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Abstract: Nighttime light (NTL) remote sensing data can effectively reveal human activities in
urban development. It has received extensive attention in recent years, owing to its advantages
in monitoring urban socio-economic activities. Due to the coarse spatial resolution and blooming
effect, few studies can explain the factors influencing NTL variations at a fine scale. This study
explores the relationships between Luojia 1-01 NTL intensity and urban surface features at the
pixel level. The Spatial Durbin model is used to measure the contributions of different urban
surface features (represented by Points-of-interest (POIs), roads, water body and vegetation) to
NTL intensity. The contributions of different urban surface features to NTL intensity and the Pixel
Blooming Effect (PIBE) are effectively separated by direct effect and indirect effect (pseudo-R2 = 0.915;
Pearson correlation = 0.774; Moran’s I = 0.014). The results show that the contributions of different
urban surface features to NTL intensity and PIBE are significantly different. Roads and transportation
facilities are major contributors to NTL intensity and PIBE. The contribution of commercial area is
much lower than that of roads in terms of PIBE. The inhibitory effect of water body is weaker than
that of vegetation in terms of NTL intensity and PIBE. For each urban surface feature, the direct
contribution to NTL intensity is far less than the indirect contribution (PIBE of total neighbors), but
greater than the marginal indirect effect (PIBE of each neighbor). The method proposed in this study
is expected to provide a reference for explaining the composition and blooming effect of NTL, as well
as the application of NTL data in the urban interior.

Keywords: Luojia 1-01; nighttime light; urban surface; points-of-interest; pixel blooming effect;
spatial autoregressive model

1. Introduction

Cities are complex dynamic systems composed of infrastructure, human activities and
social connections [1]. More than half of the world’s population now live in cities, which
also brings increasingly complex urban problems [2]. As an effective measure of urban
monitoring, remote sensing includes daytime and nighttime remote sensing. Daytime
remote sensing primarily reveals the information of natural environment and artificial
surface. By contrast, nighttime remote sensing reveals human socio-economic activities [3].

Nighttime light (NTL) remote sensing can effectively reveal the human activities
in urban development. NTL remote sensing data can record the light from buildings,
roads and vehicles, etc., at night by satellite sensors [4]. It has a statistically significant
correlation with human activities such as population distribution, economic growth and
infrastructure [5]. Therefore, it is widely used in urbanization monitoring to estimate GDP,
population, electrical consumption, the extraction of built-up areas and the estimation of
housing vacancy rate [6–8]. However, due to the coarse spatial resolution and blooming
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effect of NTL data, current studies are more often applied to the outside of the city. In
order to provide a reference for the NTL application in the urban interior, it is crucial to
comprehensively understand the composition of NTL and the factors influencing NTL
variations [9]. Currently, commonly used NTL data are observed by various sensors and
platforms, such as the Defense Meteorological Satellite Program-Operational Linescan
System (DMSP-OLS) [10] and Suomi National Polar-Orbiting Partnership Satellite’s Visible
Infrared Imaging Radiometer Suite (NPP-VIIRS) [11]. As a new generation of NTL satellite,
Luojia 1-01 was launched by Wuhan University of China on 2 June 2018 [12]. Compared
with DMSP-OLS and NPP-VIIRS, Luojia 1-01 NTL data provide more abundant details [13].
It provides a solution for the application of NTL data in the urban interior.

The relationships between NTL and different land use/land cover (LULC) types have
been explored in previous studies [9,14–16], which is essential for exploring the source,
composition and application of NTL in the urban interior. Li et al. developed an unmixing
model to quantify the land use (produced by LULC) contribution to NTL [14]. Ma focused
on the relationships between urban surfaces (produced by LULC and Point-of-interest
(POI)) and NPP-VIIRS NTL intensity at the pixel level [15]. However, due to the coarse
spatial resolution, DMSP-OLS and NPP-VIIRS data may not be able to distinguish different
LULC especially in the urban interior. Wang et al. explored the relationships between
artificial surfaces and NTL intensity at the parcel level. It is concluded that NTL variations
in Luojia 1-01 data for different artificial surfaces (produced by LULC and POIs) were
more significant than those in NPP-VIIRS data [9]. In brief, the features representing the
characteristics or background environment of the urban surface illuminants affect the NTL
variations to a greater or lesser extent, whether they are LULC, POIs or urban surface [9,15].
Nevertheless, due to the smoothness of the NTL details caused by blooming effect, the
pixel-level research of NTL in the urban interior remains rare.

The blooming effect means that the illuminated area observed by the sensor is wider
than the geographic area of the illuminant, which leads to a wider extent of illuminated
area displayed by the image than the actual extent [17,18]. The blooming effect has been
observed in the current NTL images, such as DMSP-OLS, NPP-VIIRS and Luojia 1-01
data [9,19,20]. Light from human settlements spread is far beyond the extent of illuminants.
The light of coastal cities can be observed 20 km away from the coastline. For cities with
clear boundaries, the illuminated area usually expands the urban size by 10 times [17].
The reason for these phenomena is precisely the blooming effect. For the blooming effect,
there are various causes and factors, as follows. (i) Field-of-view variation: each elliptical
ground scanning area captures the light from multiple neighboring illuminants, which
results in a significant overlap between neighboring pixels [21]. (ii) Geolocation error [21].
(iii) Atmospheric scattering: the sky is illuminated by the overflow of artificial illuminant
from the land surface [22]. Atmospheric scattering is one of the reasons affecting the
blooming effect of NTL images [17,21]. (iv) Accumulation of (i)–(iii) in the annual/monthly
NTL data [21]. (v) Characteristics of the land surface illuminants: the dimensions [19] and
brightness intensity [21,23] of land surface illuminants affect the blooming effect’s intensity
of NTL image. (vi) Background environment of the land surface illuminants: vegetation
has an inhibitory effect on NTL [24]. By contrast, the blooming effect is more significant
around water bodies and snow surfaces [25]. The blooming effect expands the extent of
the illuminated area and reduces the simulation accuracy of the population distribution
and built-up area extraction [9]. The blooming effect has given rise to a succession of
adverse impacts on NTL-based applications, especially in city centers, where the detailed
information is needed.

In previous studies, the blooming effect was assumed as the impact between the
built-up area and the non-built-up area. However, while the study area is located in the
urban interior, it is necessary to divide the blooming effect into more detailed components
of impact between various urban surface components. Due to the blooming effect, the
detected light of a center pixel appears to “spill over” to its neighboring pixels, while lights
from its neighboring pixels also scatter back to the center pixel [26]. Zheng et al. eliminated
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the pixel blooming effect of the built-up area and non-built-up area in DMSP-OLS data
through the mutual influence of lights from a pixel and its neighbors [26]. However, this
hypothesis is not enough to measure the blooming effect of NTL data in the urban interior.
The method in Abrahams et al. is able to distinguish built-up areas and non-built-up areas
around the urban boundary, but it is not able to distinguish them in the urban interior [21].
Zheng et al. assumed that all pixels were subject to the same kind of pixel blooming effect,
but did not consider the differences in blooming effect caused by the characteristics of the
land surface illuminants [26]. Recent studies suggest that there are obvious differences
in NTL intensity in the regions of different LULC [9], and the characteristics of the land
surface illuminants and the background environment of the land surface illuminants affect
the blooming effect to a certain extent [19,21,23,24]. The blooming effect was omitted, in the
studies of analyzing the relationships between NTL intensity and urban surface features.
In previous studies related to simulating and eliminating the blooming effect, the blooming
effect of different urban surfaces is usually not distinguished. Because of these reasons,
most investigations are applied to regional-level or sub-regional-level surveys of human
activity. Therefore, while the urban surface is divided into more detailed components (such
as commercial, road, water body or vegetation area), the NTL intensity and the blooming
effect generated by different urban surfaces may also be different. For different urban
surfaces, how much of the NTL is contributed by the central pixel’s urban surface, and
how much of the NTL is contributed by the blooming effect of neighboring pixels? This is
one of the problems to be solved in this paper.

The purposes of this study are to: (i) Propose a method through which to measure
the direct and indirect contribution of various urban surface features to the Luojia 1-01
NTL intensity. (ii) Quantitatively measure the intensity of the Pixel Blooming Effect (PIBE)
generated by different urban surface features. The article is organized as follows. Section 2
describes the experiment area and the related datasets. Section 3 provides an overview of
the research procedures, including the definition of PIBE, data preprocessing, the spatial
autoregressive model and the measurement of spatial autocorrelation. In Section 4, the test
of different neighboring effects, the Spatial Durbin model (SDM) fitting, and the spatial
partitioning of feature contributions to NTL intensity or PIBE are displayed. Section 5
discusses the contribution of various urban surface features and the limitations of our
method. Finally, Section 6 summarizes the significance and future prospects of this article.

2. Study Area and Datasets
2.1. Study Area

The study area of this study is the urban area within the Third Ring Road of Wuhan
(Figure 1). Wuhan, which is the capital of Hubei Province in central China, is located at
113◦41′ E~115◦05′ E, 29◦58′ N~31◦22′ N. The left of Figure 1 illustrates the administrative
boundary and the Luojia 1-01 NTL image of Wuhan. In Wuhan, water area covers around
26.1% of the municipal administrative area, and the dense buildings and NTL cover the
ground in the urban interior. Due to the diversified ground objects, it is a typical area
in which to investigate NTL and PIBE. The urban areas within the Third Ring Road
were selected to explore the relationships between urban surface features and NTL at the
pixel-level.

2.2. NTL Data

The NTL data applied in this study are the Luojia 1-01 data of Wuhan on 13 June
2018, and its local overpass time is 22:41. Currently, various studies that revolve around
the quality and applications of Luojia 1-01 NTL data are underway with new harvests,
which demonstrates the advantages of these data [27–29], such as increased potential in
urban monitoring [30]. Compared with DMSP-OLS data and VIIRS-DNB data, Luojia
1-01 provides NTL data with higher quantization and finer spatial details (Table 1) [31].
Therefore, it provides convenience for exploring more detailed NTL composition and
structure in the urban interior. In Section 3.2, we report on our performance of geometric
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correction and radiometric calibration on a Luojia1-01 NTL image. After standardization,
NTL intensity is obtained as the value of dependent variable. Every image and all the
spatial data applied in this study were projected to “WGS_1984_UTM”.
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Figure 1. NTL image of Luojia 1-01 in the study area.

Table 1. Comparison of different NTL data.

Sensor DMSP/OLS VIIRS/DNB Luojia 1-01

Temporal
resolution

Global coverage can
be obtained every 24 h

Daily images can be
downloaded 15 day revisit time

Spectral band 500–900 nm 500–900 nm 460–980 nm
Quantization 6 bits 14 bits 14 bits

Spatial resolution 3000 m 740 m 130 m
Time span 1992–2013 2011–present 2018–2019

2.3. Urban Surface Feature Datasets

The urban surface features defined in this study are composed by overlying 13 maps.
A total of 11 maps of artificial facilities represent the characteristics of the urban surface
illuminants, including POIs (6 class, Figure 2c) and roads (5 level, Figure 2d). Two maps
of natural surfaces represent the background environment of the urban surface illumi-
nants, including the water area and vegetation (Figure 2b). Figure 2 illustrates the spatial
distribution of water area, vegetation, POIs and roads in the study area.

2.3.1. Natural Surface from Landsat 8

In this study, the background environment of the urban surface illuminants is divided
into three major categories (water body, vegetation and artificial surface). Due to the
dummy variable trap, only two dummy variables (i.e., water body and vegetation) were
applied into the model. Landsat-8 multispectral images were used to extract water and
vegetation in this study (http://www.gscloud.cn/, accessed on 18 December 2018). After
radiometric correction and atmospheric correction, the normalized difference water index
(NDWI) and normalized vegetation index (NDVI) were used to extract the water and
vegetation. The results were resampled to 130 m × 130 m.

http://www.gscloud.cn/
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Figure 2. Spatial distribution of independent variables: (a) Landsat 8 image; (b) natural surface spatial distribution map:
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with all levels of roads.

2.3.2. Artificial Facilities from POI

Artificial facilities, such as POIs and roads, were used to characterize the character-
istics of the urban surface illuminants. The initial POI data were collected from Amap
(https://www.amap.com/, accessed on 25 December 2017), which includes 23 types. In
this study, we reclassified it into 6 categories (i.e., residential, government and social or-
ganization, industrial, commercial, public garden, transportation facilities) with a total of
301,331 points (Table A1). Although spurious social data may arise, the spatial distribution
can be accurately reflected by using a number of points.

2.3.3. Artificial Facilities from OpenStreetMap

The initial road network data was collected from OpenStreetMap (OSM, http://www.
openstreetmap.org, accessed on 18 December 2018), which includes 22 types, such as
motorway, trunk, primary road, and secondary road. In this study, we reclassified them
into five categories (i.e., road1, road2, road3, road4, road5), with a total length of 3681.7 km
(Table A2). For Wuhan, underground roads (such as tunnels and subways) were removed.

https://www.amap.com/
http://www.openstreetmap.org
http://www.openstreetmap.org
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3. Methods

This study used Luojia 1-01 NTL and urban surface features (13 variables from water
body, vegetation, POIs and Roads) to build a spatial autoregressive model at pixel level.
Figure 3 illustrates the processes of this article. Based on the research basis of previous
studies on the NTL interaction between different areas, hypothesis testing was used to
determine which neighboring effects should be put into the model. Finally, according to
the direct and indirect effects, we explored the contributions of different urban surface
features to NTL intensity and PIBE.
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3.1. The Pixel Blooming Effect (PIBE)

Only a small number of studies have performed a quantitative discussion on blooming
effect [21,26,32]. Thus, we needed a term with which to clarify the blooming effect in this
study, which means a few NTL of a central pixel “overflows” from its neighboring pixels.
In this study, we continue to use the term, “Pixel Blooming Effect (PIBE)”, to explain the
blooming effect of the NTL images [26]. The PIBE emphasizes the fact that all pixels feature
a blooming effect, not just in suburbs. Due to their differing methodologies, PIBE and
traditional blooming effect [17] need to be distinguished. Due to the PIBE, not only does
the NTL of the center pixel seem to “spill over” to its neighboring pixels, but the NTL of its
neighboring pixels also “spills” back to the center pixel [26]. What this study explores is
how much of the central pixel’s NTL “spilled” from its neighboring pixels, and how much
of the central pixel’s NTL is caused by the central pixel’s urban surface.

3.2. Data Preprocessing

In order to accurately discuss the NTL and the PIBE, the Luojia 1-01 NTL image
performed geometric correction and radiometric calibration. The road network was clearly
visible, due to the high spatial resolution of Luojia 1-01 data. For each image, we used
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road network intersections as control points for geometric correction. For the radiation
calibration, Equation (1) based on laboratory calibration provided by the satellite data
producer is used to convert the digital number into the radiance.

L = 10−10DN3/2ω (1)

where DN denotes the digital numbers of a pixel; L denotes the radiance, with unit
nWcm−2sr−1; and ω denotes the bandwidth. The radiometric range of the Luojia 1-01 is
460–980 nm, so that ω = 5.2× 10−7m.

For city surface, we obtained an urban surface feature map of 32,104 rectangular fishing
nets by preprocessing. The size of each fishing net was 130 m× 130 m, with 13 independent
variables (i.e., water, vegetation, residential, government and social organization, industrial,
commercial, public garden, transportation facilities, road1, road2, road3, road4, road5).
Water and vegetation are set as dummy variables, that is, for all grids, the value was 0
when there is no water area and 1 when there was a water area. For each grid, the density
of the urban surface was determined by the count of each class of POI and the length of
each level road.

We explored a total of 13 variables, each of which featured different units and ranges.
To facilitate the comparison of their respective contributions, we normalized each variable
(except water and vegetation) using Equation (2).

Xr =
Xlr0 − µlr0

σlr0
; Xlr0 = LN(Xr0 + 1) (2)

where Xr is the standardized value for the r-th independent variable (representing the
value of the r-th urban surface); Xr0 is the initial value of the r-th independent variable
(representing the density of the r-th urban surface); Xlr0 is the logarithmically transformed
value for Xr0; and µlr0 is the mean value for Xlr0; σlr0 is the standard deviation for Xlr0.

3.3. Ordinary Least Squares Regression Model

In most spatial analyses, the general method is to start with a non-spatial linear
regression model, and then to test whether this model needs to be extended to a model
with spatial effects [33]. This kind of non-spatial linear regression model usually uses
ordinary least squares (OLS) for estimation, so it is usually called the OLS model. The form
is as Equation (3):

Y = Xβ + alN + ε, ε ∼ N
(

0, σ2 IN

)
, iid (3)

where Y is the dependent variable; X is the independent variable; β is the coefficient to be
estimated; N is the sample size; a is the constant; lN is the unit vector; and ε is the random
error term, which obeys independently identically distribution. The residual is usually
used as the estimated value of the random error term.

The assumption that the observations or residuals are independent of each other
greatly simplifies the model. However, in the spatial context, this simplification seems
far-fetched [33]. Spatial dependence simply reflects the situation of spatial data, that is,
the observed value of a pixel depends on the observed value of its neighboring pixels.
This greatly reduces the estimation accuracy of OLS model. Ma used the OLS model to
discuss the pixel-level relationship between urban surfaces and NPP-VIIRS NTL intensity,
and observed that the goodness of fit between them was only R2 = 0.16 [34]. Therefore,
it is usually necessary to measure and test the spatial autocorrelation of the residual (by
Moran’s I). Next, the Lagrange multiplier test and the likelihood ratio test are used to
determine the specification of the spatial autoregressive model so as to expand the OLS
model into the spatial autoregressive model.
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3.4. Spatial Autoregressive Models

How NTL “spills over” to its neighboring pixels is one of the problems to be solved
in this study. The representation of PIBE on the image is that the NTL intensity of the
central pixel is affected by the urban surface or the NTL intensity of the neighboring
pixels. In the spatial autorepression model, we call this effect the spillover effect. The
spatial autoregressive model is a model used to deal with the spillover effect or PIBE
between geographical units. It is a new tool to solve the problem of how spatial variables
overflow to their neighboring units [35]. In the spatial autoregressive model, three kinds
of neighboring effects are usually used to solve the spillover effect or PIBE, that is, the
neighboring effects between the dependent variable, the independent variable and the
residual [36]. Zheng et al. eliminated the blooming effect of DMSP-OLS by neighboring
the pixels’ NTL intensity [26]. The spatial autoregressive model is also applied to the
simulation of light emissions and skyglow. Daniel et al. separated the direct and indirect
contributions of various geographical independent variables [34].

Neighboring effects in the spatial autorepression model are divided into three cat-
egories, as follows. (i) WY: the neighboring effect between the dependent variables of
different pixels; (ii) WX: the neighboring effect between the independent variables of dif-
ferent pixels; (iii) Wε: the neighboring effect between the residuals of different pixels [36].
In general, three different neighboring effects can explain why the observations in one
pixel are dependent on those in another pixel. A complete model with all the types of
neighboring effect is called the General Nesting Spatial model (GNS, Equation (4)) [37].

Y = ρWY + Xβ + WXθ + alN + ε, ε = λWε + v (4)

where Y, X and alN are consistent with Equation (3); W represents spatial weight matrix; ρ
represents the spatial autoregressive coefficient; β is the coefficient to be estimated for the
X; θ is the coefficient to be estimated for the WX; λ represents the spatial autocorrelation
coefficient; ε represents the error term; and v represents the trait components, including the
components unexplained by spatial dependence.

The spatial autoregressive model includes a series of models. By eliminating different
neighboring effects, GNS can be simplified into seven other models, as shown in Figure 4.
The OLS model is the most specialized model (i.e., when ρ, θ, λ are equal to 0). In Section 4.2,
we performed hypothesis tests (i.e., the Moran test [38], the Lagrange multiplier (LM)
test [35,39], the Wald test and the Likelihood ratio (LR) test [35]) for three neighboring
effects to determine which neighboring effect should be included into model. This was in
order to determine which model specification was closest to the real generation process of
NTL intensity and PIBE.

After the hypothesis testing and model screening described in Section 4.2, this study
concludes that the optimal model is the Spatial Durbin model (SDM, Equation (5)) [37].
The spatial autoregressive model expands the information by leading the information (or
observations) of neighboring pixels into the model. This means that the observations do not
satisfy the independence assumption. Therefore, the regression coefficients (such as ρ, β
and θ) are usually not used to measure the contributions of the independent variable to the
dependent variable [37]. In order to observe these contributions, the total effect, the direct
effect and the indirect effect (Table S1) are usually employed [37]. For the center pixel i and
its neighbor pixel j, the total effect includes the direct effect (the variation of independent
variable Xi affects the dependent variable Yi) and the indirect effect (the variation of
independent variable Xi affects the dependent variable Yj). In this study, the total effect is
interpreted as the total contribution of urban surface features (X) to NTL intensity (Y). The
direct effect (or direct contribution) is interpreted as the contribution of the center pixel’s
urban surface features (Xi) to the center pixel’s NTL intensity (Yi). The indirect effect (or
indirect contribution) is interpreted as the contribution of the center pixel’s urban surface
features (Xi) to the neighboring pixels’ NTL intensity (Yj). The direct effect measures the
NTL intensity determined by the center pixel’s urban surface features, and the indirect
effect measures the PIBE. It is worth noting that the effects from an observation and the
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effects to an observation are numerically equal, because the spatial weight matrix in this
study is a symmetric matrix.

Y = ρWY + Xβ + WXθ + alN + ε (5)

where the Y, X, W, β, alN , and ε are consistent with Equation (4). Their realistic meaning is
as follows: Y represents the NTL intensity; W represents the adjacent relationship of pixels;
WY is the average of the neighboring pixels’ NTL intensity; ρ is the coefficient of WY; X
represents the urban surface features (i.e., water, vegetation, residential, government and
social organization, industrial, commercial, public garden, transportation facilities, road1,
road2, road3, road4, road5); WX is the average of the neighboring pixels’ X; and θ is the
coefficient of WX.

Wij =

{
1, bound(i) ∩ bound(j) 6= ∅
0, bound(i) ∩ bound(j) = ∅ (6)

where bound() represents the boundary of pixel; Wij represents the adjacency relationship
between pixel i and pixel j, while Wij = 1 indicates that two pixels are neighbor, and
Wij = 0 indicates that two pixels are not neighbor. In this study, W is an N*N rook spatial
weight matrix. The value N represents the sample size.
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the GNS model and the SAC model are very difficult to explain. Thus, they are rarely applied in
empirical research [40]. Therefore, we do not discuss them in this article.

3.5. Moran’s I

Cliff et al. applied Moran’s I to test whether there is a spatial autocorrelation in
the regression residual so as to point out the error of model specification caused by spa-
tial dependence [38]. It is necessary to determine whether the PIBE in the dependent
variable is completely explained by the independent variable, that is, whether there is
unexplained PIBE in the residual. Therefore, the residual is usually tested by Moran’s I
(Equations (7) and (8)).

I =
N

∑N
i=1 ∑N

j=1 W(i, j)

∑N
i=1 ∑N

j=1 W(i, j)
(
Xi − X

)(
Xj − X

)
∑N

i=1
(
Xi − X

)2 (7)
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Z(I) = (I − E(I))/
√

var(I) (8)

where I is the spatial autocorrelation index; N is the sample size; Xi is the observed value of
the sample i; X is the average of X. W(i, j) is the value of the spatial weight matrix between
i and j; E(I) is the expectation of I; and var(I) is the variance deviation of I. If |Z(I)| is
greater than 1.65 and the p-value is less than 0.05, this indicates that the I is significant.

In this study, the regression residuals of each model are used to calculate the Moran’s
I. The range of I is between [–1, 1]. If I < 0, it means spatial discretization. If I > 0, it means
spatial clusters. If I = 0, it means that there is no spatial correlation or spatial random
distribution.

4. Results
4.1. Exploratory Statistical Analysis

Without considering neighboring pixels, common statistics can display an intuitive
comparison of the NTL radiance of different urban surfaces. Figure 5a compares the NTL
radiance of different urban surfaces. According to Figure 5a, the pixels where roads and
transportation facilities are located produce significantly more light than other pixels (the
median is greater than 100). Considerable natural surfaces (such as water and vegetation)
are usually illuminated at night, with the median NTL radiance clearly greater than 0. This
phenomenon is usually due to the PIBE of NTL.
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In our urban surface feature map, there are a total of 32,104 samples. After the
logarithmic transformation and normalization of Y and X, we produced a violin plot
(Figure 5b). According to Figure 5b, for all the artificial facilities, most of the independent
values were below the mean value, which equals 0. Because there are always a few artificial
facilities densely distributed in a few pixels in the urban interior, each independent variable
features a small number of high outliers. For the natural surface, we used dummy variables
whose value was 0 or 1. For the NTL radiance, its value was mainly within ±3σ.

4.2. Spatial Autoregressive Model Hypothesis Test

It is usually necessary to determine which kind of neighboring pixel effect should be
included in the model by using hypothesis tests. This determination is carried out in order
to determine which model specification is closest to the real generation process of NTL
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intensity and PIBE. This section is summarized as follows. Section 4.2.1 applies the Moran
test to the regression residuals and concludes that the model needs to consider the effect of
neighbor pixels. In Section 4.2.2, it is statistically determined by the hypothesis test (i.e.,
LM test, Wald test and LR test) that the NTL of neighbor pixels (WY) should be included in
the model. In Section 4.2.3, it is statistically determined by the hypothesis test (i.e., the LR
test) that the urban surface of neighbor pixels (WX) should be included in the model. It is
concluded that the optimal model is SDM. This process is expanded in this section.

4.2.1. Hypothesis Test of Neighboring Pixels’ Effect

In this study, Moran’s I was used to test whether the model needed to consider the
effect of neighboring pixels [38]. Firstly, Moran’s I was applied to the OLS model and SLX
model regression residual. According to Table 2, the adjusted-R2 of the OLS model was 0.45,
indicating that the urban surface features explained 45% of the NTL intensity variation.
The Moran’s I of the OLS regression residual was 0.685 (p-value < 0.01), indicating that
the null hypothesis of “no spatial autocorrelation” was rejected at the significance level of
1%, that is, there was significant spatial autocorrelation in the residual. Similarly, Table 2
illustrates that the adjusted-R2 of the SLX model was 0.56, which was higher than the
adjusted-R2 of the OLS model (0.45), indicating that adding the neighboring pixels’ urban
surface (WX) to the model may be a statistically better solution. However, the Moran’s
I of the SLX regression residual was 0.732 (p-value < 0.01), indicating that there was a
significant spatial autocorrelation in the SLX regression residual. Therefore, neighbor pixels
need to be considered to deal with the spatial autocorrelation problem of model residuals.
Therefore, it is necessary to consider the neighboring pixels’ effect.

Table 2. Moran’s I and LM test of OLS and SLX model regression residuals.

Model Moran’s I Ajusted-R2 LM-Lag Robust
LM-Lag LM-Error Robust

LM-Error

OLS 0.685 ** 0.45 35,769.6 ** 6056.5 ** 29,760.4 ** 47.3 **
SLX 0.732 ** 0.56 35,485.9 ** 1812.1 ** 34,049.1 ** 375.3 **

** represents p-value < 0.01.

4.2.2. Hypothesis Test of Neighboring Pixels’ NTL

The Moran test demonstrated that the effect of neighboring pixels should be consid-
ered, but this test cannot determine whether the NTL intensity of neighbor pixels (WY)
or the error term of neighbor pixels (Wε) should be included in the model. According to
a previous study [35], it needs to be judged by using the LM test (Table 2). Both LM-Lag
and LM-Error are significant at 1%. In this situation, it needs to be further judged by the
robust LM-Lag and robust LM-Error [39]. However, the robust LM-Lag and the robust
LM-Error are also significant at 1%. In this case, the model with larger robust LM value
was usually better in the previous study, which is robust LM-Lag. For the OLS model and
the SLX model, the model specification with WY (i.e., SLM and SDM) is better than the
model specification with Wε (i.e., SEM and SEDM).

After confirming that the model with the neighboring pixels’ NTL intensity (WY)
is better, it is necessary to determine whether the neighboring pixels’ NTL intensity is
significant. Anselin et al. provide three methods based on the maximum likelihood theory,
namely the Wald test, the LR test and the LM test [35]. The size arrangement of the three
statistics should follow Wald > LR > LM. Otherwise, the model specification is incorrect.
Table 3 displays the test results of the SLM model and SDM model. The three statistics in
Table 3 completely follow this size arrangement order, with a p-value < 0.01. This indicates
that the neighboring pixels’ NTL intensity (WY) in the SLM model and the SDM model was
significant, and that the model could not be simplified to the OLS model or the SLX model.

It can be concluded that the model specification with the neighboring pixels’ NTL
intensity (WY) is appropriate, which is closer to the real generation process of NTL.
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Table 3. Wald, LR and LM tests of SLM and SDM models.

Model Wald Test LR Test LM Test

SLM 206,437.6 ** 49,988.9 ** 35,769.6 **
SDM 150,180.3 ** 43,034.5 ** 35,485.9 **

(1) ** represents p-value < 0.01; (2) H0 : ρ = 0; H1 : ρ 6= 0; ρ is the coefficients of WY.

4.2.3. Hypothesis Test of Neighboring Pixels’ Urban Surface Features

The difference between the SDM model and the SLM model is in whether the neigh-
boring pixels’ urban surface features (WX) should be included in the model. The LR test
can effectively test this problem [35], with the null hypothesis H0 : θ = 0. The statistic obeys
χ2 distribution with degree of freedom k The value θ is the coefficient of WX. The value k
is the number of parameters to be estimated. The result is LR test = 321.0 (p-value < 0.01).
The null hypothesis is rejected at the significance of 1%. It indicates that the neighboring
pixels’ urban surface features (WX) is significantly not 0 in the model, and the SDM model
should not be simplified to the SLM model. In other words, the model specification with
the neighboring pixels’ urban surface features (WX) is appropriate, which is closer to the
real generation process of NTL.

In summary, when the model specification is the SDM model, it is closest to the real
generation process of NTL.

4.2.4. Comparison between Different Models

The comparison between the SDM model and the other five models was made clearer
by certain statistics. The Moran test was performed on the regression residuals of all six
models (Table 4). It was obvious that the regression residuals of the OLS model and the
SLX model featured a fairly strong spatial autocorrelation, at a significance level of 1%.
The regression residuals of the SDM model, SDEM model, SLM model and SEM model
featured a weak spatial autocorrelation, which was close to spatial random distribution.
This indicated that the problem of independent residuals was solved by the model specifi-
cation with the neighboring pixel’s NTL (WY) and the neighboring pixel’s urban surface
features (WX). In other words, the neighboring effect or PIBE of the NTL intensity was
completed explained.

Table 4. Comparison of goodness of fit between different models.

Model Moran’s I Pearson Correlation
(Squared) R2 Log

Likelihood AIC

OLS 0.685 ** 0.674 (0.454 #) 0.454 −35,838.7 71,701.4
SEM −0.013 ** 0.618 (0.382 #) 0.914 −11,889.8 23,803.7
SLM −0.002 * 0.769 (0.592 #) 0.915 −10,844.2 21,714.5
SLX 0.732 ** 0.751 (0.564 #) 0.563 −32,236.2 64,518.3

SDEM −0.016 ** 0.736 (0.542 #) 0.915 −11,139.9 22,326.1
SDM 0.014 ** 0.774 (0.600 #) 0.915 −10,718.9 21,485.8

* represents p-value < 0.05; ** represents p-value < 0.01; # represents the square of Pearson correlation coefficient.

Due to the fact that the pseudo-R2 of the spatial autoregressive model was different
from the R2 of the OLS model, the R2 of different models could not be compared. We
applied three statistics to compare the models: log likelihood, Akaike information criterion
(AIC) and Pearson correlation coefficient. The larger the log likelihood, the smaller the AIC,
and the better the model. Pearson correlation coefficient and its square are the statistics
between the estimated value and the observed value of the NTL intensity. According to
Table 4, the SDM model is the optimal model.

4.3. SDM Fitting

The SDM model was estimated by Luojia1-01 NTL intensity and urban surface features
(a total of 13 variables from Natural surface, POIs and roads) at pixel level. The NTL inten-
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sity of Luojia1-01 was effectively explained (pseudo-R2 = 0.915; Pearson correlation = 0.774),
and its PIBE was effectively explained by the urban surface features (Moran’s I = 0.014).
Figure 6 illustrates the comparison between the NTL intensity observed by Luojia1-01
(Figure 6a) and the NTL intensity simulated by the SDM model (Figure 6b). Furthermore, it
illustrates the local Moran’s I between the regression residual of the OLS model (Figure 6c)
and the SDM model (Figure 6d). The results of the local Moran’s I indicate that there was no
significant spatial autocorrelation in the residual of the SDM model, and the PIBE between
different pixels was completely explained. The independent variables of government
and social organization and public garden were not significant in the model and were
eliminated (Table S2). The reason is that the sample size of POIs in the corresponding
category was too small. The Pearson correlation coefficient of the SDM model was 0.774.
This indicated that it was feasible to measure the NTL intensity and PIBE by POIs, OSM
road network, water body and vegetation.
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Figure 6. (a) NTL intensity observed by Luojia 1-01 image; (b) NTL intensity simulated by SDM
model; (c) local Moran’s I of OLS model regression residual; (d) local Moran’s I of SDM model
regression residual. HH represents the aggregation of high values and high values. LL represents
the aggregation of low values and low values. LH represents low values surrounded by high
values. HL represents high values surrounded by low values. No Significant represents the residuals’
approximately random distribution.
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4.4. Spatial Partitioning of Feature Contributions

The estimation results of the SDM model are shown in Table S2, but the total/direct/
indirect effect (Table 5) were generally used instead of the regression coefficient (Table S2)
to measure the contributions. Table 5 displays the total effect, direct effect and indirect
effect of different independent variables in the SDM model. The total effect of road1 was
0.508: for any center pixel, 1 standard deviation (SD) increase in the road1 contributed a
0.508 SD increase to the NTL intensity. A total of 12% of this contribution derived from
the direct effect and contributed a 0.061 SD increase to the center pixel’s NTL intensity. A
total of 88% of this contribution derived from the indirect effect and contributed a 0.447 SD
increase to the PIBE (including low-order neighbor and high-order neighbor). The total
effect of vegetation was −0.958: when any center pixel changed from non-vegetation to
vegetation, the NTL intensity would decrease 0.958 SD. A total of 8% of this contribution
derived from the direct effect and contributed a 0.077 SD decrease to the center pixel’s NTL.
92% of this contribution comes from the indirect effect and contributes 0.881 SD decrease to
the PIBE. The contributions of different urban surface features can be compared, because
the model is set in standardized mode. This comparison does not include vegetation and
water because they were used as dummy variables. According to Table 5, the contribution
of roads decreased with the reduction in the road grade (road5 was the lowest). The total,
direct and indirect contributions of vegetation and water were significantly negative, but
the inhibitory effect of water on PIBE was weaker than that of vegetation (absolute value
of indirect effect: 0.800 < 0.881).

Table 5. Contributions of different urban surface features to Luojia 1-01 NTL.

Urban Surface Features Total Effect Direct Effect Indirect Effect

Residential −0.137 ** −0.011 ** (7.8%) # −0.127 * (92.2%) #
Commercial 0.098 *** 0.023 *** (23.4%) 0.075 ** (76.6%)

Industrial −0.073 * −0.005 (7.0%) −0.068 * (93.0%)
Transportation facilities 0.299 *** 0.025 *** (8.5%) 0.273 *** (91.5%)

Road1 0.508 *** 0.061 *** (12.0%) 0.447 *** (88.0%)
Road2 0.662 *** 0.059 *** (9.0%) 0.603 *** (91.0%)
Road3 0.567 *** 0.057 *** (10.1%) 0.510 *** (89.9%)
Road4 0.285 *** 0.035 *** (12.4%) 0.250 *** (87.6%)
Road5 0.184 *** 0.024 *** (13.2%) 0.160 *** (86.8%)
Water −0.879 *** −0.078 *** (8.9%) −0.800 *** (91.1%)

Vegetation −0.958 *** −0.077 *** (8.0%) −0.881 *** (92.0%)
(1) * represents p-value < 0.1; ** represents p-value < 0.05; *** represents p-value < 0.01. (2) #: for the direct effect,
the value of direct effect is outside the bracket, and the percentage of direct effect in total effect is inside the
bracket. The same goes for indirect effect. (3) The effects from an observation and the effects to an observation are
numerically equal, because the spatial weight matrix in this study is a symmetric matrix.

The impact of feature contributions on low-order neighbors was higher than on high-
order neighbors. When the total effect is partitioned by the order of W, more information
is available [37]. The higher-order spatial weight matrix refers to the exponential power
of W, such as W2, W3... (in Figure 7). We can partition the total effect in space to illustrate
its characteristics when the effect moving to higher-order neighbors (Table 6). This is
worthwhile when the spatial extent and the attenuation pattern of the PIBE are the purpose.

When the feature contribution is partitioned by the order of W, more information is
available. Table 6 displays the marginal direct effect and marginal indirect effect of road2.
Some additional information can be summarized, which is consistent in different urban
surface features. (i) The direct effect (0.0594) was greater than the marginal indirect effect
of each neighbor, but far less than the indirect effect (0.6030, 5–10 times of the direct effect).
This indicated that the contribution of the center pixel’s urban surface feature to the center
pixel’s NTL intensity was greater than that to PIBE of each neighboring pixel, but far less
than the aggregate PIBE of all neighboring pixels. (ii) The direct effect soon disappeared
with the movement to the higher-order neighbors, while the attenuation speed of the
indirect effect was much slower. The values of the marginal direct effect and marginal
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indirect effect had no practical significance for the higher-order neighbors. (iii) When the
cumulative proportion was set to 90% as the threshold of the effect, the road2′s attenuation
distance of the indirect effect was about W24, and the direct effect was about W8. According
to this standard, Figure 8 illustrates the attenuation distance of the direct effect and indirect
effect of different urban surface features. The attenuation distance of the indirect effect
represents the attenuation distance of PIBE. Different urban surface features reached 90%
cumulative PIBE around 3 km (W24, 3120 m, convert by pixel size 130 m × 130 m).

Remote Sens. 2021, 13, 4838 15 of 22 
 

 

compared, because the model is set in standardized mode. This comparison does not in-

clude vegetation and water because they were used as dummy variables. According to 

Table 5, the contribution of roads decreased with the reduction in the road grade (road5 

was the lowest). The total, direct and indirect contributions of vegetation and water were 

significantly negative, but the inhibitory effect of water on PIBE was weaker than that of 

vegetation (absolute value of indirect effect: 0.800 < 0.881). 

Table 5. Contributions of different urban surface features to Luojia 1-01 NTL. 

Urban Surface Features Total Effect Direct Effect Indirect Effect 

Residential −0.137 ** −0.011 ** (7.8%) # −0.127 * (92.2%) # 

Commercial 0.098 *** 0.023 *** (23.4%) 0.075 ** (76.6%) 

Industrial −0.073 * −0.005 (7.0%) −0.068 * (93.0%) 

Transportation 

facilities 
0.299 *** 0.025 *** (8.5%) 0.273 *** (91.5%) 

Road1 0.508 *** 0.061 *** (12.0%) 0.447 *** (88.0%) 

Road2 0.662 *** 0.059 *** (9.0%) 0.603 *** (91.0%) 

Road3 0.567 *** 0.057 *** (10.1%) 0.510 *** (89.9%) 

Road4 0.285 *** 0.035 *** (12.4%) 0.250 *** (87.6%) 

Road5 0.184 *** 0.024 *** (13.2%) 0.160 *** (86.8%) 

Water −0.879 *** −0.078 *** (8.9%) −0.800 *** (91.1%) 

Vegetation −0.958 *** −0.077 *** (8.0%) −0.881 *** (92.0%) 

(1) * represents p-value < 0.1; ** represents p-value < 0.05; *** represents p-value < 0.01. (2) #: for the 

direct effect, the value of direct effect is outside the bracket, and the percentage of direct effect in 

total effect is inside the bracket. The same goes for indirect effect. (3) The effects from an observa-

tion and the effects to an observation are numerically equal, because the spatial weight matrix in 

this study is a symmetric matrix. 

The impact of feature contributions on low-order neighbors was higher than on high-

order neighbors. When the total effect is partitioned by the order of W , more information 

is available [37]. The higher-order spatial weight matrix refers to the exponential power 

of W , such as 
2 3, ...W W  (in Figure 7). We can partition the total effect in space to illus-

trate its characteristics when the effect moving to higher-order neighbors (Table 6). This 

is worthwhile when the spatial extent and the attenuation pattern of the PIBE are the pur-

pose. 

 

Figure 7. Schematic diagram of higher-order rook spatial weight matrix. 
0

W  represents center 

pixel; 
1

W  represents first-order neighboring pixels; 
2

W  represents the neighbor of 
1

W . 

Figure 7. Schematic diagram of higher-order rook spatial weight matrix. W0 represents center pixel;
W1 represents first-order neighboring pixels; W2 represents the neighbor of W1.

Table 6. Spatial partitioning of road2’s contributions.

Order Marginal
Direct Effect

Cumulative
Percent

Marginal
Indirect Effect

Cumulative
Percent

W0 0.0278 46.8% 0.0355 5.9%
W1 0.0081 60.5% 0.0490 14.0%
W2 0.0057 70.0% 0.0460 21.7%
W3 0.0038 76.4% 0.0427 28.8%
W4 0.0026 80.8% 0.0397 35.3%
W5 0.0021 84.4% 0.0359 41.3%
W6 0.0016 87.0% 0.0328 46.7%
W7 0.0013 89.2% 0.0297 51.7%
W8 0.0010 90.9% 0.0274 56.2%

W9 . . . W23 . . . . . . . . . . . . . . . . . . . . . . . .
W24 . . . . . . . . . . . . 0.0060 90.8%

Cumulative 0.0594 100.00% 0.6030 100.00%
Note: The spatial partitioned contribution is explained from the perspective of “the impact from an observation”.
For any center pixel, a 1 SD increase in the road2 contributes a 0.0594 SD increase to the center pixel’s NTL
intensity. The marginal direct effect of higher-order neighbors represents the feedback effect (such as pixel
i→ j→ i ). Concurrently, a 1 SD increase in the road2 contributes a 0.6030 SD increase to PIBE. Among these, a
0.0490 SD increase derives from the first-order neighbors’ NTL intensity; a 0.0460 SD increase derives from the
second-order neighbors’ NTL intensity; and so on. The marginal indirect effect eventually spreads to the whole
study area. After accumulation, it is equal to the indirect effect [37].
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5. Discussion
5.1. Urban Surface Feature Contributions to Luojia 1-01 NTL Intensity

The contributions of different urban surface features to Luojia1-01 NTL intensity and
PIBE are significantly different. Roads and transportation facilities provide the major con-
tribution to NTL intensity and PIBE. Commercial is slightly lower. The attenuation patterns
of PIBE with different urban surface features are roughly the same. The contribution of the
center pixel’s urban surface feature to the center pixel’s NTL intensity is greater than to the
PIBE of each neighboring pixel, but far less than the aggregate PIBE of all the neighboring
pixels. The attenuation distance of the PIBE with different urban surface features is roughly
the same, about 3 km. The PIBE of the high-order neighboring pixels has no practical
significance.

Roads provide the highest total contribution (0.184~0.508) and direct contribution
(0.024~0.061) to NTL intensity, and their PIBE (indirect contribution = 0.160 ~ 0.603) show
a strong positive spillover effect. They are the major source of urban NTL. The direct
contribution of roads is significantly positive, and is much higher than that of other urban
surface features. The contributions of different-grade roads to NTL intensity and PIBE
are clearly different. The contributions of roads to NTL intensity generally increase with
the increase in road grade (road5 is the lowest). However, the PIBE of road1 is slightly
weaker. When the roads are clustered, the road not only contributes greatly to the NTL in
the current area, but also shows a strong positive spillover effect, that is, clear lights can
also be observed in the surrounding area. Due to the strong interaction between the road
and the outside, most of the interaction carriers are vehicles [5], and the contribution of the
road to PIBE is further increased.

Transportation facilities provide a positive total contribution (0.299) to NTL intensity,
and their PIBE (indirect contribution = 0.273) shows a strong positive spillover effect. Their
indirect contribution is greater than that of commercial (0.273 > 0.075). The transportation
facilities are artificial facilities, such as parking lots, bus stops and subway stations. Their
direct and indirect contribution to NTL intensity is equivalent to that of road4. Due to the
open-air characteristics of artificial facilities such as parking lots and bus stops, the light
propagation is less restrained. This makes it possible to expand the light extent that can be
detected by the Luojia1-01.

Residential and industrial provide a negative total contribution (−0.137, −0.073) to
NTL intensity, which belongs to the shadow in the urban interior. When these two kinds of
urban surface features cluster together, they not only make no obvious contribution to the
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NTL intensity of the center pixel, but also reduce the NTL intensity of all the neighbors due
to the negative indirect effect. As the overpass time is 22:41, it is close to the rest time of the
residential, the intensity of human activities is limited and the outward spillover capacity is
limited. The population aggregation of residential may not produce more human activities,
which makes its PIBE limited. The contribution of industrial to NTL intensity is not obvious
in this study area, which is consistent with previous studies [9,41]. The results of our model
are consistent with the human activities of residential and industrial in the urban interior.

Commercial provides a positive total contribution (0.098) to NTL intensity, and its
PIBE (0.075) is lower than that of roads. Its contribution to NTL intensity is the highest
except for roads and transportation facilities. Commercial includes catering, shopping,
companies, hotels and office buildings. Its direct contribution to NTL intensity is significant,
but its indirect contribution is less so. Since the overpass time is 22:41 and the curfew time
stipulated by the urban management department is 22:00, most of the commercial lights
on the facade of buildings are turned off [42]. Due to the obstruction of light propagation
by roofs and surrounding buildings [43], the light that can be detected by Luojia1-01
is reduced, which further reduces the contribution of commercial to NTL intensity. In
POI data, small commercial buildings are equivalent to large commercial buildings; the
proportion of the former is much higher than that of the latter. However, the contributions
of small commercial buildings to the NTL intensity and the PIBE are weak. Therefore, the
direct contribution of commercial to NTL intensity is roughly the same as that of road5,
and the indirect contribution is higher than that of residential and industrial.

Vegetation and water provide a negative total contribution (−0.958, −0.879) to NTL
intensity, and their PIBE (−0.881, −0.800) show a strong negative spillover effect. They
intensely inhibit NTL intensity and PIBE, which is the major shadow area in the urban
interior. However, the absolute total contribution of water is less than that of vegetation
(0.879 < 0.958), that is, the inhibitory effect of water on NTL intensity is weaker than that
of vegetation. When the neighbor clusters vegetation and water, human activities and
light in the central pixel are inhibited, which makes the PIBE of vegetation and water
significantly negative. The absolute value of the indirect contribution of water to NTL
intensity is smaller than that of vegetation (0.800 < 0.881). Due to the fact that water
reflects considerable light [25], the inhibition effect of water on PIBE is weaker than that of
vegetation. The contribution of vegetation and water to NTL intensity is consistent with
human activities in its corresponding area. Our result indicates that vegetation and water
can greatly inhibit light pollution in the urban interior.

5.2. Neighboring Pixel’s Effect

It is worth noting that the WY in our model is numerically equal to the average of the
neighboring pixels’ NTL intensity, but it should not be regarded as an independent variable
of Y [37]. WY is the model parameter to solve the spillover effect. Its coefficient (ρ) is used
as a global multiplier for each independent variable by partial derivative, which is reflected
in the indirect effect. The difference between the SDM model and the SLX model is WY,
which makes the SLX model ignore the transfer effects between neighboring pixels [40].

The WX is regarded as the independent variable of Y in this study. In the spatial
data, the neighboring pixels’ independent variable (WX) usually had a directly perceptible
impact on the center pixel (including positive and negative). For instance, the characteristics
of the urban surface illuminants (the brightness intensity [21,23] of the illuminants affected
the blooming effect) and the background environment of the urban surface illuminants
(the vegetation had an inhibitory effect on the NTL [24], and the blooming effect was more
significant when it was close to water and snow [25]). Previous studies have supported the
rationality of WX from theoretical and practical perspectives. This article further proves
the statistical significance of WX by hypothesis test.

The definition of “bloom effect” in previous studies may not standardize. It usually
describes a phenomenon that actual lit areas to be enlarged in NTL image. This means
that the mechanism of the “bloom effect” may be different in various platforms, sensors or
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spatial resolutions. The concept of PIBE proposed in this paper focuses on the pixel inter-
action in Luojia1-01 remote sensing NTL images. This paper places emphasizes the NTL
variation of the central pixel coursed by the variation of the neighboring pixels in statistics.
For various data collected in different ways (such as DMSP/OLS, NPP/VIIRS, Luojia1-01,
unmanned aerial vehicle, digital single lens reflex camera), it will be a very meaningful
work to explore the difference, physical mechanism and laws of this phenomenon. We will
try to conduct more in-depth research in future studies.

5.3. Limitation

A limitation of spatial autoregressive models is the preset spatial weight matrix. As
an important parameter with which to characterize the spatial relationship between units
in spatial autoregressive models, there is no accurate method to estimate the spatial weight
in the current research. In this study, several common spatial weight matrices (i.e., Queen,
Rook and inverse distance weight) was included in the model, which screened by the
loglikelihood [44]. It is concluded that the optimal spatial weight matrix is the Rook spatial
weight matrix. In addition, when the coverage distance of different spatial weight matrices
is roughly the same, there is little change in the PIBE and its attenuation pattern. We will
try to explore more weight matrices in future research.

6. Conclusions

Previous studies continuously emphasized the importance of NTL interaction be-
tween different units in theory [4,21,26]. This interaction is clearer at pixel level [21,26]. We
propose a method through which to explain and explore the spatial distribution of NTL
by considering the effect of neighboring pixels. This article tested the statistical signifi-
cance of NTL interactions between different pixels, and the theory of this interaction is
consistent with the hypothesis test. Our method can analyze the differential contributions
of different urban surfaces to NTL intensity, and effectively partition the contributions
of different urban surface features to the NTL intensity and the PIBE (pseudo-R2 = 0.915;
person correlation = 0.774, Moran’s I = 0.014). We can receive more information about the
relationships between pixels through the direct effect and the indirect effect. That is, we
can determine how much of the central pixel’s NTL is “spilled” from its neighboring pixels
and how much is caused by the central pixel’s urban surface. Furthermore, in this paper,
the response between urban surface features and Luojia 1-01 NTL intensity was explored
and promoted to the pixel level. Compared with previous studies, this enables us to reveal
the human activities that can explain the NTL variations on a finer scale. The method
proposed in this study is expected to provide a reference for explaining the composition
and blooming effect of NTL, as well as the application of NTL data in the urban interior.

The in-depth analysis of urban interior space by NTL remote sensing data is a gordian
knot at present and will definitely be a significant topic in the future. For future applications,
combining NTL data with multisource data (such as POI, OSM, taxi track data, mobile
signal data and other open big data) will be a major direction for exploring urban interior
structure. Measuring the contributions of different urban land use to NTL intensity and
the blooming effect is of great value to the extraction of build-up area and the inversion of
grid population data inversion using NTL data.
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Appendix A

Table A1. Types of original and aggregated POIs.

Aggregated Type Initial Type of Amap

Residential Commercial House * (except Industrial Park, Building **)

Government and
Social organization

Medical Service
Governmental Organization and Social Group
Science/Culture and Education Service
(except Media Organization, Training Institution, Driving School)
Public Facility
Daily Life Service (including Job Center, Funeral Facilities)
Sports and Recreation (including Sports Stadium)

Commercial

Food and Beverages
Shopping
Daily Life Service (except Job Center, Funeral Facilities)
Auto Service
Sports and Recreation (except Sports Stadium)
Accommodation Service
Finance and Insurance Service
Enterprises
(except Factory, Company-Chemical and Metallurgy, Company-Machinery and Electronics)
Medical Service (including Clinic, Veterinary Hospital)
Science/Culture and Education Service
(including Media Organization, Training Institution, Driving School)
Commercial House (including Building)

Industrial
Commercial House (including Industrial Park)
Enterprises
(including Factory, Company – Chemical and Metallurgy, Company – Machinery and Electronics)

Transportation
facilities Transportation Service

Public garden Tourist Attraction

* outside the bracket is the big category of Amap; ** inside the bracket is the mid category of Amap. POIs that do not belong to the above
types are deleted.

Table A2. Types of original and aggregated roads.

Aggregated Type Initial Type of OSM

Road1 motorway, trunk, motor way_link, trunk_link
Road2 primary way, primary way_link
Road3 secondary way, secondary way_link
Road4 tertiary way, tertiary way_link
Road5 residential, and others (such as cycleway, footway, living_street, path, pedestrian)
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