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Abstract: Hydrological connectivity is important for maintaining the stability and function of wetland
ecosystems. Small-scale hydrological connectivity restricts large-scale hydrological cycle processes.
However, long-term evolutionary studies and quantitative evaluation of the hydrological connectivity
of wetlands in the Poyang Lake area have not been sufficiently conducted. In this study, we collected
21 Landsat remote sensing images and extracted land use data from 1989 to 2020, introducing
a morphological spatial pattern analysis model to assess the wetland hydrological connectivity.
A comprehensive method for evaluating the hydrological connectivity of wetlands was established
and applied to the Poyang Lake area. The results showed that, over the course of 31 years, the
wetland landscape in the Poyang Lake area changed dramatically, and the wetland area has generally
shown a decreasing and then increasing trend, among which the core wetland plays a dominant role
in the hydrological connectivity of the Poyang Lake area. In addition, the hydrological connectivity
decreases as the core wetland area decreases. From 1989 to 2005, the landscape in the Poyang Lake
area focused mainly on the transition from wetland to non-wetland. From 2005 to 2020, the conversion
of wetland landscape types shows a clear reversal compared to the previous period, showing a
predominant shift from non-wetland to wetland landscapes. The eco-hydrological connectivity of
the wetlands in the Poyang Lake area from 1989 to 2020 first decreased, and then increased after 2005.
In the early stage of the study (1989−2005), we found that the connectivity of 0.3444 in 2005 was the
lowest value in the study period. A resolution of 30 m and an edge effect width of 60 m were optimal
for studying the hydrological connectivity of wetlands in the Poyang Lake area. The main drivers
of the changes in hydrological connectivity were precipitation and the construction of large-scale
water conservation projects, as well as changes in land use. This study provides a good basis for
assessing hydrological connectivity in a meaningful way, and is expected to provide new insights for
maintaining and restoring biodiversity and related ecosystem services in the Poyang Lake area.

Keywords: wetland; morphological spatial pattern analysis (MSPA); hydrological connectivity
composite index; spatial and temporal evolution; Poyang Lake area

1. Introduction

Wetlands, along with forests and oceans, are among the three dominant ecosystems
in the world. They are an important part of the natural ecological space, and play an
important role in water conservation, water purification, flood and drought control, climate
regulation, and biodiversity maintenance. They also support the sustainable development
of human economies, societies, and living environments [1,2]. Hydrological connectivity
refers to the process of transferring various materials, energies, and organisms within or
between elements of a hydrological cycle, using water as a medium [3,4], including spatial
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three-dimensional changes as well as temporal dynamic changes [5]. Wetland hydrological
processes play a direct and important role in the processes of formation, development,
succession, and extinction of wetlands [6–8]. In wetland ecosystems, the transfer of materi-
als, energy, and information is mostly related to wetland hydrological processes, and is
accompanied by the water cycle, which makes hydrological connectivity very important
for the stability and maintenance of wetlands [9]. The blockage of wetland connectivity due
to urban development and agricultural exploitation has attracted widespread international
attention, and the Ramsar Secretariat made trans-basin hydrological assessments a research
priority in 2015 [10]. Therefore, clarifying spatial patterns and comprehensive indicator
models of wetland hydrological connectivity, and considering wetland restoration from
a perspective of hydrological connectivity, are major scientific issues to be addressed in
wetland science.

Wetlands in the Poyang Lake area in the middle and lower reaches of the Yangtze River
are typical global river–lake silted freshwater wetlands, and their hydrological connectivity
is related to the ecological safety of the Poyang Lake basin, and even the Yangtze River
basin. This is important to consider in order to improve the regional ecological environment,
and to realize a harmonious coexistence between people and nature. Multisource long
time series of remote sensing data are widely used to monitor changes in wetlands [11–13],
including changes in wetland landscape patterns [14], ecosystem health [15], and connectiv-
ity [16]. Li et al. [17] attempted to combine hydrodynamic modeling and statistical methods
to study hydrological connectivity and its relationship to water quality in nine seasonal
lakes within the floodplain of Poyang Lake. Using geostatistical methods in combination
with remote sensing, Liu et al. [18] found that the main lake stage plays a dominant role in
determining the hydrological connectivity during flooding and ebb in the Poyang Lake
region. There is a good theoretical understanding of hydrological connectivity, but most
current studies use one approach—whether by prioritizing the conservation and restoration
of multiple wetlands, or by assessing the hydrological connectivity of individual wetlands,
this is based on a quantitative assessment [19–22]. Methods for evaluating the hydrological
connectivity of wetlands mainly include percolation theory [23], in situ monitoring [24],
graph theory [25], remote sensing [26,27], isotope tracing [28], connectivity index [29,30],
and hydrological modeling [31,32]. The above methods, such as connectivity indices, have
been widely used in research, and have provided good results, but they are also highly gen-
eralized, and can give only a single value, without information on spatial distribution [30].
Research on the evolution of the spatial distribution of wetlands has yet to be strengthened.

In recent years, morphological spatial pattern analysis (MSPA) has been used suc-
cessfully to analyze various landscape morphological changes [33–35]. MSPA applies a
series of image processing techniques to raster layers, thus dividing target features into
different landscape categories—such as the core and islet areass—in order to study the mor-
phological mechanisms of different features across non-crossing morphological types [36].
However, MSPA mainly focuses on the construction and optimization of forests, green
infrastructure, and ecological network patterns [37–39], while a limited amount of research
has been conducted on wetlands. MSPA has also been limited to the study of the effects
of parameter changes on landscape patterns [40,41]. In terms of quantitative evaluations
of hydrological connectivity, most methods are derived from water system connectivity
assessments, and there is no comprehensive method for assessing the hydrological connec-
tivity of wetland systems. Ghaderpour et al. [42] applied the least-squares wavelet software
(LSWAVE) to assess trends and seasonal components of the six-decade-long climate and
discharge time series for the Athabasca River basin (ARB) in Alberta, Canada, and to
study the effects of climate change on streamflow. Soil and water assessment tool (SWAT)
models combined with the application of geographic information systems (GISs) provide
good alternatives for water resources and environmental assessments [43]. However, the
above methods use a single-indicator comparison method to assess one or more aspects of
water quality evolution, biology, and soil hydrological connectivity [44–47]. In this study,
we established a comprehensive method for evaluating the hydrological connectivity of
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wetlands from multiple perspectives, taking into account the degree of landscape and
functional connectivity as well as the driving elements of the system. Our findings are ex-
tremely important, with theoretical and practical significance for the restoration of wetland
eco-hydrological connectivity.

We studied the hydrological connectivity in the Poyang Lake area over a long time
series, overcoming the shortcomings of traditional hydrological connectivity limited to a
single value, and analyzed the hydrological connectivity over the past 31 years. Meanwhile,
we propose a systematic and comprehensive evaluation method to assess the degree of
hydrological connectivity of wetlands in the Poyang Lake area on different spatial and
temporal scales, and to take into account the degree of dynamic feedback of hydrological
connectivity to different driving factors. The effects of different scale settings on MSPA
results and driving factors that cause the evolution of the hydrological connectivity of
wetlands in the Poyang Lake area were investigated in terms of particle size and edge width
selection. The methods of this study can be extended to the evaluation of hydrological
connectivity in other areas, and can provide theoretical references for the conservation and
restoration of wetlands in the Poyang Lake area.

2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area

The Poyang Lake area lies on the south bank of the junction of the middle and lower
reaches of the Yangtze River, in the north of Jiangxi Province; it is bounded between
28◦24′N–29◦46′N and 115◦49′E–116◦46′E, and its administrative area includes 13 counties
and cities, including Nanchang City, Jiujiang City and Poyang County, with a total land
area of 203,378 km2 (Figure 1). The terrain in the region is gentle—mostly hilly and
mountainous. The Poyang Lake area extends from the center to the surroundings, which
are mostly lakeside plains and low hill remnants, thus forming basin-like terrain with
high edges and a lower middle part. The Poyang Lake area has a subtropical humid
monsoon climate, with cold winters and springs, rainy summers, and dry autumns. The
average annual temperature in the area is between 16.6 and 17.5 ◦C, the average annual
sunshine hours are 1750–2105 h, and the average annual precipitation is between 1368 and
1796 mm [48].

Poyang Lake was one of the first wetlands in China to join the Ramsar Convention on
Wetlands, and is an important reserve of ecological function in China; it is also a globally
important ecological zone, as designated by the World Wildlife Foundation (WWF) [49,50].
As the largest freshwater lake in China, the water level of Poyang Lake varies dramatically,
often forming a landscape of “A piece of abundant water and a line of dry water” [51]. In
recent decades, the wetland ecosystem has been continuously degraded due to climate
change and human activities. Strong positive feedbacks between wetland degradation,
reduced hydrological connectivity, and water scarcity, as well as spatial and temporal
inequalities, have attracted increasing attention [52,53].

2.1.2. Data

To ensure the most similar ground state, a total of 21 Landsat TM/OLI remote sensing
images (Table 1) were selected as the data sources for this study over the seven periods
from 1989, 1995, 2000, 2005, 2010, 2015, and May–September 2020 (abundant water period).
The remote sensing image data were downloaded from the USGS website [54]. The spatial
resolution is 30 m, the cloudiness of all of the selected images is less than 5%, the imaging
quality is good, and the overall impact on the image interpretation effect is small. We
also used 30 m DEM elevation data taken from the geospatial data cloud [55] and the
GF-1 satellite data to help in the classification interpretation. For the construction of
the hydrological connectivity index, we used precipitation data downloaded from the
China Meteorological Data Network [56], and population data were taken from the Jiangxi
Provincial Statistical Yearbook.
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Figure 1. Location of the Poyang Lake area.

Table 1. Remote sensing images selected for this study.

Image Acquired Date
Track Number

121/039 121/040 122/040

1989 (TM) 15071989 15071989 24091989
1995 (TM) 02091995 02091995 25091995
2000 (TM) 10092000 15092000 18062000
2005 (TM) 13092005 29092005 20092005
2010 (TM) 19092010 18082010 19092010
2015 (OLI) 09092015 09092015 02102015
2020 (OLI) 06092020 06092020 28082020

2.2. Methodology

Figure 2 illustrates the technical framework for this study. Landsat images were first
pre-processed, then decoded and classified using an object-oriented classification method,
and accuracy verification was performed. The decoded images were reclassified into
binary images with wetlands and other land classes and imported into the Guidos Toolbox
software for MSPA analysis, in order to obtain landscape classification files and data on
the spatial morphological evolution of the hydrological connectivity. At the same time, a
hydrological connectivity index was created, and the collected and processed index data
were normalized. Index weights were determined using Yaahp software, and the fuzzy
integrated hierarchy method was used. The hydrological connectivity of Poyang Lake was
then calculated from year to year. Finally, the results of spatial and temporal evolution
were obtained.
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2.2.1. Remote Sensing Image Classification

The acquired images were pre-processed with ENVI 5.3 software for geometric correc-
tion, radiometric calibration, atmospheric correction, mosaicking, and cropping. Using an
object-oriented approach in the eCognition Developer 9.0 software platform, constraint
rules were constructed for different land use types using a multiscale segmentation algo-
rithm, supplemented by a modified normalized difference water index (MNDWI), normal-
ized difference vegetation index (NDVI), and normalized difference built-up index (NDBI).
A CART decision tree approach was used to classify different landscapes. For preliminary
classification results, ArcGIS 10.7 software was used for manual visual interpretation and
correction in order to eliminate misclassified objects. Finally, the land use types in the study
area were classified into six types: arable land, forest land, grassland, wetland, building
land, and unused land.

Of the six extracted land use types, 158 sample points were randomly generated
using ENVI5.3 software to ensure that at least 20 points were selected for each land use
type, which were combined with 2020 GF-1 satellite images and Google Earth high-spatial-
resolution images for verification. The interpretation results were analyzed by establishing
a classification confusion matrix, selecting a kappa coefficient analysis method, and using
a ground-truth sample inspection area in combination with high-resolution images. The
results showed that the wetland classification accuracy in all seven phases was above
85%, and the overall kappa coefficient was 0.86, thus achieving the required accuracy for
further analysis.

2.2.2. Landscape Classification Based on the Morphological Spatial Pattern Analysis Model

MSPA is a method of image analysis derived from mathematical morphology, based
mainly on mathematical binary images. A series of operations are performed on the images
to simplify the image data and maintain the basic shape characteristics and structural
features for categorization and removal of irrelevant structures [57]. Unlike traditional
landscape pattern index methods and landscape connectivity models, MSPA starts from
the level of image elements, and not only quickly identifies landscape types that are
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important for landscape connectivity in the study area—such as cores, bridges, loops, and
branches—but also assigns a corresponding ecological meaning to each type according
to its characteristics and contribution to the flow of information and energy within the
study area. This illustrates the changes in functional connectivity in the study area from a
morphological perspective (Figure 3). Definitions and characteristics of different MSPA
landscape classifications (Table 2) were used to determine their indicative significance in
terms of wetland connectivity.

The wetlands were extracted from the classified land use map of the Poyang Lake
area in each period, using ArcGIS10.7 as the foreground of the MSPA analysis. Other land
use types were used as the background. The size of the image element was 30 m, and an
8-neighborhood algorithm was used. Considering the buffer range between the flat-water
period and the flood period of wetland waters, the edge width was set to a size of 2 pixels,
i.e., 60 m.
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Table 2. Types of MSPA landscapes and their meaning.

Type Features and Description

Core The aggregation of a large number of wetland-like elements with a certain distance from the boundary

Islet A collection of wetland images that are disconnected and aggregated in such small numbers that they cannot be
used as cores

Perforation Located inside the core wetland and outside as a “fringe wetland”

Bridge Non-core wetland image sets that connect at least two different core classes and exhibit narrow corridor
characteristics

Loop A narrow collection of wetland-like elements that connects a core class and has the characteristics of a corridor

Branch A collection of wetlands that is not a core class area and is connected at only one end to an edge class, bridge
class, loop class, or perforation class

Edge Refers to the buffer zone between core classes and non-wetlands

2.2.3. Hydrological Connectivity Composite Index

The proposal and establishment of a hydrological connectivity index system is central
to connectivity analysis and evaluation. Current methods for evaluating the hydrological
connectivity of wetlands are fragmented, and the evaluation indicators do not sufficiently
reflect the overall connectivity of wetland ecosystem structure and function. Therefore, a
systematic and comprehensive evaluation method is needed in order to assess the degree
of wetland hydrological connectivity at different scales and dimensions, and to consider
the degree of dynamic feedback of hydrological connectivity to different driving factors. In
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this study, based on connotation, characteristics, and connectivity, combined with index
selection principles, indicators reflecting hydrological connectivity were screened from
the perspective of drivers, systems, states, and responses according to the DSR framework
model [58]. The final screening indicators were divided into three levels—system level,
criterion level, and indicator level—in order to establish a functional evaluation index
system of the hydrological connectivity of the basin. The system layer includes the driving
force system, the state system, and the response system. The driving force system consists of
natural and human factors. The state system is a characteristic of hydrological connectivity
in a certain period of time, mainly described and calculated from landscape connectivity.
Functional connectivity is achieved by combining the effects of ecological connectivity and
hydrodynamic connectivity. Specific indicators based on each criterion layer and screening
indicator layer are shown in Table 3.

Table 3. Hydrological connectivity evaluation system for wetlands in the Poyang Lake area.

System Layer Guideline Layer Indicator Layer Description Weights

Comprehensive
index of

hydrological
connectivity in

the Poyang
Lake area

Drive system

Average annual precipitation (C1) Direct water source for wetland systems 0.122

Vegetation cover (C2) Affects evaporation of water from
wetlands 0.0775

Artificial influence rate (C3) Characterizes land use changes 0.0926

Population density (C4) Reflects the degree of interference from
human activities 0.0413

Status system

Landscape division index (C5) Characterizes the degree of plaque
separation 0.0495

Fragmentation index (C6) Characterizes the degree of plaque
fragmentation 0.1419

Agglomeration index (C7) Characterizes the degree of plaque
aggregation 0.0771

Cohesion index (C8) Characterizes natural state connectivity 0.0648

Response system
Wetland habitat area ratio (C9) Characterizes ecological connectivity 0.1667

Water area rate (C10) Characterizes lateral hydraulic
connectivity 0.1667

The average annual precipitation (C1) is the average amount of precipitation in the
study area in a selected year. Using precipitation data downloaded from the China Meteo-
rological Data Network, the Kriging method [59] was selected for spatial interpolation of
raster data for average annual precipitation in the study area.

Vegetation cover (C2), is the vertical projection of vegetation (including leaves, stems,
and branches) on the ground as a percentage of the total area. Vegetation cover is com-
monly used in research on vegetation changes, ecology, soil and water conservation, and
climate [60]; it is calculated as follows:

VFC = (NDVI − NDVIsoil)/(NDVIveg − NDVIsoil) (1)

where NDVIsoil is the NDVI value of an area completely covered by bare soil or no
vegetation, and NDVIveg is the NDVI value of an image element completely covered by
vegetation, i.e., the NDVI value of a pure vegetation image element. The two values are
calculated with formulae as follows:

NDVIsoil = (VFCmax × NDVImin − VFCmin × NDVImax)/(VFCmax −
VFCmin)

(2)

NDVIveg = ((1 − VFCmin) × NDVImax − (1 − VFCmax) ×
NDVImin)/(VFCmax − VFCmin)

(3)
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The artificial influence rate (C3)—the proportion of agricultural land and built-up
land in the study area—is used to measure the degree of wetland disturbance by land use
change; it is calculated as follows:

Hr =
Fi + Ci

T
× 100% (4)

where Hr is the artificial influence rate, Fi is the agricultural area in year i, Ci is the area of
building land in year i, and T is the total area of the study area.

Population density (C4), which refers to the number of people per unit of land area,
reflects the degree of disturbance by human activities. Population data for each district and
county in previous years were obtained from the Statistical Yearbook of Jiangxi Province.
ArcGIS and GS+ Version 9 software were used to correlate census data of the study area
with the spatial data of the administrative districts based on the administrative district
codes. Population density data were calculated via spatial interpolation.

DIVISION (C5) characterizes the dispersion of all patches in a given type of landscape,
and also reflects the mixing of different types of patches. As the separation increases,
the spatial structure of the landscape becomes discrete and complex, and connectivity
decreases [61]:

DIVISION =

[
1−

m
Σ

i=1

n
Σ

j=1

( aij

A

)2
]

(5)

where aij is the area of patch ij and A is the total area of the landscape. The value of
DIVISION is a non-negative number less than one: it is zero when the whole landscape
consists of only one patch, and it is one when this type of landscape contains only one
patch with area equivalent to a raster. DIVISION approaches 1 when the area weight and
patch size decrease in this patch type.

The fragmentation index (C6) indicates the number of patches calculated based on
the weighted average area of a certain type of patch in the entire landscape, and is used to
observe landscape fragmentation; the higher its value, the greater the landscape fragmen-
tation [62]:

FN =
(

Np − 1
)
/Nc (6)

where FN is the landscape fragmentation index of the whole study area, Nc is the total area
of the landscape, and Np is the total number of different types of patches in the landscape.

The agglomeration index (C7) shows the ratio of the number of similar neighbors to
the maximum number of each neighboring landscape type, when the types are maximally
aggregated into patches. AI is usually multiplied by 100 to express a percentage; it is
suitable for exploring the degree of non-randomness or aggregation of different types of
patches [63]:

AI =
[

gi
maxgi

]
× 100 (7)

where gi is the number of nodes between the image elements of the patch type I, and maxgi
is the maximum number of nodes between the image elements of the patch type i. AI is the
aggregation index, which is equal to the value of g divided by the maximum value of g
when that type is maximally aggregated together.

COHESION (C8), the cohesion index, is used to measure the natural state connectivity
of a patch type. As patch distribution becomes more aggregated and natural connectivity in-
creases, the patch cohesion index increases; the value of this index tends towards zero when
the proportion of the patch type in the landscape decreases, reducing connectivity [64]:

COHESION =

[
1−

Σm
i=1Σn

j=1 pij

Σm
i=1Σn

j=1 pij
√aij

][
1− 1√

A

]−1
× 100 (8)
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where m is the sum of landscape types, n is the number of landscape patches of type i, pij
is the perimeter of patch ij, and A is the size of the whole landscape.

Habitat quality (C9) represents the living space of individual organisms, species, and
communities. Habitat quality reflects the ability of an ecosystem to provide appropriate
conditions for species survival. The InVEST habitat quality model provides a choice of
threat sources for assessing the habitat quality of wetlands by analyzing the threat level,
threat distance, and relative impact to other LULC types for each grid [65]:

Qxj = Hj

[
1−

Dz
xj

Dz
xj + Kz

]
(9)

where Qxj is the habitat quality in the grid cell x with LULC j, Hj is the habitat suitability
on gridcell x for LULC j, Dxj is the extent of habitat degradation in the grid cell x with
LULC j, and K is the half-saturation constant.

The water area ratio (C10) is the ratio of water body area to the area of a sub-basin; it
is used to characterize the lateral hydrological connectivity, and is calculated as follows:

Wr =
Ai
T
× 100% (10)

where Wr refers to the water area rate, Ai refers to the water body area in year I, and T
refers to the sub-basin area.

After using the above formulae and methods to calculate the index system, it was
necessary to establish corresponding evaluation criteria, i.e., to assign weights to each
index, because each element has different mechanisms and degrees of influence on the
wetland hydrological connectivity.

In a comprehensive multi-indicator evaluation method, the reliability of the assess-
ment is directly affected by the appropriateness of the indicator weights, and a reasonable
assignment of weights is the key to quantitative evaluation. The combination of subjective
and objective assignment methods, such as fuzzy comprehensive evaluation, can reflect
both the subjective will of the decision makers and the objective reality of the decision
problem [44,66–68]. Therefore, in this study, the fuzzy hierarchical analysis method was
used to assign the index system weights.

After calculating the weights using fuzzy hierarchical analysis, the different judgments
of many experts were further summarized by group judgment theory, and the final weights
of each index were obtained by calculating the confidence degree of each expert. The
weights of each index at each level are shown in Table 3.

The original indicators selected in the evaluation process represent different quantita-
tive attributes, sources, and units of measurement, and are not mutually comparable. In
the process of overlaying the spatial data on each topic, it is necessary to first standard-
ize the data for each topic in order to eliminate the impact of each indicator due to the
measurement scale and unit, instead of directly using the original data on each topic for
simple mathematical operations [69–71]. In this study, the “extreme difference method”
was chosen to standardize the data as follows:

Positivized indicator treatment formula:

Zi =
Xi − Xmin

Xmax − Xmin
(11)

Negativized indicator treatment formula:

Zi =
Xmax − Xi

Xmax − Xmin
(12)

where Zi is the value of the index after dimensionless processing, Xi is the actual value
of the index before standardization, Xmax is the maximum index value in the evaluation
region, and Xmin is the minimum value [72].



Remote Sens. 2021, 13, 4812 10 of 22

After assigning and standardizing each index, the hydrological connectivity index for
the Poyang Lake area was obtained as follows:

HCCI = C1× 0.122 + C2× 0.0775 + C3× 0.0926 + C4× 0.0413
+ C5× 0.0495 + C6× 0.1419 + C7× 0.0771
+ C8× 0.0648 + C9× 0.1667 + C10× 0.1667

(13)

3. Results
3.1. Landscape Type Changes Based on MSPA from 1989 to 2020
3.1.1. Landscape Type Evolution Characteristics

After MSPA analysis, we obtained a functional type pattern of wetland hydrological
connectivity in the Poyang Lake area (Figure 4) along with a statistical table of changes in
area and numbers of patches (Table 4). In general, the wetland landscape changes in the
Poyang Lake area were more dramatic, i.e., they first decreased, and then increased, and
the changes in different landscape types were clear.

Figure 4. Distribution maps of MSPA types in the Poyang Lake area from 1989 to 2020.

(1) Core wetlands, edge wetlands, and foregrounds had similar area change trends from
1989 to 2020, all decreasing in the first period and increasing after reaching the lowest
point in 2005; the ratio of core areas to foreground areas decreased and then increased
from 1989 to 2020. From 1989 to 2005, the wetland landscape was fragmented, and the
landscape connectivity decreased, while from 2005 to 2020, the core area increased,
and the landscape connectivity was higher. Material and energy exchanges between
patches were more frequent, which favored maintaining the stability and biodiversity
of wetland ecosystems. Both spatially and in terms of area, the core wetlands exhibited
gradual fragmentation followed by recovery from 1989 to 2020 (Figure 5C);

(2) Branches, bridges, and loops all play the role of corridors in the wetland connec-
tivity functions. The contribution of these three types of wetlands to hydrological
connectivity was greatest for bridging wetlands, followed by branching wetlands,
and least for loop wetlands. The peaks and troughs of bridge and loop wetland areas
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were practically the same in the period from 1989 to 2020, and both had W-shaped
trends, meaning that there were more small rivers in the Poyang Lake area, and they
easily disappeared and reappeared due to natural factors. The peak value of branch
wetlands appeared in 2015, while the trough value appeared in 2010, with constant
fluctuation (Figure 5A);

(3) From 1989 to 2020, the ratio of the islet wetland areas to the foreground wetland areas
decreased, then increased, then decreased again. The presence of too many islets
increased the number of patches and led to a decrease in the overall connectivity. The
area of perforation wetlands was more stable, and was the smallest of the foreground
wetlands; the largest was less than 50 km2, and had little impact on the wetland
hydrological connectivity (Figure 5B).

Table 4. Area and number of patches in each MSPA class in the wetlands of the Poyang Lake area from 1989 to 2020.

Type Core Islet Perforation Edge Loop Bridge Branch Foreground

1989
Area/km2 3840.4485 111.3966 38.5245 415.7019 42.2577 99.8631 128.1933 4676.386
Number

of patches 4,267,165 123,774 42,805 461,891 46,953 110,959 142,437 5,195,984

1995
Area/km2 3271.0707 76.6548 41.886 391.0059 16.1847 57.9402 106.1811 3960.923
Number

of patches 3,634,523 85,172 46,540 434,451 17,983 64,378 117,979 4,401,026

2000
Area/km2 3323.4903 87.7392 35.2872 394.6068 11.583 67.5144 109.2087 4029.43
Number

of patches 3,692,767 97,488 39,208 438,452 12,870 75,016 121,343 4,477,144

2005
Area/km2 2859.9669 82.2573 28.7424 327.8358 44.1873 120.9573 118.4742 3582.421
Number

of patches 3,177,741 91,397 31,936 492,379 49,097 134,397 131,638 3,980,468

2010
Area/km2 3528.0117 84.1986 39.2841 443.1411 55.0026 92.8287 94.0311 4336.498
Number

of patches 3,920,013 93,554 43,649 364,262 61,114 103,143 104,479 4,818,331

2015
Area/km2 3297.7746 136.9098 24.7374 424.9269 18.7002 88.3071 156.0105 4147.367
Number

of patches 3,664,194 152,122 27,486 472,141 20,778 98,119 173,345 4,608,185

2020
Area/km2 3823.5933 83.1024 41.2146 404.0793 49.3947 89.3385 105.9831 4596.706
Number

of patches 4,248,437 92,336 45,794 448,977 54,883 99,265 117,759 5,107,451
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3.1.2. Landscape Type Conversion Characteristics

The conversion of wetland landscape types in the Poyang Lake area from 1989 to
2020 is shown in Table 5. Over 31 years, 320.60 km2 of core wetlands was converted to
other types, and most were converted to non-wetlands (148.59 km2), followed by edge
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wetlands (114.57 km2). Approximately 299.87 km2 was converted to core wetlands, with
most converted from non-wetlands (163.55 km2), followed by edge wetlands (87.07 km2).
The net change in the core wetland area was −20.73 km2.

Table 5. Landscape type conversion matrix in the Poyang Lake area from 1989 to 2020 (unit: km2).

2020

Core Edge Perforation Branch Islet Loop Bridge Non-
Wetlands

1989

Core 3519.2385 114.5736 13.2012 7.0272 2.8665 14.8239 19.5174 148.59
Edge 87.0669 128.6316 3.6612 12.6351 4.6035 10.5525 13.9122 154.5966

Perforation 17.6175 2.5137 10.8675 0.3249 0.045 0.9846 0.4689 5.7024
Branch 6.3666 9.981 0.5292 15.9417 5.5638 2.0016 4.6791 83.0799

Islet 2.4066 2.0727 0.0801 2.4921 14.5152 0.3879 1.1322 88.2603
Loop 10.7991 5.7339 1.134 1.4436 0.8667 2.1636 1.2213 18.8622

Bridge 12.0609 10.3239 0.5436 5.3721 3.4722 1.4508 12.8961 53.7021
Non-wetlands 163.5525 129.8268 11.1771 60.6276 51.0921 16.9731 35.4402 15,172.5681

During the study period, the landscape types in the Poyang Lake area also changed
among edge wetlands and non-wetlands. Approximately 287.01 km2 of marginal wetland
area was converted to other types, with most converted to non-wetlands (154.60 km2),
followed by core wetlands (87.07 km2). Approximately 114.57 km2 and 129.83 km2 of core
wetland and non-wetland areas were converted to marginal wetlands, respectively. The
net change in marginal wetland area was −42.61 km2. For non-wetlands, which were the
most changed landscape type in the study area, a total of 468.69 km2 was converted to
other types during the 31-year period. The largest type of non-wetland conversion was to
core wetlands and edge wetlands, with 163.55 km2 and 129.83 km2, respectively. However,
the non-wetland area increased by 84.10 km2 during the study period, indicating that
the overall area of wetlands in the Poyang Lake area decreased. Other types of wetland
landscapes—such as islets, perforations, bridges, loops, and branches—accounted for a
smaller proportion, and the overall change during the study period was not significant.

In general, the seven types of wetland landscapes mostly coverted to non-wetlands
during the study period, mainly through the core areas, edge areas, and non-wetland areas,
while the other types converted to similar areas to one another.

The characteristics of wetland landscape conversions varied in different time periods
(Figure 6). Combined with changes in landscape type characteristics from 1989 to 2005
(Figure 6a), the wetland landscape was mainly converted out, with the largest transitions
from the core wetlands to the non-wetlands, followed by conversions within the wetland
landscape. From 1989 to 2005, the core wetlands were partially converted into three corridor
wetlands; meanwhile, as the core wetland area declined, the three corridor wetlands types
decreased and then increased. However, the increase in corridor wetlands did not lead to
an increase in connectivity, due to the dominant role of the core wetlands. In addition to
the core wetlands, a larger proportion of other types of wetlands—such as edge, branch,
and islet wetlands—were converted to non-wetlands. These conversions illustrate that
the overall wetland area decreased along with the overall connectivity of the wetland
landscape from 1989 to 2005. From 2005 to 2020, the opposite trend was observed in
relation to the previous period, as exemplified by a predominant conversion of wetland
landscapes. The largest conversion area during this period was from the non-wetlands
to the core wetlands, followed by the non-wetlands to other types of wetlands. While
the area of the core wetlands increased, the area of the three types of corridor wetlands
also increased, which played an auxiliary role in improving hydrological connectivity
(Figure 6b). Within the wetland landscape, the conversion of other small wetland patches
into core wetlands showed reduced fragmentation and increased hydrological connectivity.
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Figure 6. MSPA-based landscape type conversion in the Poyang Lake area: (a) conversions from 1989 to 2005; (b) conversions
from 2005 to 2020.

3.2. Evolution of Hydrological Connectivity in the Poyang Lake Area

The eco-hydrological connectivity of wetlands in the Poyang Lake area first decreased
and then increased during the study period, and the overall trend was W-shaped (Figure 5).
From 1989 to 2005, the hydrological connectivity of the wetlands fluctuated and decreased,
and from 2005 to 2020 it increased significantly—similar to the changes in the core wetlands
as analyzed by MSPA. The lowest value occurred in 2005. Changes in the core wetlands
played a dominant role in the evolution of hydrological connectivity. The hydrological
connectivity composite index (HCCI) revealed the wetland hydrological connectivity in
the Poyang Lake area in a more intuitive and quantitative way.

From a time perspective, in 1989, the C10 indicator contributed the most to the
hydrological connectivity index, meaning that at that time the water area rate of the Poyang
Lake area was higher, the coverage of water bodies was larger, the wetland landscape was
more complete, and hydrological connectivity was higher. By 2005, all indices except C9
were low, and the land use structure in the Poyang Lake area was influx-adjusted, leading
to a reduction in wetland area. The core wetlands were converted to non-wetlands, the
edge wetlands were eroded by the non-wetlands, and various corridor wetlands were
refined. This increased the fragmentation of the wetland landscape, producing scattered
wetland patches and reduced hydrological connectivity in the whole area (Figure 7d).
In 2020, precipitation increased compared to the previous period; the wetland area had
expanded, water surfaces had covered a wide area, and the wetland habitat quality had
improved. The increase in the core wetlands reduced the wetland fragmentation in this
period; thus, the landscape integrity was high, and the wetland hydrological connectivity
reached its highest level in the study period. However, disturbance by human activities—
such as changes in wetlands—also strengthened during this period, and vegetation cover
decreased with economic development, increasing population density, and expanding
built-up urban areas (Figure 7g). Overall, the eco-hydrological connectivity of wetlands
first deteriorated, and then improved, over the course of the study period.

C5, C6, and HCCI had significant negative correlations. When the degree of landscape
separation (C5) and landscape fragmentation (C6) increased, the spatial structure of the
landscape became discrete and complex, and the hydrological connectivity decreased. C10
and HCCI had a significant positive correlation, i.e., the wetland area rate (C10) contributed
positively to the hydrological connectivity, as a higher rate meant higher wetland landscape
integrity and higher overall hydrological connectivity (Figure 8).
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Figure 7. Hydrological connectivity composite index and radar maps for each index: (a–g) the scores of 10 indicators for
7 periods from 1989 to 2020.

3.3. Spatial and Temporal Evolution of Hydrological Connectivity: “Receding–Restoring”

According to the hydrological connectivity index and the results of the MSPA model,
the spatial and temporal evolution of hydrological connectivity in the Poyang Lake area
from 1989 to 2020 is divided into two stages: receding and restoring.

Hydrological connectivity receding phase (1989–2005): (1) the area of each MSPA type
gradually decreased, first with receding fine patches, and then larger core patches receded
after splitting into small core patches or branches, islands, and other types; (2) the main
types of receding and splitting wetlands were the core areas, and morphological transfor-
mation to fragmentation and elongation occurred; (3) receding of fine core patches was
accompanied by a decrease in branches, bridges, atolls, islets and other types of wetlands,
which increased again after the core wetland patches were split; (4) during the process of re-
ducing the core wetland area, the proportion of edge wetlands in the foreground continued
to increase, reflecting the irregularity of core patches; (5) the number of perforations was
proportional to the area and the core wetland area; and (6) the hydrological connectivity
index fluctuated and decreased, the wetland area decreased, the landscape fragmentation
intensified, and the impact of human activities on the wetland area increased.

Hydrological connectivity restoration phase (2005–2020): (1) the core area gradually
increased in size, the number of core wetlands gradually increased, the proportion of
foreground wetlands also gradually increased, and the morphology changed from elon-
gated to saturated; (2) the loop wetlands were gradually subsumed by saturated core
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patches, and branch wetlands gradually transformed into bridge wetlands; (3) the area
and number of islet areas decreased during the first stage of restoration, and increased
in the later stage; (4) perforation and edge wetlands increased—the proportion of the
former in the foreground gradually increased, and the proportion of the latter in the fore-
ground gradually decreased; (5) wetland areas increased through the conversion of the
non-wetlands to wetland landscapes; and (6) the composite index of wetland hydrological
connectivity increased, reaching a maximum by 2020—the water area rate increased, the
wetland habitat quality improved, the wetland landscape integrity was strengthened, and
fragmentation improved.

Figure 8. Pearson’s correlation between different indicators and the composite index of hydrologi-
cal connectivity.

4. Discussion
4.1. Influence of Choice of Different Scales on MSPA Results

MSPA is very sensitive to the scale of the landscape, and a reasonable choice of image
element size and edge width is necessary in order to obtain an accurate distribution of
the spatial pattern of landscape types. Wickham et al. [73] stated that granularity is the
area of the smallest identifiable unit in a landscape, i.e., the size of an image element. The
landscape structure is formed by the spatial arrangement and combination of different
forms and the number of landscape elements, which is easily influenced by granularity [33].
The edge width collection defines the width or thickness of the non-core class in pixels. The
actual distance corresponds to the number of edge pixels multiplied by the pixel resolution
of the data. Yu et al. [74] concluded that landscape types obtained on the basis of MSPA
have an obvious scale and edge effect through the study of the urban green infrastructure
network in Nanjing, and that the scale effect has smaller impact on landscape types, while
the edge effect is more obvious. The extent and degree of edge effects vary depending on
the nature of the landscape, the study area, and the shape of the patches, and increasing
the edge width leads to a decrease in the core area of the landscape type and an increase in
the non-core elements; these factors affect the results of MSPA analysis [40,75].
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To analyze the morphological spatial pattern and compare changes in wetland struc-
ture in the study area at different grain sizes, we used Guidos Toolbox 3.0 software, set
structural elements to 8 neighborhoods, set the edge width parameter to 2 (corresponding
to 60 m geospatial width), and selected 3 types of binary raster files with resolutions of
30 m × 30 m, 60 m × 60 m, and 120 m× 120 m. Changes in landscape structure at different
grain sizes were compared. Similarly, to compare the appropriate edge widths, we used
binary raster data at a uniform 30 m × 30 m resolution. To explore the influence of the
change in edge width on the landscape structure when the geospatial widths were 30 m,
60 m, and 120 m, the edge width parameters were set to 1, 2, and 4, respectively, and the
spatial pattern analysis of the wetland landscape morphology was performed.

From Table 6, we can see that the largest change in the wetland landscape with
increasing particle size (constant edge width of 60 m) occurred in the core wetlands,
indicating that the increase in particle size reduced the core landscape area. In terms of
the proportion of wetland landscape areas occupied by each type, the core wetland areas
have been steadily declining, but other types have increased, indicating that increasing
particle size has transformed some core wetland landscapes into edge wetlands, bridge
wetlands, and loop wetlands, while some smaller core area patches have been transformed
into islets, or have been completely eliminated. For comparison, we found that landscape
classifications obtained via MSPA with different particle sizes were very unstable, and the
core area wetlands were significantly reduced.

At a constant grain size (30 m × 30 m) with increasing edge width, the core wetlands
remained the dominant landscape type in the study area (Figure 9). A comparison in terms
of patch area revealed that the proportion of the core area patches decreased, while the
proportion of islets, edges, bridges, and branches increased (Table 7). This was mainly due
to an increase in edge width, which increased the minimum core area size and caused an
increase in the width of the non-core area elements. This reduced the number of core area
pixels, resulting in a loss of core area which, in turn, caused an increase in other MSPA
landscape types.

Table 6. Area of each MSPA type in different resolutions, and proportion of wetland landscape area (edge width 60 m).

Landscape Type
Pixel 30 m × 30 m Pixel 60 m × 60 m Pixel 120 m × 120 m

Area/ha Percentage of
Wetlands (%) Area/ha Percentage of

Wetlands (%) Area/ha Percentage of
Wetlands (%)

Core 413,147.61 89.88 351,956.88 74.91 307,913.76 65.52
Islet 1867.23 0.41 16,064.28 3.42 27,466.56 5.84

Perforation 5289.48 1.15 4834.08 1.03 5495.04 1.17
Edge 29,172.42 6.35 45,729.72 9.73 44,619.84 9.49
Loop 1357.92 0.30 10,293.84 2.19 19,362.24 4.12

Bridge 2458.71 0.53 22,296.24 4.75 38,867.04 8.27
Branch 6377.22 1.39 18,667.80 3.97 26,212.32 5.58

Table 7. Area of each MSPA type at different edge widths, and proportion of wetland landscape area (at a grain size of 30 m).

Landscape Type
30 Edge with 30 m 60 Edge with 60 m 120 Edge with 120 m

Area/ha Percentage of
Wetlands (%) Area/ha Percentage of

Wetlands (%) Area/ha Percentage of
Wetlands (%)

Core 413,147.61 89.88 382,359.33 83.18 352,324.26 76.65
Islet 1867.23 0.41 8310.24 1.81 21,616.47 4.70

Perforation 5289.48 1.15 4121.46 0.90 4488.21 0.98
Edge 29,172.42 6.35 40,407.93 8.79 44,728.92 9.73
Loop 1357.92 0.30 4939.47 1.07 10,039.05 2.18

Bridge 2458.71 0.53 8933.85 1.94 19,186.56 4.17
Branch 6377.22 1.39 10,598.31 2.31 15,255.09 3.32
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Figure 9. Spatial distribution of each wetland landscape type at different grain sizes in 2020. Note:
The letters (a–c) refer to edge widths of (1), (2), and (4), respectively, and the letters (A–F) indicate six
sites where the variation in each wetland landscape type is more pronounced.

By comparison, we found that both grain size and edge width influenced MSPA
types, albeit in different ways. Zhang et al. [76] found by comparison that the granularity
size mainly influenced the combination configuration and quantitative relationship of
various landscape types, i.e., as it increased, it may have decreased or increased the spatial
information for wetland landscape types. In a study of the Natura 2000 habitat in Spain,
Hernando et al. [38] found that edge width had more influence on the results of MSPA
classification compared with the granularity size. In particular, the core area was reduced,
increasing the edge width. In our study, considering the scale problem and data accuracy
in the Poyang Lake area, we selected a resolution of 30 m and an edge effect width of 60 m;
this not only ensured complete landscape information, but also avoided the redundancy of
data, which was consistent with the results of Zhang et al. [77] in the Baiyangdian area.

4.2. Exploring the Drivers of Wetland Hydrological Connectivity

The Poyang Lake area is a typical wetland landscape in southern China; however, due
to the rapid industrialization and urbanization of the region, along with economic changes
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and population growth, the wetland landscape has been significantly altered, as has its
hydrological connectivity.

This study found that hydrological connectivity reached its lowest value in 2005. As
for natural factors, the decrease in precipitation caused the shrinkage of the wetland area,
which led to the decrease in regional hydrological connectivity. Ouyang et al. [78] found
that the water level in the Poyang Lake area changed abruptly in 2003, increasing the rate
of water level decrease, until it reached its lowest point in 2004. At that time, the wetland
area had significantly declined, the core wetland area had decreased, and the hydrological
connectivity had its lowest value. As for human factors, Poyang Lake—the largest fresh-
water lake in China—is located in the middle and lower reaches of the Three Gorges and,
as a typical through-river lake, its environment is inevitably affected by the water storage
of Three Gorges Project. Since the impoundment of the Three Gorges Dam in 2003, the
water inundation area of Poyang Lake has decreased significantly. Zhang et al. [79] found
a significant water level decrease after the impoundment of the Three Gorges Project, based
on hydrological modeling. The decrease in water level inevitably decreased the wetland
area, which decreased hydrological connectivity. Meanwhile, the economic development
continuously adjusted the land use structure so that the original wetland area was divided
into industrial and agricultural land [80,81]. As industry and agriculture developed, wet-
land encroachment occurred, and water consumption also increased [82], which directly
impacted wetland hydrological connectivity. After 2005, the hydrological connectivity was
significantly improved, as the state introduced a series of wetland protection measures for
the middle and lower reaches of the Yangtze River [83]. Measures such as returning fields
to lakes, and balance of occupation and replenishment, have increased the wetland area,
reduced landscape fragmentation, and restored the hydrological connectivity.

In the area around Poyang Lake, wetlands should be returned to farmland, and in each
wetland reserve, the development of wetlands should be prohibited in order to provide a
good environment for rare birds. To reduce the problem of wetland degradation from the
perspective of water circulation, and to improve the local climate with better flood water
resource use, the reservoir capacity upstream of the river should be readjusted to increase
the amount of water flowing into the downstream wetland. At the same time, dikes or
gates should not be built along the river in the floodplain, so as to maintain the natural
hydraulic connection between the wetlands and the river.

5. Conclusions

In this study, we focused on the spatial and temporal evolution of hydrological
connectivity in the Poyang Lake area over the past 31 years, and introduced a method of
morphological spatial pattern analysis. The spatial distribution of hydrological connectivity
in 7 periods over 31 years was analyzed. Overall, the wetland landscape in the Poyang
Lake area has changed drastically, and the wetland area shows a trend of first decreasing
and then increasing. By classifying wetlands into different landscape types, we found
that the transitions within the wetland landscape and between wetland and non-wetland
landscapes were substantial, among which the core wetlands played a dominant role in the
hydrological connectivity, which decreased as the core wetland area declined. Transitions
within the wetland landscape and between wetland and non-wetland landscapes were also
substantial, mainly for core areas, fringe areas, and non-wetland transitions to one another.
At the same time, we constructed a comprehensive system of quantitative assessment of
hydrological connectivity based on the hydrological connectivity mechanisms and patterns
across multiple spatial and temporal scales, and analyzed the hydrological connectivity
index from patch to region to landscape scales; this reflected both landscape and functional
connectivity, and the index system was not specific to a particular region or a single scale of
hydrological connectivity, but was universal. By calculating the hydrological connectivity
index, we found that it first decreased and then increased over the study period in the
Poyang Lake area. Taking 2005 as the node, we defined the years before 2005 as the
“receding” stage of the hydrological connectivity, and after 2005 as the “recovering” stage.
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Prior to 2005, due to natural factors such as decrease in precipitation, as well as man-made
factors such as the operation of the Three Gorges Dam, the inlet water volume of Poyang
Lake decreased, the wetland landscape was fragmented, and hydrological connectivity
decreased. After 2005, wetlands were protected by policies such as “return of fields to lake”
and “balance of occupation and replenishment”, and increased precipitation expanded the
water area and increased hydrological connectivity.

This study investigates the spatial and temporal evolution of eco-hydrological con-
nectivity of wetlands in the Poyang Lake area based on long time series of remote sensing
images, but the study lacks exploration of the internal evolution mechanisms of hydro-
logical connectivity. The next step should combine big data and historical information to
analyze the evolution of hydrological connectivity of wetlands in detail and clarify the
flow paths of materials and energy in order to better assess the quality of the ecological
environment of wetlands.
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