the satellite microwave estimation was often used for
desertification studies [30].

According to the literature review above, identifying desertification mainly involves
three methods: visual interpretation, desertification indicators, and machine learning,
which provide a variety of ways for us to locate the desertification areas. However, these
methods have more or fewer problems in practical applications. Due to the heavy workload,
it is nearly impossible for us to use visual interpretation in extensive area desertification
monitoring. In addition, the desertification indicators can hardly characterize the status
of the desertification directly, and the indicator maps often have a relatively low spatial
resolution due to the use of low spatial resolution satellite images in the process of calcu-
lating these indicators. To make matters worse, cloudy weather in some arid areas makes
obtaining high-quality optical remote sensing data difficult. Because of the difficulty in
labelling different levels of desertification, machine learning methods can hardly be used in
desertification discrimination. The microwave remote sensing technology provides us with
a powerful tool to describe the characteristics of the topsoil property changes in the deserti-
fication processes. Compared with optical remote sensing data, microwave remote sensing
data is hardly affected by clouds and rain, and it has a relatively high spatial resolution. In
addition, due to the difference in wavelength scale between microwave remote sensing
and visible light remote sensing, microwave remote sensing technology can be used to
distinguish changes of soil surface roughness during the desertification process, which
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cannot be distinguished in the visible light band. However, currently, there is nearly no
relevant research using microwave remote sensing technology to describe desertification.

Soil particle size is a vital indicator during the desertification process, and it is well
suited to characterize the extent of desertification. As the degree of desertification deepens,
the particle size of the topsoil gets smaller and smaller, and the topsoil surface becomes
smoother and smoother. However, this change in formation of the surface soil particle
size can hardly be obtained from optical remote sensing data because nearly natural soil
surfaces all look very rough in the visible light waveband. Fortunately, the backscattering
of microwaves is very sensitive to the change of the ground surface particle size. When
the particle size is relatively small, the surface looks very smooth for the microwave,
and the scattering energy is concentrated in the mirror direction, so the backscattering
energy is very weak. However, the backscattering energy will gradually get significant
with the increase of particle size without considering the influence of permittivity, which
has a close relationship with the salinity and moisture of the topsoil. In addition to
the interference factor of permittivity, another problem always exists when using the
microwave backscattering coefficient to describe the degree of desertification. The issue is
that the backscattering coefficient of a resolution unit usually involves the contribution of
soil and vegetation. However, what we need is the MBC of the soil of the resolution unit.
Until now, we have not found any research involving the decomposition of backscattering
contributions of soil and vegetation within a resolution unit, which led to the focus of this
paper, including:

1. The variation trend of the roughness and electrical roughness of the topsoil in the pro-
cess of desertification, the evaluation of the effects of soil moisture and soil salinity on
backscatter in arid and semi-arid regions, and whether the backscattering coefficient
can be used to describe the degree of desertification.

2. Developing a model for decomposing the backscattering contribution of vegetation
and soil within a resolution unit and estimating the backscattering coefficient of soil
within this resolution unit.

3. Use the backscattering coefficient of soil to assess the severity of desertification at the
dry bottom of the Aral Sea.

2. Research Area

The Aral Sea is located between the two countries of Kazakhstan and Uzbekistan,
lying in the hinterland of Eurasia, and it is far from the North Aral Sea. Thus, this region
has a classical continental dry climate, and it provided favorable conditions for the spread
of desertification. The temperature in this place can reach up to 40 ◦C in summer but may
drop below −20 ◦C in winter. The average annual precipitation is only between 100 mm
and 250 mm [11]. The relatively dry climate has exacerbated the process of desertification,
and a new dessert, called Aralkum Desert, is taking shape. Currently, the Aral Sea’s
exposed dry bottom is becoming a source of salts and chemicals, which are resources for
adjacent areas. So, the storms here are often be called ‘salt-dust storms’. More and more
research results suggest that the exposed dry bottom of the Aral Sea is becoming a new
‘hot spot’ of sand and dust storms [10,11,31]. The sand and dust activity usually occurs
at the place where the desertification is severe. Thus, obtaining the spatial distribution of
desertification areas with different severity is the first step for human intervention in sand
and dust activities. The study area in Figure 1 indicates that the site is dominated by a
large area of bare land, providing favorable conditions for desertification.
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Figure 1. Research Area and its land types. The research area involves barren land at the dry bottom
of the Aral Sea and its surroundings. The sampling points selected from a field survey in November,
2018 lie in our Research Area. Soil property data and the landscape photos of sampling points will be
used to validate the MBCD model and classification result of desertification.

3. Data and Method
3.1. Data
3.1.1. Remote Sensing Data

Sentinel-1 SAR GRD is C-band Synthetic Aperture Radar Ground Range Detected
with log scaling. The C-band Synthetic Aperture Radar wavelength is about 5.67 cm, and
the azimuth and range resolution is 10 m. The MBC described in dB ranges from −50 dB
to 0 dB, while the corresponding normalized backscattering coefficient is between 0 and 1.
These two expressions have a simple relationship such as the following [32]:

σdB = 10 log10 σN (1)

where σdB denotes the backscattering coefficient in dB and σN is the normalized backscat-
tering coefficient. Because of weak volume scattering in arid and semi-aid area, VV
polarization is selected for characterizing surface soil scattering features. The instrument
model is set as Interferometry Wide (IW) with a descending orbit model, and the data
was obtained from 23 June 2020 to 5 July 2020. These data can be easily accessed through
the Google Earth Engine (GEE) platform (https://developers.google.com/earthengine/
datasets/catalog/COPERNICUS_S1_GRD#description, accessed on 10 June 2021). Addi-
tionally, the data access code that we used in this paper can be easily found from this link:
https://code.earthengine.google.com/0659c95cc2523eff71ed05c344a46b9e, accessed on
12 June 2021. This paper calculates the VFC by pixel dichotomy, which Li first proposed
in 2004 [33]. Before Landsat 8 Collection 1 Tier 1 8-Day NDVI Composite were used to
compute VFC, we tried to use surface reflectance of band four and band three of sentinel-2
Multispectral Instrument to obtain VFC. However, high-quality remote sensing data with
little cloud during this period can hardly be found. To evaluate the influence of soil mois-
ture and soil salinity on the SMSBT model, we also obtained the volumetric soil moisture

https://developers.google.com/earthengine/datasets/catalog/COPERNICUS_S1_GRD#description
https://developers.google.com/earthengine/datasets/catalog/COPERNICUS_S1_GRD#description
https://code.earthengine.google.com/0659c95cc2523eff71ed05c344a46b9e
https://code.earthengine.google.com/0659c95cc2523eff71ed05c344a46b9e
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data of the surface soil with a spatial resolution of about 10 km at a depth of 0–7 cm in the
Aral Sea area. The soil moisture data was from the ERA5 data set, which is a reanalysis
data set. The data and the corresponding data access code can also be easily found on the
GEE platform.

3.1.2. Field Sampling Data

Landscape photos of 15 sampling points in the study area are used to analyze and
verify the MBCD and SMSBT model. In 2018, researchers from China and Uzbekistan
conducted a field survey of desertification in the Amu Darya Delta, and the landscape
photos and soil salinity data originates from this field investigation. The useful information
such as VFC and topsoil moisture for each sampling point can be visually estimated from
the scene picture. These data will be used to qualitatively assess the potential of the SMSBT
model to differentiate different levels of severity of desertification.

3.2. Methods
3.2.1. Simple Microwave Backscattering Threshold (SMSBT) Model

The process of desertification is closely related to the surface roughness changes. The
surface roughness is usually characterized by electrical roughness, which is the product of
the wavenumber and the root mean square height of the surface of the dielectric surface.
The wavenumber k and mean square height s can be calculated by the following formula:

k =
2π

λ
(2)

s =

√√√√∑N
n=1

(
h(n)− h

)2

N − 1
(3)

where λ is the wavelength of electromagnetic waves, N is the number of sampling points,
h(n) is the height of the nth sampling points, and h is the mean height of all sampling
points. According to the study of Adib and Yisok, the backscattering coefficient from
a rough dielectric surface increases as electrical roughness increases, and it saturates as
electrical roughness exceeds 3 [34–36]. To relate the process of desertification with electrical
roughness, we simply divide the desertification process into four stages, briefly indicating
the change of root mean square height and roughness during the process of desertification.
The desertification process is such as that shown in Figure 2.

Figure 2. Desertification process and the variation of the root mean square height and electrical roughness. There are some
soil or stone particles with different sizes and sparse vegetation within a rectangular area, and the rectangle size is about
65 cm× 33 cm. The root mean square height and electrical roughness are calculated along the dotted lines in each scene
image. The degree of desertification gradually deepens from (a–d).

Desertification is a process in which large stone, soil blocks and particles gradually
decompose into little particles under rain and wind erosion. As mentioned in Section 2, the
classical continental dry climate provides favorable conditions for wind erosion, such as
relatively large temperature differences, sparse rainfall, and high wind speed. Under the
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wind and temperature differences, large rocks and soil blocks crack into smaller stones and
smaller blocks. This process can be described by four scenarios (a–d) shown in Figure 2. To
facilitate the analysis of the root mean square height and electrical roughness changes, the
process of desertification is simplified, and only four scale particles are used to describe this
process. The root mean square height and electrical roughness for C-band are calculated
according to Formulas (2) and (3), respectively, and the results are shown in Figure 2. As
shown in Figure 2, both the root mean square height and electrical roughness gradually
decline as the degree of desertification deepens. From Figure 2a, we can find that only
some relatively large stones sparsely distributed with an equivalent volume diameter of
about 10 cm may produce an electrical roughness that excess 3. However, stones of this
size seldom exist in arid, barren land around the Aral Sea, according to the topsoil samples
obtained from the field survey. In addition to the situation assumed in Figure 2, another
case may also exist. With the gradual increase of vegetation, the soil particle size will also
gradually become smaller under the effect of vegetation on soil improvement. In this case,
although the particle size of the soil will gradually decrease, the electromagnetic roughness
obviously cannot reflect the degree of desertification. Fortunately, the vegetation cover
for most of the arid and semi-arid areas is very sparse. Furthermore, the soil moisture
in areas with high vegetation coverage is usually relatively high, which will significantly
increase the backscattering coefficient of the soil. In fact, according to our common sense,
the particle size of the soil in the high vegetation coverage area will not become as small as
that of the sand in the desert, and the soil surface will not become as smooth as the desert.
Based on the backscattering coefficient, these high vegetation coverage areas may still not
be identified as desertified areas, and this case will be carefully discussed in the next part.
Therefore, a backscattering coefficient can be used to describe the degree of desertification
in the arid area, and the simple microwave backscattering threshold (SMSBT) model is
proposed to describe the desertification process based on this theory.

In 2012, Nashashibi established a desert surface backscattering model, and the results
indicated the backscattering coefficient was between −26 dB and −30 dB for s band in the
desert area [34]. However, for the C-band, the backscatter coefficient should be slightly
higher than this range. In fact, for bare land in arid and semi-arid regions, except for deserts,
no land type can achieve such low backscatter values. Besides, some slight desertification
areas can be found in the sampling points from the field survey, and the backscattering
coefficient data can be easily found on the GEE platform. The model and data above can
be used to determine the threshold of backscattering, and then the threshold will be used
to describe the severity of desertification. In this paper, the Jenks method, field survey
data and surface backscattering model are used to determine the threshold. Based on the
analysis above, the SMSBT model described in Figure 3 is proposed to distinguish different
degrees of desertification.

Figure 3. Schematic diagram of SMSBT model principle for identifying different degrees of desertification.
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3.2.2. Influence of Soil Moisture and Salinity on the Uncertainty of the SMSBT Model

The performance of the SMSBT model for discriminating different levels of deserti-
fication will be affected by the soil permittivity, which is closely related to the moisture
and salinity of the topsoil. In fact, for most arid and semi-arid regions, the moisture of
the topsoil is so tiny that its effect on microwave backscattering may be almost negligible.
Although some areas with high soil water content do exist, fortunately, both of the real and
imaginary parts of the permittivity will increase significantly with the increase of water
content, resulting in a significant rise in the backscattering coefficient, and these areas will
not be identified as potential desertification areas by the SMSBT model [37]. In the arid
and semi-arid areas, the real part of the permittivity of dry soil is usually between 2 and
4, and the imaginary part is generally less than 0.05 [37]. Furthermore, Nashashibi’s field
investigation results showed that the real part of the dielectric constant of dry soil in arid
areas is between 2.71–2.74, and the imaginary part is between 0.017–0.024, and both are very
stable [34]. In addition, according to Halikainen’s experiment, when the soil volumetric
water content is less than 5%, the real part of the soil dielectric constant is between 2–3,
and the imaginary part of the soil dielectric constant is very close to 0, which is consistent
with Nashashibi’s survey results [38]. The response of the backscatter to the permittivity
change was tested in the case of different roughness. I2EM model for the single-scale
random surface was used in this simple test, and the corresponding code can be found
on the website of the book Microwave Radar and Radiometric Remote Sensing (website:
https://mrs.eecs.umich.edu/codes/Module10_1/Module10_1.html, accessed on 22 June
2021). Results showed that slight fluctuation of dielectric constant could hardly lead to
a significant change in the backscattering coefficient for different roughness. Therefore,
when the soil moisture is lower than 5%, the influence of soil moisture on the dielectric
constant and backscattering coefficient is almost negligible.

The salinity of the soil also significantly affects the dielectric constant of the soil, but
this effect strongly depends on the volumetric moisture of the soil. According to Sreenivas’s
study on the dielectric constant of salt-affected soil, the influence of soil salinity on the real
part of the dielectric constant is negligible. When the volumetric moisture of the soil is
less than 5%, the effect of soil salinity on the imaginary part of the dielectric constant is
insignificant [39]. Since the imaginary part of the dielectric constant can be expressed as:

ε′′ =
µ

ωε0
(4)

where µ is the conductivity of soil, ω is the angular frequency of the electromagnetic wave,
and ε0 is the permittivity of the free space. Since electrical conductivity is proportional to
the concentration of free ions in the soil, electrical conductivity has a positive correlation
with soil salinity when soil moisture is constant. For the C-band, the frequency of electro-
magnetic waves is about 4–5 times that of 1.25 GHz, so the restriction that the effect of soil
salinity on soil dielectric constant is negligible will be more relaxed. The analysis above
means that for the C band, even if the volumetric moisture of the soil slightly exceeds 5%,
the influence of soil salinity on the soil dielectric constant is still negligible. Therefore,
when the volumetric soil moisture is lower than 5%, the backscattering coefficient mainly
depends on the roughness of the topsoil, and the SMSBT model can be used to describe
different degrees of desertification accurately.

Usually, the VFC will be relatively high in areas with high soil moisture, and these
areas should be classified as reverse desertification areas according to our experience.
For areas with high soil moisture, although their topsoil may not be as smooth as desert,
its roughness may also be relatively small. Therefore, in this case, the roughness of the
ground will no longer be suitable to describe the degree of desertification. Fortunately,
as the soil moisture increases, the backscattering coefficient of the soil will also increase
significantly. However, whether the soil backscattering coefficient in these areas is high
enough that these areas can be classified as non-desertified areas is uncertain. For these
regions, the uncertainty of the SMSBT model can be greatly reduced by quantitative analysis

https://mrs.eecs.umich.edu/codes/Module10_1/Module10_1.html
https://mrs.eecs.umich.edu/codes/Module10_1/Module10_1.html
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of the soil backscattering coefficient in the resolution unit, which will be discussed in the
discussion part.

In conclusion, the model’s ability to distinguish different degrees of desertification is
affected by soil moisture and soil salinity. The influence of soil salinity on the model will
strongly depend on soil moisture. When the volumetric soil moisture is less than 5%, the
influence of soil moisture and salinity on the model’s ability to describe different degrees of
desertification may be negligible. When the soil moisture is higher than 5%, it is necessary
to further quantitatively analyze the backscattering coefficients of different soil moisture to
reduce the uncertainty of the model. The soil moisture data combined with the soil MBC
will be used to further evaluate the impact of soil moisture and salinity on the model in
the arid and semi-arid areas in Section 5.1. For bare land in arid and semi-arid regions, the
land type within a resolution unit is usually not single, and the combination of vegetation
and soil is the most common. If the SMSBT model is to be used to distinguish different
degrees of desertification, the MBC of the soil must be separated from the total MBC of the
resolution unit.

3.2.3. Microwave Backscattering Contribution Decomposition (MBCD) Model

In order to separate the MBC of the soil from the total MBC of the resolution unit, we
assume that there are only soil and vegetation in the resolution unit. For bare land in arid
and semi-arid regions, this assumption is usually reasonable [1]. As is shown in Figure 4,
we assume that the area of vegetation and soil are Sveg and Ssoil within a resolution unit,
respectively, and the overall area of this resolution unit is S. The normalized backscatter
coefficient of vegetation within this resolution unit is σveg, the normalized backscatter
coefficient of soil within this resolution unit is σsoil , and the normalized backscattering
coefficient of the whole resolution unit is σ. The σveg, σsoil and σ obviously satisfy the
following relationship [37]:

σvegSveg + σsoilSsoil = σS (5)

Figure 4. Vegetation and soil within a resolution cell.

Dividing both sides of the Formula (5) by S leads to the following expression:

σveg
Sveg

S
+ σsoil

Ssoil
S

= σ (6)

Since Sveg + Ssoil = S, thus the Equation (6) above can be rewritten as:

σveg
Sveg

S
+ σsoil

(
1−

Sveg

S

)
= σ (7)

Sveg/S is the fraction of vegetation cover, and it can be replaced by fveg. Thus, the
relationship above can be written as:

σveg fveg + σsoil
(
1− fveg

)
= σ (8)

According to the Equation (8) above, the MBC of vegetation and soil in the resolution
unit satisfies a simple linear relationship. Generally, σ is known, and fveg can be estimated
by the pixel dichotomy [33]. So, σveg and σsoil can be estimated by the least squares method.
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3.2.4. MBC Estimation Based on Least-Squares Method

It is assumed that there are n sample points around the central point to be estimated,
and these points can be used to estimate σveg and σsoil of the central point. So, n linear
equations can be used to estimate σveg and σsoil .

σveg f 1
veg + σsoil

(
1− f 1

veg

)
= σ1

σveg f 2
veg + σsoil

(
1− f 2

veg

)
= σ2

σveg f i
veg + σsoil

(
1− f i

veg

)
= σi

...
σveg f n

veg + σsoil

(
1− f n

veg

)
= σn

(9)

The above system of equations can easily be rewritten in the form of a matrix.

f 1
veg

f 2
veg
...

f i
veg
...

f n
veg

1− f 1
veg

1− f 2
veg

...
1− f i

veg
...

1− f n
veg


[

σveg
σsoil

]
=



σ1
σ2
...

σi
...

σn


(10)

Let F be the vegetation coverage matrix (VCM), σx be the backscattering decomposition
matrix (BDM), σ be the backscattering composite matrix, and make the following conventions:

F =



f 1
veg

f 2
veg
...

f i
veg
...

f n
veg

1− f 1
veg

1− f 2
veg

...
1− f i

veg
...

1− f n
veg


, σx =

[
σveg
σsoil

]
, σ =



σ1
σ2
...

σi
...

σn


(11)

Then the linear equation system in matrix form can be succinctly expressed as:

Fσx = σ (12)

And the least squares estimate of σx can be expressed as:

σ̂x =
(

FT F
)−1

FT σ (13)

3.2.5. Tips about Soil MBC Estimation

When the least squares method is used to estimate soil MBC, the distance and VFC
difference between sampling points and the central point should be limited to reduce the
estimation error. The estimation process and the problems can be explained with the help
of Figure 5.

As is shown in Figure 5, if N sample points within the circular buffer of point (i0, j0)
are used to estimate BDM, the buffer radius can neither be too large nor too small. If the R
is too large, the soil properties of the points far from the central point may be very different
from that of the central point, and the estimated result could not denote the scattering
characteristics of soil and vegetation of the central point. At the same time, if R is too small,
there will not be enough points to estimate the BDM, and the estimated result will also not
be accurate. Besides, suppose the vegetation coverage difference between the sample point
and the central point is significant, the difference in soil properties between the two points
may also be significant, which will also cause the inaccuracy of the BDM estimation. On the
contrary, if the difference in VFC between the sample point and the central point is slight, it
will be very likely to cause the linear correlation of some linear equations in VCM. Then the
estimation of BDM will produce significant errors. So, the vegetation coverage of any two
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points should not be too small to avoid the singular matrix generated in the process of BDM
estimation. Based on the analysis above, two rules during BDM estimation should be used
to reduce the error, and the two rules are shown in Figure 5. According to the landscape
photos of sampling points, the radius of the buffer area should be less than 100 m. In order
to obtain enough points to estimate BDM of the central point, the radius is set as 100 m.
Meanwhile, the absolute value of VFC difference for any two sampling points is limited
between 0.05 and 0.2. This limitation can avoid the occurrence of a singular matrix and
make the BDM better represent the scattering characteristics of the estimated points.

Rule 1 : R = 100 mRule 2 : 0.05 ≤ | f (i, j)− f (h, k)| ≤ 0.2 (14)

Figure 5. Problems when estimating soil backscattering coefficient by least-squares method. R
is the radius of the buffer. Where σs(i0, j0) is the soil backscattering coefficient of resolution unit
(i0, j0), and it will be estimated by N pixels in the buffer area of (i0, j0). Where σ(i, j) and σ(h, k) are
the backscattering coefficient of resolution unit (i, j) and resolution unit (h, k), respectively. Where
f (i, j) and f (h, k) are the fractions of vegetation coverage of resolution unit (i, j) and resolution
unit (h, k), respectively.

4. Results
4.1. The Spatial Distribution of Soil Moisture and Salt-Rich Soil in Study Area

The vast area and the very harsh geographical environment in some regions make it
very difficult to obtain the spatial distribution of soil salt in the entire Aral Sea area through
field sampling. The source of salt in the topsoil of the Aral Sea is mainly the salt of the its
own seawater. When the water disappears, the salt is deposited in the soil, forming the
salt-rich soil. Therefore, the dry bottom of the Aral Sea should be rich in salt, and this place
may be the main distribution area of the salt-rich soil in the Aral Sea. Satellite images from
Google Earth from 1973 to 2020 were used to determine the historical dry bottom of the
Aral Sea. Figure 6 shows the changes of the water body of the Aral Sea from 1973 to 2020,
and the water body boundaries of 1973 and 2020 can be used to determine the dry bottom
of the Aral Sea.

The soil salinity data of the sampling points from a field survey about the Aral Sea
desertification in November 2018 were used to verify our inference that the soil at the
bottom of the Aral Sea is rich in salinity. The location, time, and soil salt of sampling sites
are shown in Table 1.
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Figure 6. Shrinkage of the Aral Sea water surface from 1973 to 2020.

Table 1. The soil salinity and electrical conductivity of sampling points at dry bottom of Aral Sea.

Site Sample Date Soil Depth (cm) Conductivity (µs/cm) Total Salt (mg/g)

U5
us19

22 November 2018

0–5 39.875 119.275
us20 5–10 20.300 61.400

U6
us23 0–5 18.770 54.350
us24 5–10 13.490 38.075

U7
us30

23 November 2018
0–5 20.300 63.800

us31 5–10 5.275 15.950

The soil salt sampling data in Table 1 show that the dry bottom of the Aral Sea is rich
in salt. For sampling point U5, the ground surface is dominated by salt crust, and the
topsoil salt reaches up to 119.275 g/g, which is a relatively high soil salt level. Although
the soil salinity of sampling points U6 and U7 are not as high as that of sampling point
U5, they still have a relatively high soil salinity level. The soil salinity of sampling point
U6 is slightly lower than that of sampling point U7, which is probably the result of soil
improvement by Haloxylon trees. French scientists planted a large number of Haloxylon
trees near U6 to improve the soil in the area.

The volumetric soil moisture of the Aral Sea is shown in Figure 7. As shown in
Figure 7, the red line is the rough boundary of the Aral Sea water surface in 1973. Since the
dry bottom of the Aral Sea is the main distribution area of salt-rich soil, and the influence
of soil salinity on the soil permittivity is strongly dependent on soil moisture, we made
simple statistics on the soil moisture of the dry bottom of the Aral Sea. Besides, we also
counted the soil moisture of some areas outside the range of the dry bottom of the Aral
Sea. These data will be used to evaluate the influence of soil moisture and soil salinity on
our models.

As was shown in Figure 7, The soil moisture is very low throughout the dry bottom of
the Aral Sea. However, the soil moisture is relatively high in areas A, B, C, D, E and F. The
soil moisture from some regions even exceeds 20%. In these areas with high volumetric
soil moisture, only areas D and E belong to the dry bottom of the Aral Sea, and the other
areas with high soil moisture are all not within the range of the dry bottom of the Aral Sea.
Statistical results of soil moisture at the dry bottom of the Aral Sea in Figure 7b indicated
that only a few areas have soil moisture above 5%, and the soil moisture of most places is
below 5%. The two peaks of soil moisture are distributed between 0.8% to 1.2% and 2.4%
to 2.8%, respectively. The areas with soil moisture lower than 3% accounted for 91.95% of
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the dry bottom of the Aral Sea, the areas with soil moisture lower than 5% accounted for
96.81% of the dry bottom of the Aral Sea, and the areas with soil moisture lower than 7%
accounted for 97.99% of the dry bottom of the Aral Sea. The statistical results also show
that the soil moisture is the lowest from May to October throughout the year. Except for
area E, the soil moisture for other areas with high soil moisture is nearly all above 10%
from May to October. The soil moisture of area E from May to October is about 6%, and it
is less than 6% from June to August.

Figure 7. The volumetric soil moisture of the study area. (a) is the volumetric soil moisture of the whole study area. The
red line in (a) is the Aral Sea water surface boundary in 1973. (b) describes the probability distribution and cumulative
probability distribution of the volumetric soil moisture at the dry bottom of the Aral Sea. The volumetric soil moisture in
areas A, B, C, D, E, and F in the past 3 years is plotted in (c–h).

4.2. Backscattering Coefficient and VFC in the Aral Sea

As mentioned in Section 3, Sentinel-1 SAR GRD data with VV polarization, IW and
descending pattern from 23 June 2020 to 5 July 2020, was obtained to derive the MBC of soil
and vegetation in an independent resolution unit (Figure 8b). Under normal circumstances,
bare land, grassland, forest and shrub areas are areas where desertification may occur. The
land type data with a resolution of 10 m from Tsinghua University are used to extract
potential desertification areas based on GIS-based method (land type data: http://data.
ess.tsinghua.edu.cn/, accessed on 22 June 2021), which means that other land types such
as impervious land surface, water, wetland, and snow/ice area were removed from the
study area. The VFC data was calculated by Landsat 8-day NDVI from 23 June 2020 to
5 July 2020. Because the VFC in some parts of the south of the Aral Sea is nearly equal to 1
where the vegetation cover is dense, the NDVI of vegetation and soil is set as the maximum
and minimum value of NDVI, respectively. The process of finding the extreme value of
NDVI in the study area was finished on Google Earth Engine (GEE) platform, where you
can easily find the data that you need and the corresponding codes to access the data. The

http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
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NDVI of vegetation and soil is set as 0.736 and 0, respectively, and the calculation result of
VFC is shown in Figure 8a.

Figure 8. Vegetation Fraction Cover (VFC) and the total MBC of VV polarization in the Aral Sea. (a) is the VFC data, and
(b) is the backscattering coefficient data. These data were not computed in wetland, water and impervious areas.

As is shown in Figure 8a, the average value of VFC in the Aral Sea is 0.1264, indicating
a shallow vegetation cover in the study area. The VFC is between 0 and 0.10 for 50% of the
study area, between 0.1 and 0.25 for 46% of the study area, and between 0.25 and 0.50 for
3% of the study area. Vegetation coverage data shows that about 85% of the land in the
study area is barren in arid and semi-arid regions according to International Geosphere-
Biosphere Programme (IGBP) classification standards. According to Figure 8b, the mean
value of the backscattering coefficient is −16.6425 dB after removing water, wetland and
impervious surface from the study area. However, the backscattering coefficient involves
the contributions of both vegetation and soil within a resolution unit. This value cannot
be used to characterize the desertification until the backscattering coefficient of soil is
decomposed from the total backscattering coefficient of the resolution unit.

4.3. Backscattering Coefficient of Soil and the Landscape Photos of Sampling Sites

The backscattering coefficient of soil was estimated by the least-squares method under
the rules described in Section 3.2.5, and the result was shown in Figure 9a. It must be
noted that both the vegetation coverage and the backscattering coefficient are resampled
to 50 m to greatly reduce the amount of calculation in the MBC estimation process, and
parallel computing combined with GPU acceleration can also shorten the time of the MBC
estimation to a certain extent. The quality improvement (QI) was proposed to assess the
effect of the MBCD model, and it can be expressed as:

QIdB = σdB
soil − σdB (15)

where σdB is the total backscattering coefficient (described in dB) of a resolution unit, σdB
soil

denotes the backscattering coefficient (described in dB) of soil within this resolution unit,
and QIdB is the quality improvement (described in dB). The Aral Sea’s quality improved
map (QIM) was shown in Figure 9b. Since it is difficult to obtain the true backscattering
coefficient of the soil in the resolution unit, it is very difficult to verify the MBCD model
quantitatively. We can only use the QIMs and the landscape photos of the sampling points
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to evaluate qualitatively the correctness of estimation results by the model. Therefore, four
typical areas were selected to assess the MBCD model qualitatively, including sampling
points L12, L14, L15 and X. However, we do not have the corresponding landscape photos
of X, so we use satellite images of area X instead of landscape photos. The landscape
photos, satellite images and QIMs of these sampling points can also be found in Figure 9.

Figure 9. Soil backscattering coefficient and its quality improvement after decomposition. (a) is the soil backscattering
coefficient, and (b), called quality improvement map (QIM), was obtained by subtracting the soil backscattering coefficient
from the total backscattering coefficient, which is used to indicate the effect of backscatter decomposition. Four QIMs with
pixel scale and their corresponding landscape photos were used to validate and evaluate the effect of the MBCD model.

According to Figure 9a, the mean value of the backscattering coefficient of soil is
−16.5667 dB, indicating the fairly low level of soil backscattering in the Aral Sea. The
value of soil backscattering coefficient between −41 dB and −17 dB for about 54% of
the study area. Through the landscape photos of L12, we can find that relatively severe
desertification has occurred in this area. The soil backscattering coefficient of L12 is about
−17 dB (Figure 9), which may indicate that more than 54% of the land in the Aral Sea has
been desertified. Due to the very sparse vegetation fraction cover in the study area where
VFC is lower than 0.25 for 96% of the region, the backscattering coefficient of the soil in
most areas has slightly increased relative to the total backscattering coefficient. However,
there are also some areas, such as the areas with buildings in them and the areas with high
soil moisture, where the backscattering coefficient of the soil has increased significantly. To
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better evaluate the MBCD model, we related Equations (15) and (8), and then QI (described
in dB) can be rewritten as:

QI = 10lgσsoil − 10lgσ = 10lg
σsoil
σveg

fveg +
(
1− fveg

) σsoil
σveg

(16)

where σsoil is the normalized backscattering coefficient of soil within a resolution unit, σveg
is the normalized backscattering coefficient of vegetation within this resolution unit, and σ
is the total normalized backscattering coefficient of this resolution unit. The relationship
between QI and σsoil/σveg for different levels of fveg was depicted in Figure 10, and the
results clearly showed what kind of land types can yield a high-level QI and what land
types may produce a low-level QI.

Figure 10. The relationship between QI and σsoil/σveg for different levels of fveg.

Before analyzing the relationship between QI and σsoil/σveg for different levels of
fveg, three typical areas were used to estimate σsoil and σveg, and the value of which will
significantly help us understand some results depicted in Figure 10. A buffer with a
diameter of 100 m is established for each sampling point, and it will be used to estimate
σsoil and σveg. This process was finished on the GEE platform, and the landscape photo for
each sampling point and the corresponding estimated results were shown in Figure 11. As
is shown in Figure 11a,c, the soil backscattering coefficient of the desertification area is very
close to the value of the vegetation backscattering coefficient. According to the relationship
between desertification degree and backscattering coefficient, if the soil backscattering
coefficient is lower than that of vegetation, the desertification degree will be more serious
than that shown in sampling point L2, and the foliage will be sparser. However, when the
soil backscattering coefficient is higher than the vegetation backscattering coefficient, the
vegetation coverage may be relatively high or low, and its value range is between 0–1. For
example, the backscattering level of sampling point L14 is very high, but its VFC is close to
0. When the soil moisture in the high vegetation coverage area is very high, or there are
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artificial buildings in the high vegetation coverage area, the backscatter level of the soil
will also be very high.

Figure 11. Landscape photos and the corresponding estimated results of σsoil and σveg for three selected sampling points.
Land types for sampling points involve: (a) desertification area with little vegetation cover, (b) rough soil surface with little
vegetation cover and (c) areas nearly entirely covered with vegetation.

Once the soil backscattering coefficient is separated from the total backscattering
coefficient, it can be used to describe the severity of desertification. In the next part, the
SMSBT model will be used to classify the degree of desertification.

4.4. Results of Desertification Classification and Landscape Photos of Sampling Sites

The soil backscattering coefficient within a resolution unit was used to describe the
degree of desertification based on the SMSBT model. During the process of determining
the threshold, firstly, the Jenks method was used to divide soil backscattering coefficient
(SBC) into five categories, representing different degrees of desertification, named leve1
(−11.5 dB < SBC ≤ 0 dB), leve2 (−14.8 dB < SBC ≤ −11.5 dB), leve3 (−17.0 dB <
SBC ≤ −14.8 dB), leve4 (−19.8 dB < SBC ≤ −17.0 dB), leve5 (SBC ≤ −19.8 dB). To
determine the threshold for distinguishing desertification from non-desertification, we
conducted a statistical analysis of desertification region L12. The result shows that the
backscattering coefficient of this region is a random variable with approximately normal
distribution. The upper bound of the 68% confidence interval (about −14.6 dB) is used as
the threshold to distinguish desertification and non-desertification areas more accurately.
After a simple modification, SBC can be reclassified into four categories to describe the
severity of desertification, including no desertification (−14.6 dB < SBC ≤ 0 dB), slight
desertification (−17.0 dB < SBC ≤ −14.6 dB), moderate desertification (−19.8 dB <
SBC ≤ −17.0 dB), and severe desertification (SBC ≤ −19.8 dB). The classification result is
shown in Figure 12.

Although the UNCCD has defined desertification, there is no unified classification
standard, so it isn’t easy to describe the degree of desertification through quantitative
sampling data. Therefore, the desertification classification results are hard to validate
quantitatively, and we can only qualitatively judge the degree of soil desertification based
on the soil conditions on the ground. Therefore, landscape photos obtained from a field
survey are used to verify the classification results qualitatively. Because this field survey
was not designed for this study, not all sampling points are within the scope of the study
area. Finally, we selected all sampling points within the study area, and these sampling
points can represent almost all land types in the area. Fifteen landscape photos and the
corresponding pixel-scale (DCMs) of sampling points are used to validate the desertification
classification results. These data can be found in Figure 13.
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Figure 12. Spatial distribution of desertification. The desertification map does not include the water
and wetland, while these land types are labelled in the final desertification map. According to the
distribution of soil backscattering coefficient (SBC) in desertification area, the study area is divided
into four degrees of desertification, including no desertification area (−14.6 dB < SBC ≤ 0 dB ),
slight desertification area (−17.0 dB < SBC ≤ −14.6 dB), moderate desertification area (−19.8 dB <

SBC ≤ −17 dB) and severe desertification area (SBC ≤ −19.8 dB).

Figure 13. Comparison of the desertification with the corresponding true soil conditions of
15 sampling points.
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5. Discussion
5.1. The Influence of Soil Moisture and Soil Salinity on the SMSBT Model in the Study Area

According to the Microwave surface backscattering model, the influence of soil mois-
ture and soil salinity on the backscattering coefficient is mainly reflected in their influence
on the soil dielectric constant, and the impact of soil salinity on the soil dielectric constant
strongly depends on the soil moisture [37]. In this part, the influence of soil moisture and
soil salinity on soil dielectric constant will be divided into two parts to discuss separately.

5.1.1. The Influence of Soil Moisture on the SMSBT Model

As is described in Figure 7, the areas with soil moisture lower than 5% accounted for
96.81% of the dry bottom of the Aral Sea, and only area D and area E are within the range
of the Aral Sea’s dry bottom. The soil moisture in areas A, B, C, and F is also relatively high
and even exceeds 20% for some areas, and these areas do not belong to the dry bottom of
the Aral Sea. According to the analysis in Section 3.2.2, when the soil moisture exceeds 5%,
the influence of soil moisture on the soil dielectric constant will become very significant.
The results of Halikainen’s research indicate when the soil moisture exceeds 10%, the real
part of the soil dielectric constant exceeds 5 [38]. However, the imaginary part of the soil
increases slightly, at still less than 0.5. When the soil moisture reaches up to 20%, the
real part of the dielectric constant will exceed 10, and the imaginary part of the dielectric
constant is between 2 and 2.5. As the real and imaginary parts of the permittivity increase,
the backscattering coefficient will also increase significantly, which may affect the model’s
ability to describe the particle size of the surface soil. The results of numerous studies have
shown that when the soil moisture exceeds 10%, the starting wind speed of sand particles
will increase significantly, and even high wind speeds are difficult to blow particles from
the ground into the air [40–43]. Therefore, these areas with soil moisture exceeding 10%
can hardly be classified as desertified areas. The satellite image of sampling point X and the
corresponding QIM in Figure 9 showed that the backscattering coefficient of the soil with
high soil moisture improved by 5–24 dB relative to the entire resolution unit. According
to Figure 10, the backscattering coefficient of vegetation is about −17 dB. Therefore, the
backscattering coefficient of soil with high soil moisture should not be lower than −12 dB.
According to the desertification classification standard in Figure 12, area X should belong
to a non-desertification area, which indicates that the high soil moisture nearly has no
influence on the SMSBT model. However, it must be noted that area X is an area with very
high soil moisture, so this result shows that the model’s ability to describe desertification
in areas with very high soil moisture is hardly affected by soil moisture. According to the
estimation results of the soil backscattering coefficient in Figure 9, the soil backscattering
coefficients of areas B and C, marked in Figure 7, are −15.4 dB, −13.2 dB, respectively, and
these areas were respectively classified as slight desertification and non-desertification
(Figure 12). However, since the soil moisture in these areas is around 10%, these areas
should not be desertification areas. The misclassification results of regions B indicate that
when the soil moisture is between 5–10%, the model may produce slight classification
errors. The misclassification of desertification in areas B is probably due to the limited
effect of low soil moisture on the backscattering coefficient. This slight effect of relatively
low soil moisture cannot make the backscattering coefficient of the soil high enough that
this area can be classified as a non-deserted area. In conclusion, when the soil moisture is
lower than 5%, the influence of soil moisture on the SMSBT model can be ignored; when
the soil moisture is between 5–10%, the model will produce a slight classification error;
when the soil moisture is higher than 10%, the influence of soil moisture on the model will
gradually disappear as the soil moisture increases.

5.1.2. The Influence of Soil Salinity on the SMSBT Model

In the study area, the influence of soil salinity on the dielectric constant may be
negligible. As described in Section 4.1, the main source of salt in the Aral Sea is the
saltwater of the Aral Sea, and the soil at the bottom of the dry Aral Sea should be rich in
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salt. In Table 1, the survey results of the soil salinity of the sampling points at the bottom
of the dry Aral Sea confirm our inference. However, this field survey was not specifically
designed for this study, so soil salinity was measured at only a few sites at the dry bottom of
the Aral Sea, and the investigators did not measure the salinity of the soil outside the range
of the dry bottom of the Aral Sea. Without the source of salt, the soil salinity outside the
range of the dry bottom of the Aral Sea should be very low, so the influence of soil salinity
on the dielectric constant in these areas may also be negligible. According to the analysis
in Section 3.2.2, the influence of soil salinity on the real part of the dielectric constant is
negligible for different soil moistures. The impact of soil salinity on the imaginary part of
the dielectric constant strongly depends on the soil moisture. When the soil moisture is
lower than 5%, the influence of soil salinity on the dielectric constant for different types
of soils is also negligible. The results of the Aral Sea soil moisture statistics in Figure 7
show that soil moisture for more than 96% of the Aral Sea’s dry bottom is less than 5%.
Therefore, the influence of soil salinity on the dielectric constant at the dry bottom of the
Aral Sea can be ignored. For area D, where the soil moisture exceeds 10%, the MBC will
increase significantly under the influence of soil moisture and soil salinity. As analyzed
in Section 5.1, when the soil moisture of an area exceeds 10%, this area should not be a
desertification area. According to the desertification classification results in Figure 12, most
areas of region D are classified as non-desertified areas. The results indicate that when the
soil moisture exceeds 10%, the soil salinity can increase the accuracy of the SMSBT model.

5.2. Assessment of the Estimation Results of the Soil MBC within a Resolution Unit

In Section 4.3, we obtained the estimation result of the soil backscattering coefficient
within a resolution unit. QI was proposed and calculated to evaluate the correctness of
the estimation results of the soil backscattering coefficient in the study area. Based on the
results in Section 4.3, the relationship between QI and σsoil/σveg can be used to assess the
estimation results of soil MBC within a resolution unit in the following cases:

1. σsoil ≤ σveg

When σsoil ≤ σveg, land type would most probably be a desertification area such as
that in Figure 9 (landscape of L12) and Figure 11a (landscape of L2), and fveg should be
very close to 0. So, QI will be approximately equal to 0 according to Formula (16). As
shown in the landscape photo and QIM of L12, fveg is close to 0, and QI is between 0 dB and
1 dB. Therefore, QIM of L12 and the corresponding landscape photo in Figure 9 are in good
agreement with the inference above, indicating that when soil backscattering coefficient is
lower than vegetation backscattering coefficient, the MBCD model is correct.

2. σsoil ≥ σveg, fveg ≤ 0.05

The land type of L14 described in the landscape photo of Figure 9 satisfy this condition.
As is shown in the landscape photo of L14, fveg is also very close to 0. Thus, QI will also
be approximately equal to 0 according to Formula (16). According to the QIM of L14 in
Figure 9, QI is between 0 and 1. This result coincides well with the above analysis, proving
that when the soil backscattering coefficient is higher than the vegetation backscattering
coefficient and the VFC is very close to 0, the MBCD model is also correct.

3. σsoil ≥ σveg, 0.05 < fveg ≤ 0.25

Except for desertified areas, most of the study areas meet this restriction. As was
shown in Figure 10, QI is between 0 dB and 1 dB when fveg ranges from 0.05 to 0.25.
Therefore, QI should range from 0 dB to 1 dB for most of the study area. As is shown in
Figure 9b, QI does range from 0 dB to 1 dB for most of the study area. Therefore, the model
is still correct under this condition.

4. σsoil ≥ σveg, fveg > 0.25

Two actual surface scenes meet this condition: a human settlement area and a dense
vegetation cover area. L16 is a representation of human settlements, and high vegetation
coverage combined with the presence of strong scatterers (soils that are rich in water)
are typical characteristics of this kind of area. According to Formula (16) and Figure 9,
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when σsoil is much higher than σveg and fveg exceeds 0.25, QI should be higher than 1 dB.
Furthermore, if σsoil/σveg is higher than 10 and fveg exceeds 0.75, QI will rise to the range
from 5 dB to 24 dB. As was shown in the landscape photo of L16 in Figure 9, high VFC
and the existence of buildings will lead to a significant increase in QI. As is shown in the
corresponding QIM of L16 in Figure 9, QI falls into the range from 1 dB to 5 dB for some
pixels and from 5 dB to 24 dB for some other pixels as we inferred above.

Site X is an example of a dense vegetation area, where very dense vegetation coverage
and strong scatterers (soils that are rich in water) usually exist. As is shown in the Google
map of site X, very dense vegetation can be found here, and the ground surface soil is rich
in water. Based on a visual interpretation, fveg exceeds 0.5 for most of the pixels around site
X and exceeds 0.70 for some pixels around site X. According to Formula (16) and Figure 9,
if σsoil/σveg is higher than 10, and fveg is higher than 0.5 but lower than 0.75, QI will fall
into the range from 3 dB to 6 dB. When σsoil/σveg is higher than 10, and fveg is higher than
0.75, QI will range from 6 dB to 24 dB. According to the QIM of X, QI is between 1 dB and
24 dB for most of the pixels, indicating the correctness of the MBCD model.

Based on the validation by true ground surface showed in landscape photos of sam-
pling points, the QI is in good agreement with the soil conditions shown in landscape
photos of sampling points. These results show that the estimation of soil backscattering is
correct after the use of the MBCD model. The soil moisture in areas A and F exceeds 15%,
but these areas’ average backscattering coefficient is below −18 dB, which is obviously
a wrong estimation result. According to our survey of these areas, relatively high vege-
tation coverage or relatively uniform spatial distribution of vegetation may be the main
reason for the error in estimating the soil backscattering coefficient in this area. Because
when the vegetation coverage is high, or the spatial distribution of vegetation is relatively
uniform, the VFC of the sample points in the buffer will be very close to each other, and
the least squares method will not accurately estimate the backscattering coefficient of the
soil. Therefore, for some areas with high vegetation coverage or relatively uniform spatial
distribution of vegetation, the model may fail to estimate the backscattering coefficient of
the soil accurately.

5.3. Evaluation of the Results of the Desertification Classification

For the dry bottom of the Aral Sea, the DCMs and the corresponding landscape photos
of 15 sampling points were used to evaluate the accuracy of desertification classification
qualitatively. The results show that the DCMs are in good agreement with the actual degree
of desertification at sampling sites. As was demonstrated in landscape photos of L6, L9, L15
and L16 in Figure 13, these places were all covered with relatively dense vegetation, and
the soil here looks rather rough. Based on visual interpretation, no desertification signs are
found in these places. The corresponding DCMs of these places indicate that these places
are not to be classified as desertification areas. The consistency of the visual interpretation
and the classification results of the SMSBT model suggests the model’s accuracy. Although
nearly no vegetation was found in L14 and U7, the existence of large amounts of rocks with
relatively large size directly showed that both L14 and U7 are not desertification areas. As
is shown in the DCMs of L14 and U7, these sites are also classified as no desertification
areas. So, the interpretation results are also in good agreement with the classification results
of L14 and U7. As was shown in landscape photos of L10 and L12 in Figure 13, relatively
large soil particles are not found in L10 and L12. However, these places are classified
as no desertification areas. The inconsistency between visual interpretation results and
SMSBT model classification results are most probably due to the high water content of the
soil in these places, which was shown in the details of landscape photos of L10 and L12.
However, the cause of high soil moisture for L10 and L12 may be different. The high soil
moisture in L10 may be related to the short distance between L10 and waters. While the
high water content of the soil in L12 may be related to the precipitation during the time
interval for data acquisition. In some arid areas covered by low and sparse vegetation,
the ground shows a slight trend of desertification, such as L7, L8, L11 and L5. Except for
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site L8, the visual interpretation results are consistent with the classification results of the
SMSBT model. This inconsistency between visual interpretation and classification results
of L8 may be due to a calculation error (as described in Section 5.2), visual interpretation
error, or the change of soil property (field surveys were completed about a year and a half
before SAR data were acquired). According to the landscape photos of L13, U5 and U6,
there is a severe desertification trend in these areas, and these places are also classified as
no desertification areas.

However, for areas outside the dry bottom of the Aral Sea, we can only use soil mois-
ture data to verify the classification results of desertification because there is no sampling
data. The soil moisture map in Figure 7c shows that the annual soil moisture in area A
is above 10%, which should be a non-desertification area. However, the classification
results in Figure 12 indicate that the area was misclassified as a moderately and severely
desertified area. The misclassification of area A is probably due to our program settings in
the SBC estimation process. Because when the VFC of the sample points in the buffer are
very close to each other, the least squares method may fail to estimate the soil backscat-
tering coefficient accurately. In this case, the soil backscattering coefficient is set as the
backscattering coefficient of the entire resolution unit. Therefore, if the spatial distribution
of vegetation in area A is very uniform, the VFC of sampling sites will be very close to
each other, and the backscattering coefficient of the soil in this area will be estimated as the
backscattering coefficient of the entire resolution unit. Furthermore, suppose the vegetation
coverage in the area is relatively high. In that case, the backscatter coefficient of the soil
in area A will be estimated as the backscatter coefficient of the vegetation in the area.
According to the vegetation backscattering coefficient estimation results in Figure 11, the
backscattering coefficient of vegetation is very close to that of desertified soil. Therefore,
when the VFC of area A is very high, and the vegetation spatial distribution is highly
uniform, the area is likely to be misclassified as a medium or even severe desertification
area. According to our analysis of satellite images in this area, both areas A and F are
human settlements. The artificial forests in this area may be the main cause for the error in
estimating the soil backscattering coefficients of these areas. According to the soil moisture
map in Figure 7, areas B, C, and D should also be non-desertification areas. The results
of desertification classification in Figure 12 show that these areas are classified as slightly
desertified, non-desertified, and non-desertified, which is generally consistent with our
inference. The desertification classification results of areas B, C, and D are obviously better
than areas A and F, probably because areas B, C, and D are not human settlements. In
the natural environment, the spatial distribution of vegetation is almost random, which
may lead to suitable differences between the VFC of the sample points. These appropriate
differences are the premise for us to estimate the soil backscattering coefficient. However,
vegetation in human settlements is usually not randomly distributed but evenly distributed.
Therefore, the model can estimate the backscattering coefficients of the soil in areas B, C,
and D relatively accurately but may fail to calculate that in areas A and F. Fortunately,
the relatively poor performance of the model in areas with high VFC can be improved by
GIS-related technologies. For example, before calculating the backscattering coefficient of
the soil, GIS technology can be used to exclude these areas.

5.4. Spatial Distribution of Desertification with Different Severity at the Dry Bottom of Aral Sea

As shown in Figure 12, the dry bottom of the Aral Sea is suffering from desertification
of different degrees. According to simple statistical analysis of desertification at the dry
bottom of the Aral Sea, only 31.3% of the dry bottom of the Aral Sea, about 19,080 square
kilometers, is not desertified, and 68.7% of the dry bottom of Aral Sea, approximately
41,878 square kilometers, is suffering from different degrees of desertification. For areas
with varying degrees of desertification, slight desertification accounts for 23.5%, about
14,325 square kilometers. Of the research area, 29%, about 17,678 square kilometers, is
experiencing moderate desertification. The severe desertification area reaches up to 16.2%
of the dry bottom of the Aral Sea, and these places may be rich in the finest particles arising
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in sand and dust storms from the area. The slightly desertified areas are mainly distributed
in the bare land between the two branches of the South Aral Sea, the southern part of the
South Aral Sea, the eastern part of the South Aral Sea, and the northern part of the South
Aral Sea. Moreover, slight desertification has also occurred along the coast of the North
Aral Sea. Moderate desertification areas are mainly concentrated in the bare land between
the two branches of the South Aral Sea, the northern part of the South Aral Sea, and the
entire eastern regions. The spatial distribution of severe desertification areas is almost
the same as that of moderate desertification areas. These results are in good agreement
with those of Indoitu [10]. Furthermore, the SMSBT model can get the spatial distribution
of desertification with a spatial resolution of 10 m, which is very useful for locating the
position of different degrees of desertification. These locations can be used to intervene in
the desertification process.

6. Conclusions

The results showed that when there are only soil and vegetation in a resolution unit,
the MBCD model and the corresponding least squares method can accurately estimate the
backscattering coefficient of the soil and vegetation within the resolution unit. Additionally,
for desertification identification or other special application, stones and buildings can be
treated as soil, and this kind of flexible treatment greatly expands the application scope
of the model. Furthermore, if the fraction of the scatterers within a resolution cell can be
measured or estimated, the MBCD model can be easily extended to the backscattering
contribution decomposition and backscattering coefficient estimation of multiple scatterers
within a resolution unit. Thus, the MBCD model can also provide the basic backscattering
decomposition theory for various land remote sensing applications. However, it must be
noted that if the vegetation coverage is high or the spatial distribution of vegetation is
relatively uniform, it will be difficult for this model to accurately estimate the backscattering
coefficient of the soil in these areas.

The results also indicated that the root mean square height and electrical roughness
gradually decline as the degree of desertification deepens. When the volumetric moisture
of the soil is less than 5%, the influence of soil moisture and salinity on the SMSBT model’s
ability to describe the degree of desertification can be ignored. However, when the soil
volumetric moisture is higher than 5%, the influence of soil moisture and salinity on the
SMSBT model cannot be ignored. Therefore, the best application scenario of this model is
the arid and semi-arid areas where the soil moisture is less than 5% and the vegetation is
very sparse. Moreover, when the soil moisture is between 5–10%, the model will produce a
slight classification error. When the soil moisture is higher than 10%, the influence of soil
moisture and salinity on the model will gradually disappear as the soil moisture increases.

The classification map of desertification in the Aral Sea indicated that 68.7% of the
study area, about 41,878 square kilometers, is suffering from different degrees of deser-
tification. The area with slight desertification accounts for 23.5%, approximately 14,325
square kilometers. Of the study area, 29%, about 17,678 square kilometers, is undergoing a
moderate degree of the desertification process. The severe desertification area reaches up
to 16.2% of the study area, and sand and dust storms will probably occur in these places.
Moreover, this position information will be beneficial for humans to inhibit the sand and
dust storms, especially salt storms that cause serious harm to the surrounding ecosystems
and human health.
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