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Abstract: Remote sensing image object detection and instance segmentation are widely valued
research fields. A convolutional neural network (CNN) has shown defects in the object detection of
remote sensing images. In recent years, the number of studies on transformer-based models increased,
and these studies achieved good results. However, transformers still suffer from poor small object
detection and unsatisfactory edge detail segmentation. In order to solve these problems, we improved
the Swin transformer based on the advantages of transformers and CNNs, and designed a local
perception Swin transformer (LPSW) backbone to enhance the local perception of the network and to
improve the detection accuracy of small-scale objects. We also designed a spatial attention interleaved
execution cascade (SAIEC) network framework, which helped to strengthen the segmentation
accuracy of the network. Due to the lack of remote sensing mask datasets, the MRS-1800 remote
sensing mask dataset was created. Finally, we combined the proposed backbone with the new
network framework and conducted experiments on this MRS-1800 dataset. Compared with the Swin
transformer, the proposed model improved the mask AP by 1.7%, mask APS by 3.6%, AP by 1.1%
and APS by 4.6%, demonstrating its effectiveness and feasibility.

Keywords: instance segmentation; object detection; Swin transformer; remote sensing image; cascade
mask R-CNN

1. Introduction

With the continuous advancement of science and technology, remote sensing technol-
ogy is eagerly developing. The feature information contained in remote sensing images has
become more abundant, and a large amount of valuable information can be extracted from
it and used for scientific and technological research. Machine learning based on probability
and statistics usually requires complex feature description and suffers from obvious defi-
ciencies when dealing with complex object detection and segmentation problems [1,2]. The
deep structure and feature learning capabilities of deep learning achieved great success in
the field of image processing, and a large number of scholars also applied it to the field of
remote sensing object detection and instance segmentation [3,4]. Remote sensing image
object detection and segmentation tasks have an important research significance and value
for the development of aviation and remote sensing fields, and have broad application
prospects in many practical scenarios, such as marine monitoring, ship management and
control, and ground urban planning. In urban planning, the extraction of relevant urban
metrics is important for characterizing urban typologies, and image segmentation based
on deep learning is optimal for the extraction of road features in marginal areas located in
urban environments [5].

Instance segmentation has become an important, complex and challenging field in
machine vision research. Instance segmentation can be defined as a technology that
simultaneously solves the problem of object detection and semantic segmentation. As with
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semantic segmentation, it not only has the characteristics of pixel level classification, but
also has the characteristics of object detection, where different instances must be located,
even if they are of the same type. Figure 1 shows the differences and relationships among
object detection, semantic segmentation and instance segmentation.

Figure 1. Examples of remote sensing image (a), object detection (b), semantic segmentation (c), and
instance segmentation (d).

Since the emergence of the two-stage object detection algorithm, various object detec-
tion and segmentation algorithms based on convolutional neural networks (CNNs) have
emerged, such as the region-based CNN (R-CNN), Faster R-CNN [6], and Mask R-CNN [7].
In recent years, although there are many excellent algorithms, such as the path aggregation
network (PANet) [8], Mask Score R-CNN [9], Cascade Mask R-CNN [10] and segmenting
objects by locations (SOLO) [11], typical problems remain, such as inaccurate segmenta-
tion edges and the establishment of global relations. If the long-range dependencies are
captured by dilated convolution or by increasing the number of channels, dimensional
disasters will occur due to the expansion of the model.

CNNs are useful for extracting local effective information, but they lack the ability to
extract long-range features from global information. Inspired by the use of self-attention in
the transformer [12] and in order to mine long-range correlation dependencies in text, many
computer vision tasks propose the use of self-attention mechanisms to effectively overcome
the limitations of CNNs. Self-attention mechanisms can obtain relationships between
long-range elements faster and attend over different regions of the image and integrate
information across the entire image. Vision transformer (ViT) [13] is a representative
state-of-the-art (SOTA) work in the field of image recognition. It only uses a self-attention
mechanism, which makes the image recognition rate far higher than models based on
CNNs. End-to-end object detection with transformers (DETR) [14] first involved the use of
transformers in high-level vision. This adds positional information to supplement image
features and inputs them in the transformer structure to obtain the predicted class label
and bounding box. Although transformer-based algorithms have greatly improved the
object detection effect, there are still serious problems in the CV field:

1. Low detection performance for small-scale objects, and weak local information acqui-
sition capabilities.
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2. The current transformer-based framework is mostly used for image classification, but
it is difficult for a single-level transformer to produce good results for the instance
segmentation of densely predicted scenes. This has a great impact on object detection
and instance segmentation in remote sensing images with a high resolution, a complex
background, and small objects.

In order to solve these problems, there are a few works applying ViT models to the
dense vision tasks of object detection and semantic segmentation via direct upsampling or
deconvolution but with a relatively lower performance [15,16]. Wang et al. [17] proposed a
backbone transformer for dense prediction, named “Pyramid Vision Transformer (PVT)”,
which designed a shrinking pyramid scheme to reduce the traditional transformer’s se-
quence length. However, its calculation complexity is too large, which is quadratic to image
size. Therefore, we chose the Swin transformer [18] as the prototype for our design of the
backbone network. The Swin transformer builds a hierarchical transformer and performs
self-attention calculations in the window area without overlap. The computational com-
plexity is greatly reduced, and it is linearly related to the size of the input image. As a
general-purpose visual backbone network, the Swin transformer achieves SOTA perfor-
mance in tasks such as image classification, object detection, and semantic segmentation.
However, the impact of the Swin transformer on context information encoding is limited; it
needs to be improved for remote sensing image tasks.

In this paper, we first designed a local perception block and inserted it into each
stage. Through the characteristics of dilated convolution, the block extracts a large range
of local information from the image, and strengthens the network’s learning of local
correlation and structural information. We call the improved backbone network the “Local
Perception Swin Transformer” (LPSW for short). Secondly, in order to enhance the object
detection and instance segmentation of remote sensing images, inspired by the hybrid
task cascade (HTC) [19], we designed the spatial attention interleaved execution cascade
(SAIEC) network framework. We applied the ideas of the interleaved execution and mask
information flow into Cascade Mask R-CNN. Both bounding box regression and mask
prediction were combined in a multi-tasking manner. We also added an improved spatial
attention module to the mask head, which helps the mask branch to focus on meaningful
pixels and suppress meaningless pixels. Finally, we combined the designed LPSW backbone
network with the SAIEC framework to form a new network model that achieves a higher
accuracy in remote sensing object detection and instance segmentation tasks.

The main contributions of this paper can be summarized as follows:

1. In order to overcome the shortcomings of CNNs’ poor ability to extract global in-
formation, we chose the Swin transformer as a basic backbone network to build a
network model for remote sensing image object detection and instance segmentation.

2. According to the characteristics of remote sensing images, we propose a local percep-
tion Swin transformer (LPSW) backbone network. The LPSW combines the advan-
tages of CNNs and transformers to enhance local perception capabilities and improve
the detection accuracy of small-scale objects.

3. The spatial attention interleaved execution cascade (SAIEC) network framework is
proposed. The mask prediction of the network is enhanced through the multi-tasking
manner and the improved spatial attention module. Finally, the LPSW is inserted into
the designed network framework as the backbone to establish a new network model
that further improves the accuracy of model detection and segmentation.

4. Based on the shortage of existing remote sensing instance segmentation datasets, we
selected a total of 1800 multi-object types of images from existing public datasets for
annotation and created the MRS-1800 remote sensing mask dataset as the experimental
resource for this paper.
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2. Related Works

In this section, we introduce some previous works related to object detection and
instance segmentation. For comparative analysis, we divide the content into CNN-based
and transformer-based object detection and segmentation-related network models.

2.1. CNN-Based Object Detection and Instance Segmentation

In recent years, CNN-based object detection models have developed rapidly. The
current object detection algorithms based on deep learning can be divided into two-stage
object detection algorithms and single-stage object detection algorithms. Two-stage object
detection is mainly represented by a series of regional convolutional neural network
(Region-CNN, R-CNN) algorithms: the spatial pyramid pooling network (SPP-Net) [20]
solves the problem of redundant operations; Fast R-CNN [21] based on R-CNN and SPP-
Net proposes the concept of an region of interest (ROI) pooling layer, which can map the
feature maps of different sizes of candidate regions to fixed-size feature maps; Faster R-
CNN [6] uses the CNN-based region proposal network (RPN) to replace the selective search
algorithm. The RPN can take an image feature map as an input, and then output a series
of candidate regions. The single-stage object detection algorithm directly uses a single
network to predict the category and location of the object of interest, mainly represented by
the you only look once (YOLO) [22] series of algorithms. The single-shot multibox detector
(SSD) [23] uses multiple-scale feature maps to perform detection tasks. On the basis of a
feature pyramid network (FPN) [24], Tsung-Yi Lin et al. proposed Retinanet [25], which
further improved the performance of the single-stage object detection algorithm.

At present, CNN-based instance segmentation algorithms can be divided into two
main types: The top-down method and the bottom-up method. Compared with the
top-down instance segmentation algorithm, the bottom-up algorithm usually has lower
accuracy and more computation, such as the Proposal-Free [26] network.

The top-down method is based on the object detection algorithm. First, the object
detection algorithm is used to find the bounding box of the object, semantic segmentation
is then performed within the bounding box of each object, and, finally, each segmentation
result is output as an instance. In the single-stage instance segmentation algorithm, inspired
by YOLO, SOLO [11] directly decouples the instance segmentation problem into category
prediction and instance mask generation problems. There is no need to generate bounding
boxes during the prediction process. SOLO V2 [27] makes a further adjustment; Center-
Mask [28] adds a head network to predict the mask to the single-order end object detection
algorithm, FCOS [29], to complete instance segmentation. Although these methods have
a certain speed advantage over the two-step method, they are usually unable to achieve
the accuracy of the two-step method. In terms of the two-stage algorithm, He Kaiming
et al. proposed Mask R-CNN [7], a simple and effective instance segmentation framework.
Mask R-CNN adds a mask branch to the head network of Faster R-CNN. Additionally, the
original classification branch and regression branch are juxtaposed with the mask branch.
Inspired by Mask R-CNN, Shu Liu [8] et al. proposed PANet, which makes full use of
shallow network features for instance segmentation; Mask Scoring R-CNN [9], on the basis
of the Mask R-CNN, expands with an additional mask branch in order to obtain a more
accurate mask. Cascade Mask R-CNN [10] combines Mask R-CNN with Cascade R-CNN,
which slightly improves detection accuracy, but it is still unsatisfactory in mask prediction.
The key reason for this is that the ability of the CNN to capture long-range features is
relatively weak, and the problem of establishing the global relations in the image has not
been solved.

2.2. Transformer-Based Object Detection and Instance Segmentation

Transformers are deep neural networks mainly based on the self-attention mecha-
nism [12], and were originally applied in the field of natural language processing and later
extended to computer vision tasks. Compared with the CNN network, the advantage of
the transformer lies in the use of self-attention to capture global contextual information to
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establish a long-range dependence on the object, thereby extracting more powerful features.
The structure of the self-attention mechanism is shown in Figure 2. For each element in the
input sequence, it will generate Q (query), K (key), and V (value) through three learning
matrices. In order to determine the relevance between an element and other elements in
the sequence, the dot product is calculated between the Q vector of this element with the
K vectors of other elements. The results determine the relative importance of patches in
the sequence. Then, the results of the dot product are then scaled and fed into a softmax.
Finally, the value of the vector for each patch embedding is multiplied by the output of the
softmax to find the patch with the high attention scores.

Figure 2. Structure of self-attention mechanism.

In 2020, Carion et al. [14] combined the CNN and the transformer to propose a com-
plete end-to-end DETR object detection framework, applying transformer architecture to
object detection for the first time. Zhu [30] et al. proposed the Deformable DETR model
that draws on the variable convolutional neural network. Zheng et al. [31] proposed the
end-to-end object detection with adaptive clustering transformer (ACT) to reduce the
computational complexity of the self-attention module. DETR can naturally extend the
panoramic segmentation task by attaching a mask head to the decoder and obtaining
competitive results. Wang et al. [32] proposed a transformer-based video instance segmen-
tation (VisTR) model, which takes a series of images as inputs and generates corresponding
instance prediction results. Although these models perform well in object detection tasks,
they still have many shortcomings. For example, the detection speed of the DETR series
models is slow, and the detection performance of small objects is not effective.

For remote sensing images, the image resolution is high, which increases the cal-
culation size of the transformer models. Remote sensing images usually have complex
background information and variable object scales, and the training effect of a single-
level transformer network is not effective. Based on the above problems, the Swin trans-
former [18] was proposed to solve the problems of a high amount of computation and the
poor detection effect of dense objects, but it still has weak local information acquisition ca-
pabilities.

Therefore, for the object detection and instance segmentation of remote sensing images,
we need to exploit both the advantages of CNNs to address the underlying vision and
those of transformers to address the relationship between visual elements and objects. We
need to then design a novel backbone network and detection framework and focus on
enhancing the mask prediction ability to improve the detection and segmentation accuracy
of remote sensing images.
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3. Materials and Methods

This section focuses on the designed network structure. As shown in Figure 3, the
model feeds the input image to the local perception Swin transformer (LPSW) backbone
network. After the feature map is generated, it is sent to the spatial attention interleaved
execution cascade (SAIEC) network model after the FPN structure. The back-end of
the model performs feature map classifications, bounding box regression, and instance
segmentation tasks. In our model, each bounding box is divided into object and non-object
regions. The detailed information of each module is introduced below:

Figure 3. Flow chart of the designed model, which combines the proposed local perception Swin
transformer (LPSW) backbone network with the spatial attention interleaved execution cascade
(SAIEC) network framework and includes feature pyramid network (FPN) and region of interest
(ROI) structures. The new network model can accurately complete remote sensing image object
detection and instance segmentation tasks.

3.1. Local Perception Swin Transformer (LPSW) Backbone

The flow chart of the proposed local perception Swin transformer (LPSW) backbone
network is shown in Figure 4. The Swin transformer provides four versions of the model,
which, from large to small [18], are Swin-T, Swin-S, Swin-B and Swin-L. Taking into
account the particularity and computational complexity of remote sensing images, this
paper introduces Swin-T. Each stage has 2, 2, 6, and 2 blocks, respectively.

Similar to ViT, it first splits an input RGB image into non-overlapping patches by patch
partition layer. Each patch is treated as a “token” and its feature is set as a concatenation
of the raw pixel RGB values. The Swin transformer contains four stages to produce a
different number of tokens. Given an image with a size of H × W, a token is a raw pixel
concatenation vector of an RGB image patch with the size of 4 × 4. A linear embedding
is employed on this token to map it in a vector with the dimension C. Stages 1, 2, 3, and
4 produce H

4 ×
W
4 , H

8 ×
W
8 , H

16×
W
16 , and H

32×
W
32 tokens, respectively. Each stage consists of

a patch merging block (a combination of a patch partition layer and a linear embedding
layer), local perception block, and some Swin transformer blocks.
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Figure 4. The architecture of the local perception Swin transformer (LPSW). (a) The detailed structure of the local perception
block; (b) the detailed structure of the Swin transformer block.

3.1.1. Swin Transformer Block

The Swin transformer block is the core part of the Swin transformer algorithm. The
detailed structure is shown in Figure 4b. The block is composed of window multi-head self-
attention (W-MSA), shifted windows multi-head self-attention (SW-MSA) and multilayer
perceptron (MLP). Inserting a layernorm (LN) layer in the middle makes the training more
stable and uses a residual connection after each module. This part can be expressed as
Equation (1):

X̂l = W − MSA
(

LN
(

Xl−1
))

+ Xl−1

Xl = MLP
(

LN
(

X̂l
))

+ X̂l

X̂l+1 = SW − MSA
(

LN
(

Xl
))

+ Xl

Xl+1 = MLP
(

LN
(

X̂l+1
))

+ X̂l+1

(1)

3.1.2. W-MSA and SW-MSA

Compared with the Multi-Head Self Attention (MSA) [12] in the traditional ViT, the
W-MSA in the Swin transformer block controls the calculation area in a window as a unit
(window size is set to 7 by default). This reduces the amount of network calculations and
reduces the complexity to a linear ratio of the image size, as shown in Figure 5. MSA lacks
connections across windows. The position of SW-MSA is connected to the W-MSA layer.
Therefore, SW-MSA is required to provide a different window segmentation method after
W-MSA to realize cross-window communication.
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Figure 5. The mechanism of action of the shifted windows. (a) The input image; (b) Window segmentation (window size is
set to 7) of the input image through the window multi-head self-attention (W-MSA); (c) Action of the shifted windows;
(d) A different window segmentation method through the shifted windows multi-head self-attention (SW-MSA).

The result of window segmentation of the input image through W-MSA is shown in
Figure 5b. Each cycle of the image is moved up and left by half the size of the window,
and the blue and red areas in Figure 5c are then moved to the lower and right sides of the
image, respectively, as shown in Figure 5d. On the basis of these shifts, the window is
divided according to W-MSA, and SW-MSA has a window segmentation method different
from W-MSA.

3.1.3. Local Perception Block (LPB)

Position encoding in a transformer can easily fail to detect the local correlation and
structural information of the image. Although the Swin transformer has a shift window
scheme of sequential layers in a hierarchical structure, a large range of spatial context
information is still not well encoded. In order to alleviate this problem, we proposed the
local perception block (LPB), which is inserted in front of the Swin transformer block. The
composition of the local perception block is shown in Figure 4a.

Considering that the data flow in the Swin transformer consists of vectors instead of
feature maps in traditional CNNs, in the LPB, it firstly reshapes a group of vector features
into a spatial feature map. For example, a token (B, H * W, C) is reshaped as a feature map
(B, C, H, W). A layer of 3 × 3 dilated convolution (dilation = 2) and a GELU activation
function is then added, and a residual connection is used to increase the extraction of
spatial local features while keeping the receptive field sufficiently large. Finally, the feature
map is reshaped to (B, H, W, C) and sent to the Swin transformer block.

Through the characteristics of dilated convolution, the receptive field of the spatial
image is increased, such that a large range of contextual information can be coded well
at different scales. Dilated convolution was proposed by Yu and Koltun [33] in 2015.
Compared with the traditional convolution operation, dilated convolution supports the
expansion of the receptive field. It is worth noting that the traditional 3 × 3 convolutions
each have a 3 × 3 field. If it is a dilated convolution (dilation = 2) with the same kernel size,
the receptive field is 7 × 7. Therefore, dilated convolution can extend the corresponding
field without a loss of feature resolution.

3.2. Spatial Attention Interleaved Execution Cascade (SAIEC)

The proposal of Cascade R-CNN mainly defines the input intersection over union
(IoU) threshold of positive and negative samples at different stages. The detector pays
more attention to the positive samples within the threshold because of the difference in
IoU input at each stage. The output IoU threshold is better than the input IoU threshold,
which provides better positive samples for the next stage. Each stage is in a progressive
relationship, such that the detector effect can gradually improve. Cascade Mask R-CNN is
a product that directly combines Mask R-CNN and Cascade R-CNN. Although it improves
in box AP, it does not improve significantly in mask AP. Therefore, inspired by the HTC
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algorithm, we improve Cascade Mask R-CNN and propose the spatial attention interleaved
execution cascade (SAIEC), a new framework of instance segmentation. The specific
improvement methods are as follows.

3.2.1. Interleaved Execution and Mask Information Flow

We improved the network head of Cascade Mask R-CNN, as shown in Figure 6.
Although Cascade R-CNN forces two branches into each stage, there is no interaction
between the two branches during the training process, and they are executed in parallel.
Therefore, we propose the interleaved execution; that is, in each stage, the box branch is
executed first, and the updated bounding box predictions are then passed to the mask
branch to predict the mask, as shown in Figure 6b. In the figure, F represents the features
of the backbone network, P is the ROI Align or ROI pooling, and Bi and Mi denote the box
and mask head at the i-th stage. This not only increases the interaction between different
branches in each stage, but also eliminates the gap between training and testing processes.

Figure 6. The Cascade Mask R-CNN network head improvement process. (a) The Cascade Mask
R-CNN network head; (b) The addition of the interleaved execution in the network head; (c) The
final network head structure after adding Mask Information Flow.

At the same time, in the Cascade Mask R-CNN, only the current stage in the box
branch has an impact on the next stage, and the mask branch between different stages
does not have any direct information flow. In order to solve this problem, we added a
connection between adjacent mask branches, as shown in Figure 6c. We provided mask
information flow for the mask branch so that Mi+1 could obtain the features of Mi. The
specific implementation is shown above in the red part of Figure 7. We used the feature of
Mi to perform feature embedding through a 1 × 1 convolution, and then entered it into
Mi+1. In this way, Mi+1 could obtain the characteristics of not only the backbone, but also
the previous stage.
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Figure 7. Structure of the spatial attention mask head. It includes the improved spatial attention module, which helping to
focus on objects and suppressing noise.

3.2.2. Spatial Attention Mask Head

The attention method [34] helps one to focus on important features and suppress
unnecessary noise. Inspired by the spatial attention mechanism [35], we designed the
spatial attention mask head, using the spatial attention module to guide the mask head, in
order to highlight meaningful pixels and suppress useless pixels. As shown in Figure 7, we
improved on the original mask head. We designed an improved spatial attention module
and inserted it before transposed convolution. In the spatial attention mask head, the
resized local features need to pass through four 3 × 3 convolution layers with 256 channels,
and then pass through the improved spatial attention module. The improved spatial
attention module first generates pooled features Pmax and Pavg by both average and max
pooling operations, respectively, along the channel axis, and then aggregates them via
concatenation. This is followed by a 3 × 3 dilated convolution layer and is normalized by
the sigmoid function. The computation process is summarized as follows:

Xsa = Xi ⊗ sigmoid(D3×3(Pmax ◦ Pavg)) (2)

where ⊗ denotes element-wise multiplication, Xsa is the attention-guided feature map,
D3×3 is the 3 × 3 conv layer, and ◦ represents the concatenate operation. Afterwards, 2 × 2
deconv is used for upsampling and 1 × 1 conv is used to predict the category of the specific
mask. By combining the above structures, we completed the design of the mask branch in
the SAIEC framework. The spatial attention mask head not only effectively improves the
cross-stage information communication in the network, but also adds a spatial attention
mechanism to help with focusing on objects and suppressing noise.

4. Results
4.1. Dataset

There are many conventional object detection datasets. Models that are trained based
on conventional datasets do not perform well on remote sensing images. The main reason
is the particularity of remote sensing images, and few datasets are related to remote sensing
image object detection and instance segmentation. Therefore, we selected images from
three public datasets (Object Detection in Optical Remote Sensing Images (DIOR) [36], High
Resolution Remote Sensing Detection (HRRSD) [37], and convolutional neural networks for
object detection in VHR optical remote sensing images (NWPU VHR-10) [38]) to produce
new remote sensing image object detection and instance segmentation datasets. The
research group of the Western University of Technology proposed a large-scale benchmark
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dataset “DIOR” for object detection in optical remote sensing images, which consists of
23,463 images and 190,288 object examples and is based on deep learning. The image size is
800 × 800 pixel, and the resolution ranges from 0.5 m to 30 m. The aerospace remote sensing
object detection dataset “NWPU VHR-10,” annotated by Northwestern Polytechnical
University, has a total of 800 images, including 650 of the objects and 150 background
images. Objects include: airplanes, ships, oil tanks, baseball fields, and nets. There are
10 categories of courts, basketball courts, track and field arenas, ports, bridges, and vehicles.
HRRSD is a dataset produced by the Optical Image Analysis and Learning Center of the
Xi’an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences for research on
object detection in high-resolution remote sensing images. The image resolution ranges
from 500 × 500 pixels to 1400 × 1000 pixels.

We selected high-resolution images from these three public datasets for manual an-
notation, and performed data enhancement on the labeled dataset by vertically flipping,
horizontally flipping, rotating, and cutting to create the MRS-1800 remote sensing mask
dataset. We merged these three classic remote sensing datasets together, which can be
regarded as a means of data enhancement and expansion. This approach allowed our
dataset to contain more styles and sizes of remote sensing images, making the dataset more
challenging. Training our model in this way can help overcome the overfitting problem,
thereby improving the robustness and generalization ability of the model.

The MRS-1800 dataset has a total of 1800 remote sensing images. The size of the
images varies and the dataset contains a variety of detection objects. The detection objects
are divided into three categories: planes, ships, and storage tanks. The specific information
of the dataset is shown in Table 1.

Table 1. Number distribution of datasets and class.

Dataset Dior Hrrsd Nwpu Vhr-10 Statistics

Number 403 1093 304 1800
Class Plane Ship Storage tank

Number 674 687 557

Figure 8 shows part of the images and mask information of the MRS-1800 dataset.
Different sizes of high-resolution images contain different types of objects. We used
LabelMe 4.5.9 (Boston, MA, USA) to mark the image with mask information and generate
the corresponding “json” files. The dataset contains planes, ships, and storage tanks of
different sizes. A total of 16,318 objects were collected, and the object sizes include three
types: large, medium and small (ranging from 32 × 32 pixels to 500 × 500 pixels), and
the numbers of these types are evenly distributed. We used 1440 images as the training
set, 180 images as the validation set, and 180 images as the test set, according to the 8:1:1
allocation ratio.

4.2. Experiments and Analysis

Throughout the experiment, we used a computer equipped with a Geforce RTX 3060
GPU (12 G) as the hardware platform for the experiment. We used pytorch as the DL
framework, and the compilation environment was python 3.8 and pytorch 1.8.1. We used
multiple classic frameworks such as Mask R-CNN [7], Sparse R-CNN [39], Cascade Mask
R-CNN [10], DETR [14], and so on. Additionally, we used Resnet-50 (R-50), the Swin
transformer and LPST backbone networks. Suitable pre-training models were chosen to
train the self-made dataset, MRS-1800.

We used the same settings in training for the proposed models: multi-scale training
(the input size was adjusted so that the short side was between 480 and 800, and the long
side was, at most, 1333), the AdamW [40] optimizer (the initial learning rate was 0.00001,
the weight decay was 0.05, and the batch size was 1), and 3× scheduling (50 epochs with
the learning rate decayed by 10× at 27 epochs). We chose some deep learning indicators as
our experimental evaluation criteria, such as frames per second (FPS), ARS (the average
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recall measurement value of object frames smaller than 32 × 32 pixels), average precision
(AP), AP50 (AP measurement value when the IoU threshold is 0.5), AP75 (AP measurement
value when the IoU threshold is 0.75), APS (the AP measurement value of object frames
smaller than 32 × 32 pixel), and their mask counterparts: mask AP, mask AP50, mask
AP75, and mask APS. AP and AR are averaged over multiple intersection over union (IoU)
values, where the IoU threshold value ranges from 0.5 to 0.95, with a stride of 0.05. Mask
AP is used to comprehensively evaluate the effectiveness of the instance segmentation
model. The difference from box AP is only that the objects of the IoU threshold are different.
The box AP functions in the standard ordinary ground truth and the IoU value of the
prediction box, while the mask AP functions in the ground truth mask and the mask IoU of
the prediction mask.

Figure 8. MRS-1800 dataset display. The top row is the remote sensing images of different sizes
randomly selected in the dataset, and the next row contains corresponding mask images produced
with LabelMe.

Figure 9 shows the mask loss function graph during the training of the network model
we designed. It can be seen that the network model is still under-fitting during the first
38 k steps (27 epochs), and the loss function fluctuates greatly. We adjusted the learning
rate in time after 38 k steps to avoid overfitting. The training loss value after the final step
was 0.03479.

Figure 9. The training mask loss function diagram of the LPSW backbone using the SAIEC framework
on the dataset.
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4.3. Ablation Experiment

We performed a number of ablation experiments to gradually verify each component
in the proposed method in this section. We analyzed and compared the data trained on the
MRS-1800 dataset. The specific experiments are as follows:

4.3.1. Study for Optimizer and Initial Learning Rate

The optimizer plays an important role in deep learning. We first conducted ablation
experiments on the selection of the optimizer and the corresponding parameter values.
Commonly used optimizers for object detection are the SGD [41] and the AdamW [40].
We chose Cascade Mask R-CNN as the network framework and the Swin transformer as
the backbone network, using the SGD and the AdamW optimizers for experiments. At
the same time, in order to explore the influence of the optimizer’s initial learning rate
parameters on the experiment, we set the initial learning rate to 1 × 10−4, 1 × 10−5, and
1 × 10−6 for comparison experiments.

It can be seen from Table 2 that the overall performance of the AdamW is better than
that of the SGD, and AP can increase by more than 8% by replacing the optimizer. In
addition, it can be drawn from the table that when the initial learning rate is 1 × 10−5, the
model can achieve the highest detection accuracy. Therefore, we can conclude that the
Swin transformer can achieve a better performance when the AdamW optimizer is used
for model training and the initial learning rate is 1 × 10−5.

Table 2. The results of optimizers and learning rate ablation study.

Method Optimizer Learning Rate APbox APmask

Swin-T

SGD
1 × 10−4 60.1 33.9
1 × 10−5 69.2 52.1
1 × 10−6 53.6 41.5

AdamW
1 × 10−4 73.9 58.0
1 × 10−5 77.2 60.7
1 × 10−6 75.0 58.4

4.3.2. Experiment for the Swin Transformer and LPST Backbone

We inserted the Swin transformer (Swin-T) and LPST as a new backbone network into
typical object detection frameworks: Mask R-CNN and Cascade Mask R-CNN, for object
detection and instance segmentation experiments. We compared them with traditional
convolutional networks (Sparse R-CNN, PANet, and Mask Scoring R-CNN) and previous
transformer networks (DETR). The experimental results are shown in Table 3.

Table 3. Detection and segmentation performance of different methods.

Various Frameworks
Method Backbone APbox APbox

50 APbox
75 APbox

s APmask APmask
50 APmask

75 APmask
s ARS FPS

Mask
R-CNN

R-50
Swin-T
LPST

69.0
75.5
75.8

91.5
92.8
93.1

83.3
88.1
88.0

31.6
44.6
46.6

57.2
60.9
60.4

90.5
91.7
92.1

58.9
66.6
65.8

25.0
34.1
36.2

44.1
47.2
49.2

11.5
8.6
8.1

Cascade
Mask

R-CNN

R-50
Swin-T
LPST

72.1
77.2
77.4

91.0
92.7
93.0

83.3
87.6
88.0

31.3
41.5
46.7

56.6
60.7
61.3

90.3
91.4
91.7

57.7
66.3
68.3

32.9
31.7
36.8

38.5
45.5
50.0

8.4
5.4
5.1

Mask
Scoring R-50 71.9 91.5 84.5 40.3 60.7 90.4 67.4 32.4 43.5 11.4

Sparse
R-CNN R-50 73.9 91.0 83.8 35.4 39.4 13.4

PANet R-50 71.6 91.8 84.5 35.3 38.3 12.1
DETR R-50 65.3 86.7 74.3 21.4 29.7 15.1
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Table 3 shows that, compared with the traditional CNN models, in each framework,
the use of the Swin transformer and the LPSW as the backbone network has a greater
improvement in the various indicators of the experimental results. Compared with the
previous transformer network, the experimental result of Swin-T based on Cascade Mask
R-CNN is 11.9% AP and 20.1% APs higher than DETR, which is sufficient to prove the
superiority of the Swin transformer. It overcomes the shortcoming of the transformer’s
poor small-scale objects detection and slow convergence.

At the same time, we compared the LPSW with Swin-T using the same basic frame-
work. The experimental results show that, after using the LPSW, the experimental indica-
tors are improved: when using the Cascade Mask R-CNN framework, APs increased by
5.2%, mask APS increased by 5.1%, ARs increased by 4.5%, and mask AP and AP increased
by 0.6% and 0.2%, respectively. The data show that, for the Swin transformer, the LPSW
significantly improved the detection and segmentation of small-scale objects without a
significant reduction in the inference speed. Due to the large number of small objects in
remote sensing images, this improvement was exactly what was necessary.

The result generated by the traditional Cascade Mask R-CNN, the Swin-T, and LPSW
are shown in Figures 10–12. Compared with the traditional CNN network, the Swin
transformer pays more attention to the learning of global features; particularly, the detection
ability of image edge objects was greatly improved. As shown in the enlarged images on
the right side of Figures 10 and 11, Cascade Mask R-CNN has a low confidence in terms of
the detection of ships in the upper right of the image, and false detection objects appeared.
The Swin transformer does not detect false objects for the same edge detection area, and
the confidence of object detection increases.

Compared with the Swin transformer, the LPSW pays more attention to local features.
As shown in Figures 11 and 12, the most obvious difference between the two images is that
the LPSW eliminates the false detection of white buildings in the lower part of the image.
In addition, the number of real objects detected by the LPSW increases, and the confidence
of object detection also improves.

Figure 10. The results of Cascade Mask R-CNN using the Resnet-50 backbone.
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Figure 11. The results of Cascade Mask R-CNN using the Swin transformer backbone.

Figure 12. The results of Cascade Mask R-CNN using the LPSW backbone.

4.3.3. Experience for SAIEC and the New Network Model

We used the newly designed SAIEC network framework to perform object detection
and instance segmentation on remote sensing images. The MRS-1800 dataset was used,
and the backbone network used the LPSW and Swin-T. In order to verify the effectiveness
of the improved model designed, we compared the experimental results with data in
Section 4.3.1. At the same time, we compared and analyzed the designed model with the
current SOTA object detection model on the COCO dataset (the Swin transformer using an
HTC framework) [18].

Since this paper improves Cascade Mask R-CNN and the Swin transformer, respec-
tively, we considered Swin-T using the Cascade Mask R-CNN framework as the baseline.
It can be concluded from Table 4 that, compared with the baseline, the object detection
and instance segmentation model we designed (the SAIEC network framework using the
LPSW backbone) saw an improvement in all indicators. Among them, mask AP increased
by 1.7%, mask AP75 increased by 4.0%, mask APS increased by 3.6%, AP increased by 1.1%,
APS increased by 4.6%, and ARS increased by 7.7%.
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Table 4. Performance comparison of each part of the improved model.

Method APbox APbox
50 APbox

75 APbox
s APmask APmask

50 APmask
75 APmask

s ARS FPS

Cascade Mask R-CNN
(Swin-T) baseline 77.2 92.7 87.6 41.5 60.7 91.4 66.3 31.7 45.5 5.4

Cascade Mask R-CNN
(LPSW) 77.4 93.0 88.0 46.7

(+5.2) 61.3 91.7 68.3 36.8
(+5.1) 50.0 5.1

HTC (Swin-S [18]) 77.8 93.3 88.1 46.6 61.9 92.4 68.8 35.9 51.8 4.6
HTC (Swin-T) 77.4 92.7 88.2 41.7 61.6 91.9 69.7 31.4 49.6 5.4

SAIEC (Swin-T) 77.8 93.2 88.7 43.4 62.3 92.0 69.4 33.7 50.0 5.5
SAIEC (LPSW)

(ours)
78.3

(+1.1) 93.0 88.7 46.1
(+4.6)

62.4
(+1.7) 92.3 70.3

(+4.0)
35.3

(+3.6)
53.2

(+7.7) 5.1

The data show that the network model we designed greatly improved the detection
and segmentation of small-scale objects in remote sensing images. The increase in the
detection rate of small-scale objects affects the improvement of AP75 and mask AP75. Com-
pared with the current SOTA network (the Swin transformer using an HTC framework),
the indicators of the model designed in this article are similar or even surpassed, and the in-
ference speed is higher (5.1 FPS vs. 4.6 FPS). The above experimental data demonstrate the
advantages of the model proposed in this paper in remote sensing image object detection
and instance segmentation.

Figure 13 shows the remote sensing image segmentation results of traditional Cascade
Mask R-CNN, the Swin transformer using Cascade Mask R-CNN and the network pro-
posed in this paper. It can be seen from the figure that Cascade R-CNN is not ideal in terms
of overall segmentation effect or edge detail processing. Although the Swin transformer is
optimized for the overall segmentation effect, it does not accurately present the details of
the edge. In contrast, it can be seen from the figure that the network model proposed in
this paper shows good results in remote sensing images, and the details at the edges are
well segmented.

Figure 13. Segmentation results of remote sensing images by various networks. (a–c) Detection results of the traditional
Cascade Mask R-CNN, the Swin transformer using Cascade Mask R-CNN and the LPSW using SAIEC.
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5. Discussion

Because convolutional neural networks (CNN) have shown defects in the object
detection of remote sensing images. We innovatively introduced the Swin transformer
as the basic detection network, and designed the LPSW backbone network and SAIEC
network framework for improvement. Experimental results show that the new network
model we designed can greatly improve the detection effect of small-scale objects in
remote sensing images and can strengthen the segmentation accuracy of multi-scale objects.
However, it is worth noting that our experiment was only conducted on the MRS-1800
dataset due to the lack of mature and open remote sensing mask datasets, which may be
limited in number and type. Moreover, our research on the improvement and promotion
of the model inference speed is not sufficient. Generally, the processed images will be
affected by uncertain factors [42]; however, it is also necessary to use fuzzy preprocessing
techniques on images. In future research, we will focus on solving the above problems.
First, we will search for and create more remote sensing mask datasets containing more
object types, and use more realistic and representative datasets to validate our new models.
Secondly, designing a lightweight network model to improve the inference speed without
the loss of detection accuracy will be our next research direction.

6. Conclusions

Remote sensing image object detection and instance segmentation tasks have impor-
tant research significance for the development of aviation and remote sensing fields, and
have broad application prospects in many practical scenarios. First, we created the MRS-
1800 remote sensing mask dataset, which contains multiple types of objects. Second, we
introduced the Swin transformer into remote sensing image object detection and instance
segmentation. This paper improved the Swin transformer based on the advantages and
disadvantages of transformers and CNNs, and we designed the local perception Swin
transformer (LPSW) backbone network. Finally, in order to increase the mask prediction
accuracy of remote sensing image instance segmentation tasks, we designed the spatial
attention interleaved execution cascade (SAIEC) network framework. Experimental con-
clusions can be drawn for the MRS-1800 remote sensing mask dataset: (1) According to
experiments, the SAIEC model using the LPSW as the backbone can improve mask AP by
1.7%, mask APS by 3.6%, AP by 1.1%, and APS by 4.6%. (2) The innovative combination of
CNNs and transformers’ advantages in capturing local information and global information
can significantly improve the detection and segmentation accuracy of small-scale objects.
Inserting the interleaved execution structure and the improved spatial attention module
into the mask head can help to suppress noise and enhance the mask prediction of the
network. (3) Compared with the current SOTA model in the COCO dataset, the model
proposed in this paper also demonstrates important advantages.
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