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Abstract: Afforestation is one of the most efficient ways to control land desertification in the middle
section of the Yarlung Zangbo River (YZR) valley. However, the lack of a quantitative way to
record the planting time of artificial forest (AF) constrains further management for these forests.
The long-term archived Landsat images (including the Thematic Mapper (TM), Enhanced Thematic
Mapper Plus (ETM+), and Operational Land Imager (OLI)) provide a good opportunity to capture
the temporal change information about AF plantations. Under the condition that there would be
an abrupt increasing trend in the normalized difference vegetation index (NDVI) time-series curve
after afforestation, and this characteristic can be thought of as the indicator of the AF planting time.
To extract the indicator, an algorithm based on the Google Earth Engine (GEE) for detecting this
trend change point (TCP) on the maximum NDVI time series within the growing season (May to
September) was proposed. In this algorithm, the time-series NDVI was initially smoothed and
segmented into two subspaces. Then, a trend change indicator Sdiff was calculated with the difference
between the fitting slopes of the subspaces before and after each target point. A self-adaptive method
was applied to the NDVI series to find the right year with the maximum TCP, which is recorded as
the AF planting time. Based on the proposed method, the AF planting time of the middle section of
the YZR valley from 1988 to 2020 was derived. The detected afforestation temporal information was
validated by 222 samples collected from the field survey, with a Pearson correlation coefficient of
0.93 and a root mean squared error (RMSE) of 2.95 years. Meanwhile, the area distribution of the AF
planted each year has good temporal consistency with the implementation of the eco-reconstruction
project. Overall, the study provides a good way to map AF planting times that is not only helpful for
sustainable management of AF areas but also provides a basis for further research on the impact of
afforestation on desertification control.

Keywords: artificial forest; planting time; Google Earth Engine; Landsat; time series analysis

1. Introduction

As the social and economic center of Tibet [1], the middle section of the Yarlung Zangbo
River (YZR) valley faces serious desertification due to intensive human activities and the
fragile natural environment [2,3]. According to the statistics in Liu, et al. [4], there is a total
of 2324.43 km2 of aeolian sand in the middle part of the YZR basin, especially on the north
bank of the wide valleys. To control desertification, the local government has launched
many ecological protection and construction projects since the 1980s, including planting
artificial forest (AF), artificial shrub, and artificial grassland for sand stabilization [5].
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Ecological construction provides a natural laboratory to explore the impact of afforesta-
tion on natural environment improvement. To some extent, AF is of great importance
in carbon sequestration [6–8], desertification control [9], soil improvement [10–12], cli-
mate regulation [13,14], and biodiversity conservation [15,16]. To investigate the detailed
impact of afforestation on the local eco-environment, it is necessary to compare the en-
vironmental indicators change before and after the AF plantation [17,18]. Therefore, the
AF planting time is the basic information for related researches between AF and the local
environment, especially under the background of significant climate change on the Tibetan
Plateau [19,20].

However, the AF plantation regions are sparsely distributed and the planting activi-
ties, including renewal and maintenance, have continued for a long period. Most of the
afforestation information has been recorded manually without full spatial or temporal
details. Consequently, it is difficult to obtain the exact planting time for each AF patch.
Although tree-ring measurement can reveal temporal information, this point-based mea-
surement cannot provide comprehensive AF spatial-temporal distribution recordation.
Currently, the lack of this temporal information greatly constrains the assessment of the
effect of ecological projects and the improvement for future ecological conservation activity.
The afforestation in the YZR is conducted via transplanting the cultivated seedlings to
the sandy area to improve soil conditions and avoid desertification with the increase of
vegetation coverage at the same time. Therefore, the AF planting time can be reflected by
the time when the land cover type transfers from sand to AF.

In recent decades, the openly available long-term remote sensing image archives, such
as the Landsat satellite image archive [21,22] and the MODIS satellite image archive [23–25],
recorded long terms of land cover changes which make the AF planting time detection
possible. In the time-series remote sensing images, the land cover change caused by af-
forestation mentioned above is represented by the trend change of the temporal vegetation
index. Taking the time-series normalized difference vegetation index (NDVI) as an example,
the time-series NDVI retained a flat trend during the sandy period, while an increasing
trend after AF plantation. Therefore, the trend change point (TCP) in time-series NDVI can
be used to represent the AFs planting time.

In addition, the rapid development of remote sensing technology has provided ef-
ficient methods for forest monitoring, including forest mapping [26], forest change [27],
and forest health assessment [28]. Kennedy, et al. [29] developed an algorithm called
LandTrendr and proposed the concept of tracking time-series images to detect forest
changes. Fensholt, et al. [30] applied NDVI data from different platforms (NOAA, Terra,
and SPOT) to conduct temporal-sequence analysis for long-term vegetation study. Huang,
et al. [31] developed an algorithm called Vegetation Change Tracker (VCT) to monitor
forest changes automatically using the Landsat time series stack (LTSS). Ochtyra, et al. [32]
developed an algorithm called TVCMA and adopted a mixed-method based on deviation
(threshold) and trend (regression) to detect vegetation changes. These detection methods
perform well in temporal data change detection.

However, many factors, such as atmospheric noise and radiometric correction resid-
uals distort the actual surface reflectance, causing outlier existence in the time-series
NDVI [33]. These outliers usually existed with smaller duration and greater change de-
grees, which is easy to confuse with the AF plantation change pattern. Therefore, a trend
change detection method is needed to express the change condition around each probe
point while eliminating the influence of outliers.

In this study, aiming to map the AF planting times in the middle section of the YZR
valley, an algorithm was proposed under the support of the Google Earth Engine (GEE)
platform that tracks the temporal trend of the vegetation index acquired from long-term
Landsat images. The basis of this research is that an abrupt increasing trend appears in
the vegetation index curve after afforestation compared with the original sandy surface,
and the AF planting time is detected by determining the time of this increase. Meanwhile,
the outliers were reduced by an adaptive window smooth and subspace segmentation
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performed on the NDVI time series. With the developed method, a map of the AF spatial
distribution and the AF planting time of the middle section of the YZR valley is acquired.

2. Study Area and Datasets
2.1. Study Area

The middle section of the YZR valley is located in the south of the Qinghai-Tibet
Plateau (Figure 1a). This region is characterized by widely distributed sandy land, and
land desertification is still an important environmental problem under the impact of human
activities and climate change [34]. Therefore, the floodplain and sandy bank in this region
have been planted with plenty of AFs to control desertification. As shown in Figure 1b,
the study area surrounded by the red polygon has many green patches according to the
Landsat-8 true-color image in 2020. Pictures of typical AF sites representing the AFs
planted at different times are shown in Figure 1. Picture (I) shows the widely distributed
AF planted on the riverbed. Picture (II) shows the mature AF with high vegetation cover.
Picture (III) shows a newly planted AF.

Figure 1. (a) Location of the middle section of the YZR River on the Qinghai-Tibet Plateau shown by
the white rectangle. (b) The extent of the study area is shown as the red polygon with the Landsat-8
true-color image in 2020. Pictures (I), (II), and (III) present three typical artificial forests in this region.

2.2. NDVI Image Stack

To effectively capture the AF planting information, Landsat images acquired from
the Landsat surface reflectance (Landsat-SR) product provided in the GEE platform were
used in this study. In GEE, the Landsat-SR images operation was controlled by the internet-
accessible application programming interactive (API) or the web-based interactive develop-
ment environment (IDE), and the images were stored in the Google server and processed
by the powerful parallel computing capability [35]. However, there are frequent clouds in
the growing season (1 May to 30 September) because of the monsoon climate. Therefore,
the cloud-free pixels were identified by the quality assessment (QA) band of the Landsat
SR and used to form a composite cloud-free maximum NDVI image each year, for the
maximum composite can be used to remove the effects of cloud-cover, scan-angle, and
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solar-zenith-angle [36], and reflect the true growth condition of the vegetation [37]. The
QA band was derived from the C code based on the Function of Mask (CFMASK) [38] al-
gorithm implemented on the Landsat images to mask the score of the cloud, cloud shadow,
and snow et al.

The earliest observation of the study area dated back to 1988. For this long-term NDVI
series, they were derived from different Landsat platforms. To balance the systematic
biases among different Landsat sensors, the inter-calibration coefficients proposed by Roy,
et al. [39] were applied to each band of OLI images to reduce the effect caused by the
difference between the sensors TM, ETM+, and OLI.

2.3. Validation Samples

To validate the mapping results of the planting time, a field survey was conducted from
8 to 15 August 2020, and the key AF patches (222 samples) were recorded by a handheld
GPS (Figure 2). Then, the planting time of these samples was artificially determined from
the time-series annual maximum NDVI in the growing season extracted from the GEE
platform. Among these samples, three AF patches are clearly indicated by a signboard
around them which mentioned the exact planting year and they are noted with green color
in Figure 2.

Figure 2. Spatial distribution of the 222 samples for validating the AF planting time mapping results. The three samples
with accurate planting time information from the local signboard are shown in green color.

3. Methods

The mapping of the AF planting time was conducted via the following two steps:
(1) AF extraction and (2) planting time detection. In the first step, several spectral indices
related to the key land cover types in this region were calculated firstly with the cloud-free
image in 2020 and imported into a random forest classifier to extract AF regions. The
indices include NDVI, normalized difference sand index (NDSI), new water index (NWI),
and normalized difference building index (NDBI). Then, an adaptive TCP detection method
was developed to determine the planting time of the AF pixels using the yearly maximum
NDVI time series. Figure 3 shows the flowchart of this research.

3.1. Artificial Forest Region Extraction

A variety of supervised classification methods have been integrated into the GEE
platform, and the random forest (RF) classifier was selected here because of its wide
application and reliable performance [40,41]. This method constructs multiple decision
trees that depend on random vector values of independent sampling and classifies data
through aggregation and guidance of decision trees [42], which is suitable for the high data
dimensionality and multi-collinearity classification [43].
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Figure 3. Flowchart of the AF planting time mapping.

To perform this classification, 1840 land cover samples were collected through the high-
resolution image from Google Earth and field survey, and the selection of those samples is
based on the following two rules: First, the land cover type of each sample can be easily
recognized in the Google Earth image; second, the pixels around the targeted sample have
a similar land cover pattern. These samples include six categories: AF, cropland, sand,
impervious surface, shrub, and water and the percentage of each category to the total
samples is 20.93%, 16.69%, 14.62%, 19.29%, 14.67%, and 13.80%, respectively. Based on the
unique features (spectral features and spectral indices) of each land cover type collected
from those samples, a classification model was constructed with the RF classifier. Through
times of tests, the classification accuracy reached the highest when the number of the
decision tree was set to 110, and the number of the decision tree in the RF classifier was
set to this value. After the classification, threefold cross-validation was implemented to
evaluate the accuracy of the classification. The total training samples were divided into
three parts, one of them was taken as validation samples each time and the other two
parts were taken as training samples. The average value of the three times of classification
accuracy was taken as the accuracy of the threefold cross-validation.

3.2. Afforestation Time Mapping

As indicated before, there is a significant increase in vegetation coverage represented
by NDVI after afforestation in the sandy area, and the AF planting time can be captured by
the abrupt change pattern that appears in the time-series NDVI curve. Because the NDVI
images are only available since 1988, those AFs planted before 1988 are not considered
in this study according to a threshold NDVI suggested by Anyamba and Tucker [44].
Therefore, when the NDVI value of any AF pixel in 1988 was higher than 0.2, it is thought
that the AF was planted before 1988. After excluding the AFs planted before 1988, the
planting times of other AF pixels were detected via the following two steps.

3.2.1. Subspace Construction

The developed algorithm for trend change detection includes six categories: threshold,
difference, segmentation, trajectory classification, statistical boundary, and regression [45].
To represent the continuous trend around the probe point, a subspace segmentation was
first set up to divide the NDVI trajectory into collections. The concept of the subspace in
the change detection is to compare the subspaces in the trajectory between past and present
and measure their dissimilarity by using a parameter to indicate the difference distance
between them [18]. Figure 4 shows the sliding subspace with Y as the target year and T
as the width of the subspace (take the width of three years as an example). Therefore, the
time-series NDVIs from Y−T to Y made up the subspace before Y, and the NDVIs from Y
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to Y + T made up the subspace after Y. Probe point Y slides along the trajectory and the
subspaces are fixed on both sides of the probe point and also slide along the trajectory.

Figure 4. Illustration of the subspace segmentation on the NDVI trajectory (show with the subspace width of three years as
an example).

In the subspace segmentation, the NDVI values obtained before and after the targeted
year were needed for the study period 1988–2020. However, the NDVI values before 1988
or after 2020 are not available. Therefore, the NDVI values of 1998 and 2020 were replicated
to the years before or after to meet the requirements of subspace construction. Taking
1988 as an example, the subspace after 1988 was available while the subspace before 1988
was nonexistent. Therefore, the NDVI value in 1988 was replicated to be the values of the
previous years to reconstruct the subspace before 1988.

3.2.2. TCP Indicator Construction

After subspace segmentation, a linear fit was conducted for the NDVI values in both
subspaces at each probe point to get the fitting line slopes. As shown in Figure 5a, the
slopes of the left subspace (Sbef) and the right subspace (Saft) were calculated for probe
point Y. Then, the difference between those two slopes (Sdiff) was used as an indicator to
represent the variation of the curve; the indicator was inspired by Zuo, et al. [46].

Figure 5. (a) Illustration of the TCP indicator (Sdiff) calculation based on the NDVI time series. (b) Comparison of the
time-series NDVI curve and its corresponding Sdiff.
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Obviously, if there was an increasing trend at this point, Sdiff should have a positive
value and vice versa. Meanwhile, the absolute value of Sdiff represents the degree of
the abrupt changes, the larger it is the greater the degree of the abrupt change is. To
demonstrate this fact, Figure 5b shows the original NDVI time-series curve in Figure 5a
and the Sdiff curve derived with the subspace width of three years as an example. There is
one year with the maximum Sdiff value in 2009 which is thought of as the AF planting time.

3.2.3. Adaptive TCP Detection

Ideally, the detection of the TCP can be simply determined according to the maximum
value of Sdiff as shown in Figure 6. However, due to some uncertainties in the NDVI
data caused by drought, plant diseases, insect pests, deforestation, inundation induced by
temporary flood, and also the atmospheric effect on remote sensing data, there would be
some outliers distorting the actual NDVI changing pattern. To reduce these influences and
enhance the detection accuracy, a sliding window smooth method was applied to the NDVI
trajectory before detection to smooth the abrupt changes induced by these uncertainties.
Figure 6 shows a good example of outlier smoothing. Before smoothing, the actual TCP
(2004) was not accurately detected according to the maximum value of Sdiff shown in
Figure 6a. However, after smoothing (Figure 6b), the interference of the uncertainties in
time-series NDVI was reduced and the expected TCP was accurately found.

Figure 6. Comparison of the NDVI curves and the corresponding Sdiff curves (a) before and (b) after smoothing.

Although the sliding window smoothing method can reduce the impacts from the
uncertainties in the NDVI trajectory, how to determine the optimal width of the sliding
window is important to effectively remove the disturbance from outliers. Therefore, an
iteration detection scheme was implemented by changing the subspace width and the
smoothing window size adaptively. Firstly, the initial subspace width was set to 2 and its
maximum value was set to 5. The sliding window size was initialized at 2 with a maximum
of 6. For each pixel which is hard to determine the dominated maximum Sdiff value, its
subspace width was enlarged first to check the difference between the first two peak values
of Sdiff. If the difference was still very small (the second biggest Sdiff is larger than 2/3 of
the first biggest Sdiff), the subspace was enlarged again. Once the subspace extended to its
maximum size, the smoothing window size was extended subsequently and the Sdiff series
was generated again at different subspace sizes from 2 to 5. The iteration was stopped
when the proportion of the second Sdiff peak value to the first peak value was no more than
two-thirds. Finally, the TCP was set to the year of the maximum Sdiff.
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4. Results
4.1. Artificial Forest Extraction Result

With the proposed classification method, the AF distribution of the study area was
mapped as shown in Figure 7a. Threefold cross-validation was conducted for the classifica-
tion results with an overall accuracy of 85.1% and a Kappa coefficient of 0.821. The main
errors came from the misclassification among the vegetation surfaces likes AF, cropland,
and shrubland. Especially for the newly planted forests, their poor vegetation coverage
makes them similar to those of shrubs or crops. Clearly, the AFs are intensively distributed
on the southern shore while the north shore has relatively few AFs. This difference was
mainly attributed to the implementation of ecological engineering projects on the south
shore in the early stage due to the widely distributed settlements. To better present the
extraction accuracy, three plots were selected to show their original image and the extracted
AF at each plot. Through visual comparison between the corresponding Landsat false-color
images shown in Figure 7b–d and the AF extractions in Figure 7e–g, the extracted AFs have
good spatial consistency with the real distribution.

Figure 7. (a) AF extraction result of the study area based on the Landsat-8 image in 2020; (b–d) three subregions with
different AF distribution; (e–g) the AF extraction results of the three subregions.

4.2. NDVI Series and the TCP Detections of Typical AF Samples

With the inspection of the NDVI trajectories of typical AFs, the NDVI series can
be generally separated into three key types: ordinary AF, AF planted before 1988, and
temporally inundated AF. Ordinary AFs are usually planted on barren surfaces or sandy
surfaces to prevent desertification. Therefore, the NDVI curve has an obvious increase after
AF plantation, and the NDVI value sticks to a relatively low level before AF planation, as
shown in Figure 8a. The second type belongs to the AF patches with very good vegetation
cover which were planted before 1988 (the earliest Landsat observable time). As shown in
Figure 8b, their NDVI value always remains at a relatively high level and the variation is
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not as large as that of the ordinary AF. Therefore, the AF pixels with the mean NDVI in
the initial three years bigger than a certain threshold (0.2 in this study) were considered to
be planted in or before 1988. The third type was mainly distributed in the sandy islands
of the riverbed, which was temporally inundated. As shown in Figure 8c, the temporal
inundation introduced the mixed pixel effect with water and vegetation to reduce the
NDVI values when compared with the values in non-inundated years.

Figure 8. Google earth images and NDVI trajectories of three key AF types. (a) Ordinary AF, (b) AF planted before 1988,
and (c) temporally inundated AF.

To prove the reliability of representing the AF planting time by the TCP in time-series
NDVI, Figure 9 shows the false-color images before and after the detected year, the NDVI
trajectory, and the Google Earth image in 2019 of five AF samples. In the composite image,
vegetation was shown as red color while water is dark blue and barren surface is yellow or
white. The AF pixels were marked with yellow rectangles. Obviously, the AF pixels were
water surfaces or sandy surfaces in the year before the detected year. After AF plantation,
the pixels turn to light red, and this change can be reflected by the TCP detection shown
in the NDVI trajectories. Therefore, the TCP of the time-series NDVI could represent the
planting time of the AF by comparing the land cover changes in the afforestation area.

4.3. Afforestation Time Mapping and Validation
4.3.1. Afforestation Time Mapping Result

The proposed detection method was applied to the whole study area, and the mapping
result of AF planting times is displayed in Figure 10a. The temporal-spatial distribution of
AFs presents as regional clustering, which obeys the rule that AF plantation was always
conducted from one region to another. Overall, the planting time of the south bank of
the YZR was generally earlier than that of the north bank because prevention and control
of desertification projects were mainly conducted at the south bank due to its widely
distributed settlements. Take the three subregions in Figure 7 as examples, the AFs in
Figure 10b were planted on the sandy island and strongly influenced by inundation. These
pixels presented a patchy distribution which partly confirms the fact that AF planting was
conducted at different times in different sized areas. In contrast, although there were also
patches with different planting times, the planting times displayed in Figure 10c,d present
clear temporal similarity for most of the AF pixels. In Figure 10c, the AF pixels close to the
riverway (at the bottom) have an earlier planting time because of better water conditions
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than the pixels in the north. Similarly, the AF pixels in Figure 10d, in the south were first
planted to protect the road, and then the AF plantation was conducted on the river shoal.

Figure 9. Comparison between the Landsat false-color images before (the first column) and after (the
third column) the detected year of five sample regions. The yellow squares represent the AF pixels.
The NDVI curves in the second column were extracted from the averaged NDVI of the AF pixels
marked with yellow squares. The fourth column shows the latest Google Earth images of these five
regions. (a–e) are five AF samples with different planting times.

4.3.2. Validation with Field Samples

The detected AF planting time result was directly validated by the collected samples
first. The result is shown in Figure 11. The density scatter plot shows good agreement
between the detection results and the samples, with a Pearson correlation coefficient
of 0.93 and a Root Mean Square Error (RMSE) of 2.95 years. Most of these points are
well distributed around the 1:1 line. Meanwhile, the three AF field samples with true
planting time also perform well in the consistency with the detected results. Two of them
were consistent with the recorded planting time, while only one point has one year error.
Meanwhile, there are also some points with big overestimation in the planting time and
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this may be attributed to the variation in vegetation cover induced by water inundation or
deforestation.

Figure 10. (a) Mapping results of the AF planting time over the study area. (b–d) the zoomed-in images of the subregions.

Figure 11. The density plot between the AF afforestation time of the samples extracted by manual
identification and detected by the proposed method. The three green stars represent these samples
with true value in planting time.

4.3.3. Temporal Consistency Analysis with Implementation of Ecological Projects

With the detection results, the temporal distribution of the AF planting time over the
study area from 1988 to 2020 was investigated and shown in Figure 12. The observable
time series can be divided into four phases according to the temporal pattern, which is
highly consistent with the implementation of key ecological construction projects during
this period.
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Figure 12. Temporal distribution of the detected AF planting time, and the corresponding ecological
construction project.

In the early years (from 1988 to 1998), the afforestation area in each year always keeps
to a low level, because the afforestation was mainly conducted voluntarily by civilians
around the settlements and there is small input from local or central government. It can be
referred from the report from this website http://www.seac.gov.cn/seac/xwzx/200303
/1010522.shtml, accessed on 25 November 2021. From 1999 to 2007, the afforestation area
has slight increases because of the project of returning cultivated land to forest (grassland).
However, the government mainly focused on the afforestation along the roads and railways,
which occupy a small area in this region.

In the following years (from 2008 to 2014), the afforestation area had a fast increase
because of the conduction of the Plan for the Protection and Construction of Ecological
Safety Barriers in Tibet, and the central government invested 8.35 billion yuan to protect
and restore the key ecological function zones in the Tibetan Plateau (http://www.scio.
gov.cn/zfbps/32832/Document/1633895/1633895.htm, accessed on 25 November 2021).
In recent years (from 2015 to 2020), the project for the protection and construction of an
eco-safety barrier (around 10.7 billion investments) assists the afforestation in the basins of
the Yarlung Zangbo, Nujiang, Lhasa, Nyangchu, Yalong, and Shiquan Rivers. Therefore,
the afforestation area continues to be at a high level in this region. Obviously, the temporal
consistency between the temporal pattern of the AF planting time and the implementation
of key ecological projects in this region confirms the reliability of the detection results.

5. Discussion

Many algorithms have been proven to perform well in forest change mapping. How-
ever, not all of them are suitable to detect the planting time of the AFs. The afforestation
generated continuous trend changes with a smaller degree than that of the outliers and
the purpose of this study focuses on extracting the AF planting time from the disturbance
of outliers. In this study, trend, difference, and segmentation were combined to carry
out continuous trend change detection, and the adaptive scale selection was imported to

http://www.seac.gov.cn/seac/xwzx/200303/1010522.shtml
http://www.seac.gov.cn/seac/xwzx/200303/1010522.shtml
http://www.scio.gov.cn/zfbps/32832/Document/1633895/1633895.htm
http://www.scio.gov.cn/zfbps/32832/Document/1633895/1633895.htm
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reduce the influence of outliers. In relative studies, Liu, et al. [47] mapped the afforestation
and deforestation using the IFZ index proposed in VCT [31] which has proven to perform
well in forest disturbance detection, and the planting time was detected by the threshold
of the IFZ. However, because of high spatial-temporal heterogeneity and external factors,
there may be some outliers with different change degrees, distorting the planting time
detection. Consequently, the threshold is different due to different afforestation ground
conditions, such as sandy land, grassland, and shrubs, which may be confused by the
condition of cropland. Therefore, the results using thresholds judgment may be confused
by different environmental conditions in large-scale spatial-temporal distribution planting
time mapping, and this error can be avoided by focusing on the trend change characteristic
in the time-series vegetation index.

However, it is difficult to avoid the disturbance of the outliers during change detection.
Spatial heterogeneity results in different NDVI value ranges during afforestation, and the
use of threshold is always controversial, such as the TVCMA taking thresholds as change
detection elements. The trend in the change detection can represent an overall tendency of
a phenomenon and reduce the impact of individual outliers [48], while the use of single-
point data is not enough to express the continuous trend change characteristic and is
susceptible to outliers. Meanwhile, for local analysis to extract the trend features from the
NDVI trajectory, the subspace was used for segmentation. Moreover, the indicator Sdiff
was introduced to indicate the continuous trend change around the probe point. For the
continuous construction of ecological engineering, the TCP (AF planting time) can exist at
any time in the time series and produce a different mean square error (MSE) during the
total least square fitting in LandTrendr, which may be confused by the MSE of outliers.
Thus, the adaptive selection of the window size and the subspace size was imported to
reduce the influence of outliers. Finally, aiming at the characteristics of the AF temporal
vegetation index, combining the three elements minimizes the impact of outliers while
expressing the trend change characteristic.

The detection results obtained in this study proved that the proposed change detection
is suitable for extracting the TCP in time-series vegetation index curve which is firmly
connected to the AF planting time by finding the characteristic within dense image stacks.
In contrast to land cover change analysis of images from certain time points, such as the
land cover mapping with images every five years or just two images at different times for
analysis [49,50], the use of time-series images from each year covered the changing infor-
mation with higher temporal resolution. Meanwhile, the powerful computing capability
of the GEE platform greatly improved the efficiency of dense image series analysis, there
are similar investigations based on GEE in the field of agriculture [51], population [52],
vegetation [53], and surface water [54].

With the above basic structures and platform, the adaptive segmentation and smooth
in this method shows good accuracy in finding the right TCP by automatically selecting the
suitable scale of the smoothing window and segmentation subspace for each pixel, which
helps remove the impact of outliers. Because changes at different degrees require different
scales of window smooth and subspace segmentation, the oversize of the smoothing
window will miss the exact detection of the real TCP, while the smaller size cannot remove
the disturbance of outliers. Therefore, the adaptive scale selection introduced in this study
alleviates this impact. Taking a sample pixel as an example (Figure 13), the Sdiff of an outlier
in 2009 was smoothed after the width of the smoothing window increased and the TCP
remain unchanged. Through a wider smoothing window, the change degree at a smaller
scale was reduced and the smoothed curve provided a better description of the changes in
the NDVI trajectory than the initial curve. In other words, the use of smoothing windows
at different scales produces different smoothing effects, which means that a single scale of
the smoothing window is not suitable for each pixel to remove the disturbance.
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Figure 13. Comparison of the TCP detections using a smoothing window with the width of two (a) and four (b).

The proposed TCP detection method shows high resistance to disturbances through
adaptive changes in the window width and the length of the subspace. However, for some
cases when there are some significant disturbances after AF planting, such as deforestation,
the NDVI trajectory does not display a continuously increasing trend but is mixed with
some declining periods or a sudden increase as shown in Figure 14, which generates a
larger Sdiff during the growth stage than that of the planting time. The increasing stage
after this disturbance distorts the TCP detection results and introduces errors in the results.
Therefore, it is necessary to combine other quantitative indicators to constrain the detected
time and stick to a low biomass level to reduce the impact caused by natural or human
factors during the growing stage.

Figure 14. (a) NDVI trajectory of an AF pixel with a sudden decrease followed by a bigger increase due to deforestation.
(b) NDVI trajectory of an AF pixel with a sudden increase in 2015.

In addition to the uncertainty related to the disturbances, the uncertainty associated
with AF extraction is another factor that should be considered. The wide distribution
of planting time and different growth stages of the AF make the AF information easily
confused with the spectral pattern of the cropland and shrubland. Due to the unique
texture of AF planting, texture extraction [55,56] is a widely used method for extracting
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AF areas in remote sensing. However, the spatial resolution of the Landsat image is not
sufficiently high for AF texture analysis. Therefore, there is still space to improve the AF
extraction accuracy. Inclusion of the texture information from higher resolution image
data, such as the Unmanned Aerial Vehicle (UAV) based Remote Sensing images, and
classification at the patch level will partly assist the further improvement of AF planting
time mapping.

6. Conclusions

In this study, an adaptive detection algorithm for identifying the planting times of
AFs was proposed based on the time-series NDVI values acquired from the Google Earth
Engine platform. With this method, an AF planting time map was generated for the middle
section of the YZR, the AF extraction from RF classification with an overall accuracy of
85.1%, and a Kappa coefficient of 0.821. The validation of the detected planting time with
samples collected in this region indicates the good performance of the proposed method
with a Pearson correlation coefficient of 0.93 and an RMSE of 2.95 years. The results showed
that the AFs planted in the early years were mainly distributed in the southern shore of the
YZR, and the AFs of recent decades occupied a large area especially the AFs planted from
2008 to 2014, and another peak existed in 2019, which presented good consistency with the
implementation time of the eco-reconstruction projects in this region.

In general, the self-adaptive process in the proposed method reduced the impacts
of disturbances induced by outliers effectively. Meanwhile, the confusion with the real
planting time caused by different afforestation conditions was reduced by focusing on
the trend change characteristic in time-series NDVI. This study provides an important
insight into the spatial and temporal distribution of AF along the YZR valley, which is
very important for further assessing ecological projects and evaluating their functions in
controlling widespread desertification. According to this data, the environmental changes
of AFs areas with different spatial-temporal distributions can be used to quantify the role
of afforestation in resisting desertification.
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