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Abstract: Due to the complexity of scene interference and the variability of ship scale and position,
automatic ship detection in remote sensing images makes for challenging research. The existing deep
networks rarely design receptive fields that fit the target scale based on training data. Moreover, most
of them ignore the effective retention of position information in the feature extraction process, which
reduces the contribution of features to subsequent classification. To overcome these limitations, we
propose a novel ship detection framework combining the dilated rate selection and attention-guided
feature representation strategies, which can efficiently detect ships of different scales under the
interference of complex environments such as clouds, sea clutter and mist. Specifically, we present a
dilated convolution parameter search strategy to adaptively select the dilated rate for the multi-branch
extraction architecture, adaptively obtaining context information of different receptive fields without
sacrificing the image resolution. Moreover, to enhance the spatial position information of the feature
maps, we calculate the correlation of spatial points from the vertical and horizontal directions and
embed it into the channel compression coding process, thus generating the multi-dimensional feature
descriptors which are sensitive to direction and position characteristics of ships. Experimental results
on the Airbus dataset demonstrate that the proposed method achieves state-of-the-art performance
compared with other detection models.

Keywords: deep network; dilated rate selection; attention-guided feature representation; ship
detection; optical remote sensing

1. Introduction

Ship detection is of great significance to maritime transportation, port management,
disaster rescue and other activities. At present, optical remote sensing satellite image has
become the main input data of ship detection models because of its wide detection range,
rich spectral characteristics and high image resolution [1]. Although researchers have done
lots of work on ship detection algorithms in optical images, there are still many challenges
in ship detection applications, mainly due to the complexity of scene interference factors,
such as clouds, waves and so on [2,3]. In addition, the variability of the scale and shape
of the ship target also puts forward new requirements for the detection model. Therefore,
in the face of complex environmental interference and the multi-scale change of the ship
itself, the detection models still have great research potential.

With the development of deep network, the learning-based method based on a convo-
lutional neural network (CNN) has become the main idea in the field of ship detection [4].
At present, various network architectures have been proposed and have achieved excel-
lent performance in detection tasks under different application conditions [5]. Actually,
the deep network usually employs a convolution kernel for multiple down-sampling, thus
having the advantage of multi-level extraction of target features [6]. However, the design of
down-sampling in classical CNN structure also brings some defects in term of information
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transmission. Specifically, although the application of down-sampling operations can
expand the receptive field and reduce the calculation amount of data processing, it leads to
the loss of scene information in spatial dimensions. This loss is difficult to ignore especially
for small-scale object detection because after multi-layer sampling, the information of small
targets cannot be reconstructed theoretically.

In order to expand the receptive field without sacrificing the resolution, the dilated
convolution strategy [7] is applied to the object detection model in recent years. Compared
with the normal convolution kernel, the improvement of the dilated convolution is defining
a spacing between the values in a kernel. When calculating, since only non-zero elements in
the kernel actually affect the output, the dilated convolution obtains a larger receptive field
than the normal convolution on the premise of avoiding the down-sampling operation.
Moreover, by setting different dilated rates, we can obtain multi-scale context information,
which has been proved to be conducive to the localization and classification of small-scale
targets [8].

However, adopting the dilated convolution to solve the problem of multi-scale object
detection in remote sensing images still faces major challenges. Specifically, since the
positions and scales of the detected objects in the image are quite different, it is challenging
to select the appropriate kernel size and dilated rate for the convolution operation when
designing the dilated convolution. The images with more global information distribution
are more suitable when using a large dilated rate, and those with more local distribution
tend to apply a small dilated rate. This situation leads to the fact that the previous excellent
dilated convolutions are often designed by experienced researchers. In addition, many
designed frameworks are often applied for specific scenes, which have poor applicability
to other remote sensing application tasks. Obviously, it is difficult to meet the above
conditions in many practical applications. As we know, simply stacking convolution layers
of different sizes will waste computing resources, and the networks with many layers
have difficulty avoiding the problem of overfitting. Therefore, how to adaptively select
the appropriate parameters of the dilated convolution in remote sensing ship detection
applications is an urgent problem to be solved.

In addition, after extracting features of different scales, the mainstream models widely
adopt an attention mechanism to strengthen the response of feature maps in different
dimensions. This strategy can make the detection model learn what content and where
to pay more attention, which is crucial for target detection under complex environmental
interference. Nevertheless, these attention models either focus on capturing the correlation
of channel dimensions or mining the long-range dependence of spatial dimensions, rarely
organically integrating the features of the two dimensions based on information coding
mechanism. Therefore, it is necessary to study how to make full use of the characteris-
tics of different dimensions, thus providing more effective information for subsequent
object classification.

To solve these problems mentioned above, we propose a novel ship detection method
combining the dilated rate selection and attention-guided feature representation strategies.
Specifically, we employ a dilated convolution parameter search strategy to adaptively
select the dilated rate, obtaining the multi-scale and multi-receptive-field characteristic
information of the ship target. On this basis, to enhance the spatial position information of
the feature maps, we calculate the correlation between two orthogonal directions in the
spatial domain and embed it into the channel information coding, thus generating the multi-
dimensional feature descriptors which are sensitive to direction and position characteristics
of ships. Extensive experiments conducted on a high-quality dataset demonstrate the
effectiveness of our method.

The main contributions of our work are summarized as follows:

• A novel framework for ship detection is proposed, which can efficiently detect ships
of different scales under the interference of complex environments such as clouds, sea
clutter and mist.
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• A multi-branch dilated rate search architecture is presented, which adaptively cap-
tures target context information of different scales and different receptive fields.

• An attention-wise feature extraction strategy is adopted, which enhances the repre-
sentation of feature map by encoding the spatial position information.

The remainder of this paper is organized as follows: we introduce the development of
a dilated convolution strategy and attention mechanism in a learning-based network in
Section 2. Section 3 gives the design details of two main modules in the proposed model.
In Section 4, we conduct comparative experiments based on a high-quality public dataset
and analyze the experimental results of different compared methods. Section 5 provides
the final conclusion of our work.

2. Previous Related Research

In this section, we first make a brief review of the development of dilated convolution
strategy for receptive field problem; then, we introduce the improvement of attention-based
representation, which significantly enhances the optimization of feature maps. By dis-
cussing the motives and shortcomings of these existing studies, we illustrate the differences
between our method and other advanced methods.

2.1. Dilated Rate Strategy for Object Detection

In the past decade, due to the significant advantages of feature representation, a variety
of deep neural networks have been proposed to solve different detection tasks. Compared
with other deep neural networks [9,10], the convolution operation in CNN architecture
can preserve the local correlation of image pixels (i.e., context information) and the spatial
invariance of features. Moreover, due to the weight sharing strategy, this architecture
reduces the number of model parameters, thus optimizing the complexity of the whole
model. In addition, from the perspective of neuroscience, the multi-level extraction mech-
anism of the CNN model is in line with the habit of biological vision system, that is, we
first pay attention to the shallow structural features such as edges and corners and then
focus on more complex details such as texture, forming the overall concept of the object.
Therefore, the CNN-based architecture has received the enthusiasm of researchers [11,12]
and is widely used in image understanding and object classification applications.

In remote sensing images, there is usually a correlation between objects and the
background environment. For target detection issue, mining this characteristic is conducive
to improving the performance of object location and classification. Actually, before the
rise of deep learning, studies have proved that appropriate context modeling can improve
the performance of detection algorithms, especially for small-scale targets, which have no
salient appearance characteristics. With the popularity of CNN-based networks, researchers
have also proposed various models to expand the receptive field, integrating different
scales of context information into the feature extraction network.

The receptive field can be regarded as the regional range of the input image learned
by the unit of the CNN-based network. The larger the receptive field, the more global
and semantic features can be learned by the neuron unit. The core idea of the dilated
convolution is adding some zero values that do not participate in the calculation into the
normal convolution kernel. In other words, the dilated convolution does not increase
the amount of calculation involved in feature extraction. Moreover, because there is no
down-sampling step, the convolution processing does not affect the resolution of the
output image on the premise of increasing receptive field. In summary, through dilated
convolution, we can achieve that the sizes of the output feature remain unchanged, and the
output maps integrate multi-scale information. Because of the above advantages, dilated
convolutions are used to deal with different detection tasks. In [13], a receptive field block
based on the dilated convolution was proposed, which imitates the attention habit of the
human visual system to enhance the representation ability of feature maps, achieving
satisfactory object classification performance. In [14], an architecture with five dilated
branches was designed manually to solve the receptive field issue, providing an input
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including multi-scale information for subsequent feature fusion. In [15], a detector was
employed, which configures the receptive field enhancement block after the multi-scale
extraction module, bringing significant improvement to the performance of small target
detection. In [16], an object classification backbone architecture was designed to improve
the resolution change of the sampling process, thus solving the problem of multi-scale
object recognition. In [17], a dense dilated architecture was applied to generate the initial
target regions, and then a probability regularized walking strategy was used to reduce the
influence of object region fracture in the initial extraction.

Generally speaking, most previous methods consider the problem of learning multi-
scale features, and they usually manually design complex multi-scale extraction branches
to mine the context information of input images. However, these models seldom con-
sider adaptively setting the dilated parameter of dilated convolution based on target
characteristics, which limits the contribution of the extracted features to subsequent object
classification to a certain extent. Different from other methods, we propose an automatic
dilated rate selection strategy in a dilated convolution kernel based on training data, which
can obtain optimized effective receptive fields for ships of different scales. The experimen-
tal results show that it is conducive to improving the performance of ship detection in
high-resolution remote sensing images.

2.2. Attention-Wise Design in Learning Network

When observing images, humans can select valuable regions from a large amount of
irrelevant background interference through neural signal processing. The researchers of
deep learning network have borrowed ideas from this efficient processing approach. In the
deep networks presented in recent years, attention model, as a lightweight component
to enhance feature representation, is widely used and plays a significant role in various
computer vision tasks. Most of the current research methods tend to apply a weight mask
to form the attention mechanism. Their principle is to generate a new weight distribution
map by calculating the dependency relationship between channels or features, highlighting
the significant features in the input feature map. Generally speaking, attention-based feature
enhancement mainly includes two steps: first, extracting the distribution of input features,
and then calculating the correlation between features according to the distribution information.

The attention mechanism for the image applications is mainly used to capture the
perspective field on the image. In 1988, a representative work of applying attention
mechanism to visual image was presented [18], which aggregates multi-scale features
into a unified saliency map, and extracts potential areas according to the saliency score.
Another milestone work that attracted extensive concern to the attention mechanism was
the research on image classification in 2014 [19], which applies the recurrent model to
learn the distribution areas of suspected target from image sequence. In 2017, a recurrent
attention model was presented [20], which iteratively samples the whole image to generate
multiple local feature regions and integrates the prediction of each region to gain the final
classification result. In 2018, a significant design named squeeze-and-excitation networks
(SE-Net) was proposed [21], which adaptively adjusts the feature response in channel
dimension by using the pooling and nonlinear transformation strategies. It is worth noting
that this work achieves significant performance improvement with low computing cost,
leading a wave of research on channel domain processing. Considering that SE-Net makes
less use of the correlation of spatial location information, and location details are actually
conducive to object detection tasks, CBAM was proposed in 2018 [22], which introduces
the correlation of spatial dimension to allocate the weight of feature maps. In addition to
the channel and spatial dimensions, the follow-up research also expanded the attention
mechanism to the time [23] and category dimensions [24]. On the whole, some of the
above methods ignore the spatial location information, and some models that focus on
global correlation are less specially designed combined with the characteristics of the
detected target.
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Different from these previous methods, we provide a new perspective to capture the
global dependency in the feature map. Actually, starting from the narrow and long charac-
teristics of typical ships, we extract the spatial correlation by calculating the dependency
between each query point and points in the same column and row, which has been proved
in subsequent ablation experiments to improve the accuracy of ship detection.

3. Proposed Method
3.1. Method Overview

The overall architecture of the proposed method is depicted in Figure 1. It mainly
consists of two modules: dilated rate selection (DRS) module and attention-wise feature
representation (AFR) module. By using the first module, we construct a search space to
realize the mapping between the standard convolution and dilated convolution. On this
basis, we gain the optimized dilated rate by constraining the loss function of training data.
After feature extraction, the second module is utilized to enhance feature representation by
mining the correlation between two orthogonal directions in spatial domain.

Kernel 3×3

Kernel 5×5

Kernel 7×7

Dilated rate search

Dilated rate search

outF
inF

xv

yv

Squeezing

smallestL

smallestL

msF

Dilated Rate Selection Module 

Attention-wise Feature Representation Module 

Figure 1. Flow chart of the proposed work.

3.2. Dilated Rate Selection for Multi-Scale Extraction

In order to expand the receptive field of the image, dilated convolution is often
employed to replace the down-sampling operation, avoiding the defect of resolution
reduction. By setting different dilated rate parameters, the network can have excellent
feature extraction effect for objects with different scales.

Taking a one-dimensional signal as an example, the input signal x is acted by the filter
W, and the output response y is thus generated as

y(i) =
M

∑
m=1

x(i + r ·m)w(m) (1)
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where x(i) is a point of the input signal. r indicates the sampling step of the input signal.
Extending the dimension to two dimensions, the input–output relationship of dilated

convolution can be characterized as

y(i, j) =
M

∑
m=1

N

∑
n=1

x
(
i + ri ·m, j + rj · n

)
w(m, n) (2)

where x(i, j) is the coordinate of the input image. ri and rj represent the expansion rate of
convolution in two directions, respectively. w(m, n) means a convolution kernel with length
m and width n. Obviously, for detecting ships of different sizes in practical applications, it
is inaccurate and cumbersome to manually design the dilated rates of each convolution
kernel. Therefore, inspired by [25], we seek a strategy of parameter search to automatically
assign the optimized rates (as illustrated in Figure 2).

………

Final conv blocks

Smallest Loss

Conv blocks 

Mapping

Feature map

Dilation conv

………

Kernel 

Embedding

Figure 2. Design of the dilated rate search module for multi-scale extraction.

Specifically, we first fix a basic architecture of multi-scale feature extraction. Consider-
ing the residual network is a widely used high-quality structure, we search the parameters
based on the ResNet backbone. In order to make the dilated convolution have a com-
parison benchmark and gain the initial weight assignment, we establish a kernel search
space to support the mapping of weight parameters between dilated convolution and the
pre-trained standard convolution.

Let us assume that the search space of the network structure is S [26]. Theoretically,
S is a set containing all potential convolution kernel scale designs and corresponding
weight allocation, but considering the limitation of actual computing resources, S can
often be regarded as a sampled subset of the theoretical set S. Specifically, we apply the
commonly used 3× 3, 5× 5 and 7× 7 kernels as the elements of the search space. Similarly,
convolution kernels of other scales can continue to be set according to computing resources.

Assuming that the ResNet structure has l layers, then on the l-th lay of the residual
architecture, we can characterize S by the size of convolution kernel k and all candidate
dilated rates r as

S = f (k, r) (3)

Based on training data, taking the best detection accuracy as the evaluation index, we
then train a set of relatively optimal convolution kernels and weight parameters by setting
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different search elements, i.e., different convolution kernels, for each layer. This process
can be characterized as

Wsc = arg min L(Dtrain , W) (4)

where L(·) represents the mean squared error loss function. W indicates the weight
parameter. Wsc represents the weight learned from the training set Dtrain by the standard
convolution of the ResNet architecture.

Through the above training processes, we obtain the kernel parameters of the standard
convolution architecture in each layer, which are a set of parameter combinations that
deeply learn the characteristics of training image data. The results actually provide a
useful reference for the subsequent dilated convolution search. For the convenience of
the subsequent search, it is necessary to provide an initial weight for each convolution
element. We next clarify the corresponding pixel-level relationship between the standard
convolution and dilated convolution, and the maximum dilated rate of the i-th lay is
calculated as

rl,max =
kl,sc + 1

kl,dc
(5)

where kl,sc represents the standard convolution kernel scale of the l-th lay. kl,dc means
the dilated convolution kernel scale. By setting the values of kl,sc and kl,dc, we make
rl,max be an integer which is not less than 1, thus constructing the pixel-level mapping of
two convolutions.

Obviously, from the pixel mapping we established, we can see that the pixel region in-
cluded in the dilated convolution is a subset of the pixel region of the standard convolution.
Inspired by [27], we directly copy the weights of the pre-trained standard convolution to
the non-zero element position of the dilated convolution, which is equivalent to the dilated
convolution retaining some feature information extracted by the original convolution.

Finally, for each layer, we input the same feature map and calculate the loss function
between the output of standard convolution and all possible dilated convolutions. The
dilated convolution which has the minimum loss is selected as the output convolution.
The search process can be modeled as an optimization issue [28], which is expressed as

rout = arg min
S,W

L(S, Dtrain , Wsc→dc) (6)

where rout means the output dilated rate parameter of the selected dilated convolution.
Specifically, we define that Wl,i means the weight of the i-th convolution at the l-th

lay in the standard convolution architecture, W
rx ,ry
l,i means the weight of the corresponding

dilated convolution architecture, (rx, ry) represents the dilated rate of convolution operation
in direction x and direction y, and X is the input of the l-th lay. Then, the loss function can
be calculated as

L1 =
∣∣∣Wl,i ⊗ X−W

rx ,ry
l,i ⊗ X

∣∣∣ = ∣∣∣(Wl,i −W
rx ,ry
l,i

)
⊗ X

∣∣∣ (7)

Since X is independent of Wl,i and W
rx ,ry
l,i [25], the objective function can be expressed as

min
rx ,ry

∣∣∣(Wl,i −W
rx ,ry
l,i

)∣∣∣, s.t. rx, ry ∈
{

0, 1, . . . , rl,max
}

(8)

We traverse the combinations of rx and ry and select the one corresponding to the
smallest loss, thus gaining the final dilated convolution of the search space.

3.3. Attention-Wise Feature Representation

Through the extraction module based on the multiple dilated convolution design, we
finely characterize the multi-scale characteristics of the input scene by apply the pyramid
pooling operation [29]. In addition, the receptive field expansion caused by dilated con-
volution retains more context information than ordinary convolution. In order to make
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better use of the spatial position details between these extracted features, we employ the
attention mechanism to further strengthen the representation of target features and reduce
the response of feature map to background interferences [30].

As we know, the previous attention models mainly mine the correlation between
spatial points from the global perspective in the spatial domain. Nevertheless, considering
the characteristic that most typical ships have a long and narrow shape, we creatively
introduce a direction sensitive attention model to enhance the feature representation of
ship targets. The structure of the employed attention-wise module is shown in Figure 3.
The main idea of this module is as follows: The distribution characteristics of two spatial-
domain orthogonal directions in the feature map are extracted to obtain the direction and
position-sensitive feature vectors. On this basis, we obtain the weight integrating the
correlation of spatial dimension and channel dimensions through vector aggregation and
channel squeezing operation.

Average pooling operator c

Split operator

c

c

×

sigmoid function 1×1 convolutioncNote:

cs

cs channel squeezing 

in
F

out
F

v y

encode v x

encode

v
decode

xv

yv

Figure 3. Design of the attention-wise representation module.

Specifically, for an input feature map Fin ∈ Rc×h×w, c represents the channel number,
and h and w represent the pixel lengths in two directions of the spatial dimension. We
collect feature information along the two directions in the spatial dimension, and the feature
vectors vx ∈ Rc×h×1 and vy ∈ Rc×1×w can be expressed as

vx(k, i) =
1
w

w

∑
i=1

Fin(k, i, j) (9)

vy(k, j) =
1
h

h

∑
j=1

Fin(k, i, j) (10)

where vx(k, i) indicates the feature vector v along the horizontal direction in c-th channel.
Similarly, vy(k, j) indicates the feature vector along the vertical direction.

Through the above processing steps, we integrate the features along the two orthogo-
nal directions. Because the features aggregate the spatial information along the orthogonal
direction, they can effectively capture the distribution relationship of the position and
direction of the potential region. To further embed the spatial information into the channel
dimension, the concatenating operation is applied to obtain the aggregated feature vector
vx,y ∈ Rc×1×(h+w) . Moreover, inspired by [21], we then encode the feature vector to
compress the channel of the input vector by α times, where α is a positive integer represent-
ing the channel compression multiple. This squeezing step not only reduces the amount
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of calculation parameters, but also integrates cross-channel information, facilitating the
representation of channel correlation.

vencode = sigmoid
(
conv1×1

(
vx,y

))
(11)

where conv1×1 denotes the 1× 1 convolutional transformation. Sigmoid means a non-linear
activation function. The obtained vencode ∈ c/α×1×(h+w).

Actually, through above encoding process, the vector vencode extracts cross-channel
correlation and embeds spatial location information at the same time. As we know, the spa-
tial position characteristic is beneficial to locate the interested region in the object detec-
tion task.

After obtaining the feature vector vencode containing accurate location information
through the spatial position encoding, in order to apply the decoded attention weight to
the input feature map Fin, we split the vector vencode along the vertical and horizontal
directions, thus obtaining

vx
encode , vy

encode = split(vencode ) (12)

where split(·) represents the dimension splitting operation. The vector vx
encode ∈ Rc/α×1×h,

vy
encode ∈ Rc/α×1×w.

For the split vectors, 1× 1 convolutional transformation is used to restore the influence
of pervious channel reduction in the encoding stage, yielding the vectors with the same
channel number as the input feature map. The decoded attention weights along different
spatial directions can be given as

vx
decode = sigmoid(conv1×1(vx

encode )) (13)

vy
decode = sigmoid

(
conv1×1

(
vy

encode

))
(14)

where vx
decode and vy

decode are attention weights embedding the vertical and horizontal spatial
directions, respectively. By applying the decoded attention weights, the final output feature
map Fout ∈ Rc×h×w can be given as

Fout (k, i, j) = vx
decode (k, i)× vy

decode (k, j)× Fin (k, i, j) (15)

Then, similar to the Faster R-CNN method [31], we input the obtained features into
the fully connected layers and achieve the final classification.

4. Experimental Analysis
4.1. Experimental Setup

In order to illustrate the application effect of our method, the comparative experiments
are constructed on the widely used Airbus dataset. This dataset is a high-quality image
dataset recognized by the ship detection research community. The image scene covers
various sea and air elements, such as waves, clouds and reefs, and includes a variety of
practical situations, both single-target and multi-target. The image size is 768 × 768 pixels.
The whole dataset includes more than two hundred thousand images, of which more
than forty thousand images contain ships (a total of 81,689 ship instances). We randomly
selected eight thousand images from the dataset, including six thousand as the training set
and the rest as the test set.

To measure the accuracy of the proposed model, the commonly used average-precision
(AP) is selected as the evaluation index, which is a comprehensive characterization of the
precision and recall of the model. Actually, the AP describes the area under the precision-
recall curve as

AP =
∫ 1

0
precision(recall)d(recall) (16)
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Specifically, AP@α means the AP value at the intersection over union (IOU) threshold
of α. The IOU is a parameter to calculate the overlap of the ground truth box and the
prediction box of the detection algorithm, which is defined as

IOU =
Bgt ∩ Bpd

Bgt ∪ Bpd
(17)

where Bgt and Bpd represent the ground truth box and the predicted box, respectively.
In addition, the false alarm rate (FAR) of the algorithm directly determines the effect

of practical applications. Based on this consideration, we also take the FAR as an evaluation
index of different detection methods, which is defined as

FAR =
number of detected false alarms
number of detected candidates

(18)

4.2. Implementation Details

Our detector is end-to-end trained on a workstation with an Nvidia RTX 2080 GPU.
The proposed model is implemented with the PyTorch framework. Before the network
training stage, we applied the anchor box parameter optimization strategy to automatically
generate a set of anchors that are more suitable for the employed dataset, thus improving
the efficiency and accuracy of ship detection. The stochastic gradient descent strategy is
used to optimize the objective function in the training process. The learning rate begins
from 0.001, and the weight decay and momentum are set to 0.0005 and 0.9, respectively.
We apply 250 epochs to learn the characteristics of our training data, and the train batch
size is 4. The variation curves of loss function during training are shown in Figure 4.

Figure 4. Loss curve of the image training process.

In addition, it should be noted that detection algorithms may have different require-
ments for the input image size. For example, the default input size of the Faster R-CNN
model is 800× 600 pixels, while the YOLOv4’s requirement is 608× 608 pixels [32]. In order
to make our experimental images (they are 768 × 768 pixels) meet the input requirements
of various compared models, we pre-processed the images of the whole dataset before
inputting different models. Specifically, we performed a padding operation for the side
length shorter than the input requirements of the models and random clipping operation
for the side length longer than the input sizes.

4.3. Ablation Analysis

To assess the effectiveness and necessity of our employed modules, we perform
extensive ablation experiments. Since our proposed multi-scale extraction module can
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be regarded as a modified version of the ResNet architecture, the typical ResNet50 and
ResNet101 architectures are applied as the baseline backbone.

In order to illustrate the details of the dilated rate selection, we calculate the dilated
convolution proportions of different shapes in ResNet50 and ResNet101 architectures after
selection operation. According to the height h and width w of the convolution kernels,
the shapes of dilated convolution are divided into square (h = w), vertical (h > w) and
horizontal (h < w). For the fairness and accuracy of the statistical results, we conduct
ten experiments to obtain the average values. As can be seen from Table 1, the selected
convolution shapes are mainly square. This is because the distribution directions of ships
are random in the remote sensing image, the square convolution is more suitable for feature
extraction.

Table 1. Statistical results of dilated convolution shapes.

Shapes ResNet50 + Proposed DRS (%) ResNet101 + Proposed DRS (%)

Square 42.00 46.53
Vertical 28.00 24.75

Horizontal 30.00 28.72

Table 2 reports the ablation experimental results on the Airbus dataset. When the
Faster R-CNN detection framework is limited, the AP values obtained by configuring the
original ResNet50 and ResNet101 as the multi-scale extraction module are 68.52 and 69.38,
respectively. From the AP measure, we can find that when we embed the multi-scale dilated
convolution module into the Faster R-CNN detection framework, the AP value reaches
70.72. After further strengthening the characterization with the attention-based feature
enhancement module, the final AP value reaches 72.68, showing a significant performance
improvement compared with the original detection framework.

In order to intuitively illustrate the role of each module, we select a typical example
and add each module in turn. The detection results of the example are shown in Figure 5.
The result of only using the detection framework configured with the ResNet101 is shown
in Figure 5b. It can be found that for the three ships in the image, this method misses the
smallest ship and mistakenly detects two objects that are actually clouds. This may be
because the detection model has some limitations in the feature representation of the small
target through multiple down-sampling operations. After embedded the proposed DRS
module, the algorithm successfully detects the smallest target and removes a false alarm
(as shown in Figure 5c). When we further configure the attention module to the Faster
R-CNN framework, we can observe that we detect all the targets and effectively constrain
false alarms (as shown in Figure 5d). Therefore, the above ablation experiments illustrate
the validity and effectiveness of the proposed module.

Table 2. Evaluation results of ablation experiments.

Methods Multi-Scale Extraction Module Attention Module AP@0.5 (%) AP@0.75 (%) AP (%)

Faster R-CNN ResNet50 - 83.50 72.79 68.52
Faster R-CNN ResNet101 - 84.44 73.87 69.38
Faster R-CNN ResNet50 + proposed DRS - 84.71 74.32 69.94
Faster R-CNN ResNet101 + proposed DRS - 86.08 76.98 70.72
Faster R-CNN ResNet50 Proposed AFR 85.37 75.72 69.71
Faster R-CNN ResNet101 Proposed AFR 86.14 77.85 71.19
Faster R-CNN ResNet50 + proposed DRS Proposed AFR 87.23 76.43 71.56
Faster R-CNN ResNet101 + proposed DRS Proposed AFR 87.65 79.81 72.68
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Figure 5. Detection examples of the ablation experiment: (a) original image, (b) Faster R-CNN with ResNet101, (c) Faster R-CNN with
the proposed DRS module, (d) Faster R-CNN with the two proposed modules and (e) ground truth.

4.4. Comparative Experiments

To further verify the overall performance of our algorithm, several advanced al-
gorithms are adopted as baseline approaches for comparative experiments, including
ship detection via visual saliency (SDVS) [33], YOLOv4 [32] and HSF-Net [34] methods.
The SDVS method constructs a visual saliency model based on Fourier transform to locate
the potential region of objects and utilizes the geometric prior features to achieve the final
classification. The YOLOv4 model is a famous single-stage object detection method, which
applies logistic regression to predict the bounding box of objects in each grid cell, thus
determining the location and scale of ships. Moreover, this approach omits the step of gen-
erating a large number of proposals for the input image, thus having high computational
efficiency. The HSF-Net approach adopts a hierarchical selective filtering architecture to
learn features of different levels, thus providing the input for the accurate prediction of
potential target regions. Then, a classifier is added to the detection head, producing the
final detection results for targets with different scales.

In order to intuitively illustrate the performance effect of each method, we show the
prediction results of four representative examples in Figure 6. The scenes of these examples
not only include ship targets of different scales but also contain the interference of thin
cloud, thick cloud, sea clutter and mist. The scene in the first column of Figure 6 includes a
ship and some thin clouds. The SDVS and YOLOv4 methods mistakenly classify the clouds
as targets and miss the real small-scale ship. In contrast, both of the HSF-Net method and
our approach can effectively detect the ship which has low contrast with the neighborhood
background. The scene in the second column of Figure 6 includes the interference of thick
clouds and reefs. In addition, it is worth noting that one of the ships is in the shadow
of clouds. One can see that the SDVS and the HSF-Net approaches correctly detect a
ship, whereas the YOLOv4 model and our approach can successfully detect two ships,
including the ship in the shadow. Unfortunately, there is also a false alarm in the result
of our method. For the image scene with the sea clutter interference (as seen in the third
column of Figure 6), although the three compared methods correctly detect the ship, they
also generate additional false alarms. In contrast, the proposed method can detect the
target efficiently. For the mist scene given in the fourth column of Figure 6, the SDVS and
YOLOv4 approaches miss a small-scale ship located in the upper left corner of the image,
whereas the HSF-Net method and our approach obtain satisfactory results.
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 6. Detection result examples provided by different detection methods on the Airbus dataset: (a) original image,
(b) SDVS, (c) YOLOv4, (d) HSF-Net, (e) proposed method and (f) ground truth.
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Table 3 provides the quantitative evaluation results of different detection methods on
the Airbus dataset. We can observe that the proposed method outperforms other compared
approaches in terms of the AP and FAR indexes. In contrast, the SDVS method gains
the lowest AP and the highest FAR. Actually, this SDVS method, which directly applies
a visual saliency model to extract candidate regions, can easily produce false alarms in
complex scenes. In addition, it only applies the geometric and texture features for the final
target classification, which has disadvantages compared with deep networks in terms of
the feature utilization. Besides, as we know that the YOLOv4 model has the advantage of
fast detection, nevertheless, it lacks the direct extraction process of candidate regions, easily
leading to incorrect output positions, especially for small ships. Among these considered
approaches, the HSF-Net obtains the second highest AP value. Actually, both the tech-
nique and our method focus on multi-dimensional representation of the extracted features
and enhancing information that contributes to the final classification. The experimental
results prove the correctness of this strategy to a certain extent. Consequently, based on
the above qualitative and quantitative evaluations, we can conclude that the proposed
method can effectively detect ships with different scales under complex environmental
interference conditions.

Table 3. Comparative experimental results on the Airbus dataset.

Methods Backbone Input Image Size AP(%) FAR(%)

SDVS - 768 × 768 62.67 12.39
Faster R-CNN ResNet50 1000 × 600 68.52 8.12
Faster R-CNN ResNet101 1000 × 600 69.38 7.84

YOLOv4 CSPDarknet53 608 × 608 69.64 6.69
HSF-Net VGG-16 500 × 500 71.37 5.84
Proposed ResNet101 + proposed DRS 1000 × 600 72.68 5.65

5. Conclusions

In this paper, we present a ship detection architecture based on the dilated rate
selection and attention-guided feature representation strategies, which can detect ships of
different scales under complex scene conditions. Specifically, a dilated convolution selection
strategy is applied to a multi-branch extraction network, adaptively extracting context
information of different receptive fields without reducing the image resolution. Moreover,
to enhance the feature characterization, we calculate the correlation of spatial points from
the vertical and horizontal directions and embed it into the channel compression coding
process, realizing the accurate capture of multi-dimensional characteristics. Experimental
results on the Airbus dataset demonstrate the effectiveness of the proposed method in
detecting ship targets under complex environmental interference.
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