
remote sensing  

Article

Forest Structural Estimates Derived Using a Practical,
Open-Source Lidar-Processing Workflow

Joseph St. Peter 1,* , Jason Drake 1,2 , Paul Medley 1,2 and Victor Ibeanusi 1

����������
�������

Citation: St. Peter, J.; Drake, J.;

Medley, P.; Ibeanusi, V. Forest

Structural Estimates Derived

Using a Practical, Open-Source

Lidar-Processing Workflow. Remote

Sens. 2021, 13, 4763. https://doi.org/

10.3390/rs13234763

Academic Editor: Francisco

Javier Mesas Carrascosa

Received: 18 October 2021

Accepted: 22 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center for Spatial Ecology and Restoration, Florida Agricultural & Mechanical University, Tallahassee,
FL 32307, USA; jason.drake@usda.gov (J.D.); paul.b.medley@usda.gov (P.M.); victor.ibeanusi@famu.edu (V.I.)

2 U.S. Forest Service, National Forests in Florida, Tallahassee, FL 32303, USA
* Correspondence: joseph.stpeter@famu.edu

Abstract: Lidar data is increasingly available over large spatial extents and can also be combined
with satellite imagery to provide detailed vegetation structural metrics. To fully realize the benefits
of lidar data, practical and scalable processing workflows are needed. In this study, we used the
lidR R software package, a custom forest metrics function in R, and a distributed cloud computing
environment to process 11 TB of airborne lidar data covering ~22,900 km2 into 28 height, cover, and
density metrics. We combined these lidar outputs with field plot data to model basal area, trees per
acre, and quadratic mean diameter. We compared lidar-only models with models informed by spectral
imagery only, and lidar and spectral imagery together. We found that lidar models outperformed
spectral imagery models for all three metrics, and combination models performed slightly better
than lidar models in two of the three metrics. One lidar variable, the relative density of low midstory
canopy, was selected in all lidar and combination models, demonstrating the importance of midstory
forest structure in the study area. In general, this open-source lidar-processing workflow provides a
practical, scalable option for estimating structure over large, forested landscapes. The methodology
and systems used for this study offered us the capability to process large quantities of lidar data into
useful forest structure metrics in compressed timeframes.

Keywords: lidar; remote sensing; basal area; forest structure; general linear model; National Forest;
Florida; lidR; Sentinel-2

1. Introduction

Light detection and ranging (lidar) is an active remote-sensing technique that uses
laser light ranging to record the distance from the sensor to the surface of the object it
strikes. Discrete-return lidar systems are increasingly used in forestry and natural resource
fields [1]. Lidar data are increasingly accessible over larger spatial extents. For example,
the USGS 3D Elevation Program is acquiring complete lidar coverage over the United
States while providing open access through data download portals [2]. Simultaneously,
collection platforms and sensor technology have become cheaper and more compact,
which allows for new platforms to procure lidar data from drones and terrestrial scanning
devices. Consequently, this has resulted in greater ability to collect lidar quickly at finer
spatial resolution. This increase in availability and abundance of lidar data provides
opportunities for land managers to create and use fine spatial resolution and large spatial
extent vegetation information to inform and monitor their management activities. However,
exploiting this increasing volume of data presents major processing challenges that require
the use of open-source, flexible software; and the development of practical implementation
workflows [3].

When combined with field plots, lidar data can be used to estimate forest stand density,
basal area, vegetation biomass [4–7], and understory canopy structure [8], which gives lidar
data a distinct advantage over passive spectral sensors that cannot observe structure under
dense-canopied forests. Some recent studies have shown that fine-resolution remotely
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sensed imagery can be as, or more, accurate than lidar at estimating some common forest
structure metrics [6,9]. However, in structurally diverse forests in the Southeastern U.S.,
lidar’s ability to observe multiple forest canopy layers has the potential to significantly
improve estimation of forest metrics. Mid- and understory forest canopies are also impor-
tant in the Southeastern U.S. for longleaf pine ecosystem condition assessments [10,11],
midstory delineation to determine endangered species habitat conditions [12], evapotran-
spiration calculations [13], and prescribed fire planning and management [14,15]. Previous
studies have also shown the potential for combining imagery and lidar data in forest metric
models to improve forest metric estimation [16].

However, to gain these benefits from lidar data, land managers must have the ability to
process lidar point cloud data quickly and efficiently to produce vegetation and forest stand
metric derivatives [17]. Currently, there are several software options for processing lidar
point cloud datasets, including LAStools [18], Whitebox GAT [19], FUSION [20], Laser-
chicken [3], rLidar package [21], and lidR [22], among others. These software programs
each have their own unique advantages and disadvantages. The most common disadvan-
tage is that most were not designed for the computational scaling that is required to process
landscape or regional scale lidar datasets [3]. Additionally, all require some programming
skill to be used effectively, and even greater proficiency is necessary if users require custom
outputs. This creates barriers for some land managers and/or land management agencies.
Furthermore, processing and distributing large lidar datasets requires additional logistical
and computational support, even when the processing software supports this functionality.

The primary purpose of this study was to lower these production barriers by demon-
strating a rapid, accurate, open-source, scalable, and transferrable discreet lidar-data-
processing workflow for forestry applications. Second, we demonstrated this workflow
by creating spatial forest structural estimates from lidar data that contained estimates of
understory canopy structure, which are important for categorizing habitat in the Southeast-
ern U.S. Finally, we demonstrated the improvement lidar data can provide to models of
forest metrics by comparing lidar-derived models to models derived from spectral imagery
and models created from a combination of lidar data and spectral imagery.

2. Materials and Methods
2.1. Study Area

The area of interest in this study consisted of 11 contiguous counties in the Florida Pan-
handle totaling about 22,900 km2. This area contains various publicly held lands, including
the Apalachicola National Forest and Tate’s Hell State Forest (Figure 1). Forested lands,
both public and private, are a key component to this area’s status as a North American
biodiversity hotspot [23]. This area is also the focus of multiagency long-term restoration
projects [24] related to the presence of the threatened longleaf pine ecosystem [25] and the
downstream Apalachicola Bay, which was impacted by the Deepwater Horizon oil spill [26].
This area was also heavily impacted by category 5 Hurricane Michael on 7 October 2018;
however, all the data presented here were collected prior to Michael’s landfall.
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Figure 1. Study area in the Florida panhandle (~22,900 km2). Areas of each lidar dataset are shown in different colors and
labelled accordingly. Block2 and Block3 are shown using the same color, as these datasets were collected at the same time
and separated during postprocessing. The Apalachicola National Forest and Tate’s Hell State Forest are shown in gray.

2.2. Forestry Plot Data

The 246 forested field plots used in this study were established between December
2017 and March 2018. These plots were designed to be related to remotely sensed data
following recommendations from Hogland et al., 2020 [27]. The plots were 36 m square
plots containing four 9 m diameter nonoverlapping subplots. The area of the subplots,
where observations were taken, represented 78.5% of the total area of the plot. Subplot
observation data consisted of tree species, tree condition, and diameter at breast height
(DBH) for each tree within the subplots, as well as vegetation cover for the entire subplot
and subplot tree counts. These plots covered 27 unique natural communities as defined by
the Florida Natural Areas Inventory [28], of which the most common were pine plantations,
wet and mesic flatwoods, and sandhills.

Forest structural metrics produced in this study were trees per hectare (TPH), basal
area, and quadratic mean diameter (QMD) for living trees. TPH was the number of tree
stems in a hectare area; basal area was the cross-sectional area of trees at breast height with
the units of meters squared per hectare (m2/ha). Within each subplot, individual tree’s
DBH were measured in square inches; this measurement was used to calculate the basal
area in square feet using Equation (1):

BA = 0.005454 × DBH2 (1)

The basal area for each tree was converted to square meters and then summed to the
subplots; an expansion factor of 9.8 was used to convert from square meters per subplot
to meters square per hectare. QMD is a commonly used measure of central tendency in
forestry, and was calculated using (Equation (2)):

QMD =
√

∑ D2
i /n (2)

where Di is the diameter at breast height in centimeters of the ith tree and n is the number
of trees in the plot. Summary statistics from our forested field plots are shown in Table 1.
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Table 1. Summary statistics from forest plots (n = 246).

BA (m2/ha) TPH QMD (cm) Elevation (m)

Min 0 0 0 0.34
Mean 20.07 1032.95 16.72 15.11

Median 17.66 756.49 16.78 9.35
Max 76.87 5943.74 63.97 75.35
SD 16.11 179.55 8.61 15.17

2.3. Lidar Data

Lidar data for this study were obtained from the United States Geological Survey 3D
Elevation (3DEP) Program [2]. Lidar was delivered as four collections of classified LAS
version 1.4 files. We refer to these collections as Leon, Block 2, Block 3, and Choctawhatchee
(Figure 1). The Leon lidar collection consisted of 876 (5000 ft × 5000 ft) tiles covering all of
Leon County. Leon data had a nominal pulse spacing (NPS) of 0.35 m and was acquired
between 5 February 2018 and 25 April 2018 [29]. Blocks 2 and 3 consisted of 6845 and
6598 (1 km × 1 km) tiles, respectively, and covered the western and southern counties
surrounding Leon County (Figure 1). Block 2 and Block 3 lidar were collected in early 2018
and had an NPS of 0.7 m [30]. The Choctawhatchee data were acquired in early 2017, and
had an NPS of 0.7 m. The Choctawhatchee lidar collection consisted of 3893 (1 km × 1 km)
tiles [31].

2.4. Relative Density Canopy Cover Function

Analysis was conducted using the R statistical software [32], and the R package lidR
(version 3.1.2) [22,33]. This software package is free, open source, and available for multiple
operating systems. In addition, lidR is readily customizable and provides many advanced
functions for working with lidar data for forestry applications. For correlation analysis
and figure production, the following R packages were utilized: PerformanceAnalytics [34],
corrplot [35], and Hmisc [36].

The relative density canopy cover function (RDCC) is a custom forest metric function
we built using tools provided in the lidR package [22,33]. This function provided specific
forest metric outputs (Table 2) identified as useful for quantifying tree volume, density,
and canopy cover in previous work [5,11]. Additionally, cover and density metrics specific
to multiple forest canopy layers (shrub, low midstory, high midstory, and upper canopy)
were produced using the RDCC function, as these have been identified as important for
multiple forest management objectives [8,11,12].

Table 2. List of the relative density canopy cover (RDCC) function output bands, variable names, and descriptions of the
output variables. These variables were forest metrics derived from LAS point cloud input files.

Band Variable Description

1 Num_Returns Total number of returns in cell
2 Num_GrndRet Number of ground returns in cell
3 Num_1stRet Number of first returns in cell
4 Grnd_Elev Ground elevations
5 Mn_RH Mean of all relative heights
6 SD_RH Std. dev of all relative heights
7 RHt_95th Relative height 95%
8 RHt_90th Relative height 90%
9 RHt_75th Relative height 75%
10 RHt_50th Relative height 50%
11 RHt_25th Relative height 25%
12 RHt_10th Relative height 10%
13 RHt_05th Relative height 5%
14 RD_2to10ft Relative density 0.6096-m to 3.048-m (shrubs)
15 RD_10to20ft Relative density 3.048-m to 6.096-m (low midstory)
16 RD_20to49ft Relative density 6.096-m to 14.935-m (high midstory)
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Table 2. Cont.

Band Variable Description

17 RD_gt2ft Relative density all returns ≥ 0.6096 m
18 RD_gt10ft Relative density all returns ≥ 3.048 m
19 RD_gt20ft Relative density all returns ≥ 6.096 m
20 RD_gt49ft Relative density all returns ≥ 14.935 m
21 CC_gt2ft Canopy cover ≥ 0.6096-m (based only on first returns)
22 CC_gt10ft Canopy cover ≥ 3.048-m (based only on first returns)
23 CC_gt20ft Canopy cover ≥ 6.096-m (based only on first returns)
24 CC_gt49ft Canopy cover ≥ 14.935-m (based only on first returns)
25 MnRHgt2ft Mean of all relative heights ≥ 0.6096 m
26 MnRHgt10ft Mean of all relative heights ≥ 3.048 m
27 MnRHgt20ft Mean of all relative heights ≥ 6.096 m
28 MnRHgt49ft Mean of all relative heights ≥ 14.935 m

We applied the RDCC function to our four lidar datasets in R version 4.0.1 using
lidR’s “LAScatalog processing engine” [33], which is a tool to manage large numbers of
lidar point cloud files. LidR’s LAScatalog processing engine handles buffering, merging,
and parallel processing required to efficiently process large LAS collections [33]. The
RDCC function also includes vertical and horizontal unit checks of the LAS data, and
automatically converts units to meters from feet, as was the case for Leon County and
Choctawhatchee LAS files. The adjustable output raster horizontal grid cell size was set to
5 m. The RDCC function’s multiband TIF raster output was reprojected to UTM Zone 16N
using a separate R function.

The RDCC function took LAS or LAZ file inputs and outputted 2D multiband raster
.tiff files containing 28 variable bands (Table 2) at a user-defined cell size. The first four
variable band outputs from the RDCC function were general point cloud summary metrics
useful for QA/QC and the generation of the proceeding 24 variable bands. Band 1 was the
total number of returns in a cell, and was used as the denominator in the relative density
variable bands. Band 3 was the number of first returns in a cell, and was used in the canopy
cover calculations. Band 2 was the number of ground returns, and band 4 was the ground
elevation. These bands defined ground points in one of two ways. If point clouds were
classified following the American Society for Photogrammetry and Remote Sensing LAS
classification format 1.4 (or previous versions) [37], RDCC defined ground points as any
points of code 2 (ground), 7 (low points), 9 (water), or 11 (road surface). If there was at least
one ground point in a cell, the ground elevation (variable band 4) was defined as the mean
elevation of ground points. If there were no classified ground points within a cell, then
ground elevation was defined as the mean elevation of the lower 5% of all points. Ground
elevation was then used to normalize the height of remaining cell points (i.e., height above
ground) to derive the canopy metrics shown in Table 2.

This memory-resident method of normalizing point clouds is atypical, but was used
in this study to address several issues that arose when processing large LAS datasets.
The first issue with normalizing point cloud data using traditional LAS functions, even
those included in the lidR package, is that they roughly double the size of LAS datasets
by writing new normalized LAS files to disk. This process would have increased data
storage requirements from ~10.7 TB to ~21 TB, and significantly increased processing time.
In addition, processing time can be compounded due to error handling in edge cases.
This method avoided those issues; however, ground point and normalization routines
currently used in the RDCC function should only be deployed with fine spatial resolution
cell sizes and in areas without significant topography. This study area did not have severe
topographical changes, as can be seen in Table 1. When LAS file height normalization was
run prior to processing the RDCC function had to be modified to account for this prior
normalization. The R code for the RDCC function is provided in Appendix A.

RDCC output bands 5 and 6 provided means and standard deviations, respectively,
for all relative heights within the cell. Bands 7 through 13 were the relative height bands at
set height percentile increments. Relative height was the height above ground elevation
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at which the indicated percentage of returns was reached. Bands 14 to 28 used set height
breaks that were meant to reflect the canopy layers of interest in the study area based
off [11]. These layers were the shrub layer at a 0.6096 m to 3.048 m height, the high shrub
or low midstory layer at 3.048 m to 6.096 m, the high midstory layer of 6.096 m to 14.935 m,
and the upper canopy layer with returns greater than 14.935 m. Bands 14 to 16 were
relative density within the shrub, low, and high midstory layers. Bands 17 to 20 were
relative density greater than the lower range of each canopy height break and lower than
the upper range of each canopy height break. The equation for relative density is shown as
Equation (3):

RD =
∑aεreturns[LH ≤ a < UH]

∑aεreturns[a]
(3)

where RD is relative density, a is all returns in a cell, LH is the lower height break, and UH
is the upper height break. Bands 21 to 24 were canopy cover greater than the lower range
of each canopy height break and lower than the upper range of each canopy height break.
The equation for canopy cover is shown as Equation (4):

CC =
∑ f εreturns[LH ≤ f < UH]

∑ f εreturns[ f ]
(4)

where CC is canopy cover, f is first returns in a cell, LH is the lower height break, and UH is
the upper height break. The final four bands, 25 to 28, were the mean of all relative heights
greater than the lower range of each of the four canopy height breaks.

2.5. Cloud Processing

This study used a Microsoft Azure cloud computing environment for data processing
as part of an AI for Earth grant. A Linux virtual machine running Ubuntu server 20.04 LTS
with 32 GB RAM was deployed in our Azure cloud environment and loaded with R Studio
software (version 1.4) package. Our custom lidR function RDCC was run in parallel on
this virtual machine using 30 logical cores. Four lidar datasets, totaling 18,212 LAS files
and ~10.77 terabytes (TB), were processed separately. The lidar data, as LAS 1.4 files, were
stored in blob storage in our Azure environment and were accessed from our Linux virtual
machine; raster outputs were also saved back to this blob storage container, and links to
these output folders were shared directly with project partners.

2.6. Forest Metric Models and Raster Outputs

Model development and raster analysis were performed using R statistical software (R
Core Team, 2021), ESRI geographic information system (ArcGIS), and the ArcGIS plug-in
RMRS Raster Utility toolbar [38]. RDCC output rasters of lidar data were transformed into
predictive rasters with 5 m cell resolution, which represented the values at that point as if
it was the center of a 40 m × 40 m forest plot. This was done using the tools provided in
the RMRS Raster Utility toolbar, specifically the ‘Extract Bands’, ‘Focal Analysis’ using the
mean and standard deviation and an 8 × 8 multiplier, and ‘Create Composite’ tools [38].
These tools calculated the plot-level mean and standard deviation of bands 5 through 24
of the RDCC outputs, a total of 40 variables, across the study area. The cell values of this
40-band raster were extracted at the forest plot locations, using the ‘Sample Values’ tool
found in the RMRS Raster Utility toolbar [38]. These values were appended to the forest
plot summary tables that were subsequently used in the R statistical software for model
development.

Predictor variables were selected from the 40 available variables to create general linear
models of BAH, TPH, and QMD following the R script sequential general additive model
(GAM) routine detailed in Hogland et al., 2019 [39], using the gaussian family and identity
link distribution, alpha of 1, and increases in percent deviance threshold set to 0.005. These
conservative thresholds, especially the alpha value, were set to allow for the least number of
variables to be removed from the model at this step. The second variable selection step was
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to create a general linear model using all the variables selected in the first step and then to
manually perform a reverse stepwise selection using the significance of each variable. This
step was used to remove non-significant variables while maximizing the models’ overall
adjusted r2 value. Once this step was complete, further variable selection was performed
by comparing models with different variables using their Akaike information criterion
(AIC) [40], root mean square error (RMSE), and mean absolute error (MAE) scores, with the
emphasis on selecting the most parsimonious model for each forest metric.

For the imagery-only models and the combined imagery and lidar models, we used
pre-Hurricane Michael Sentinel-2 data from previous work in this study area [41]. This
imagery data consisted of the blue, green, red, and near-infrared spectral bands with a
spatial resolution of 10 m, and was a combination of images taken in two phenological
time periods, winter and spring, with individual scene acquisition dates in 2017 and
2018. Sentinel-2-only models of BAH that were presented in [41] were used directly for
comparison here, while Sentinel-2 models of TPH and QMD were created in R using the
spectral data values of our field plots from the same study. These models had variables
designated following the same forward stepwise GAM selection, and backwards manual
selection processes as the RDCC (lidar-only) models, the exception being that combination
models required at least one predictor variable from both lidar and Sentinel-2 imagery-
derived data. Figure 2 displays our general workflow.
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Figure 2. Workflow diagram with our RDCC open-source r function workflow shaded in blue on the left. The secondary
raster processing took the rasters produced from the RDCC function and turned them into forest metric rasters. This portion
of the overall workflow can be conducted using any geographic or spatial software, and uses complimentary independent
data such as the spectral variables we used in this study.

3. Results

The RDCC function output resulted in a multiband raster dataset of 18,212 ~1 km ×
1 km files (1524 m × 1524 m for Leon) of 5 m spatial-resolution-summarized lidar variables.
This process took 28.5 h to complete for the entire ~22,900 km2 study area. These multiband
rasters provided useful outputs without further processing. However, a linear artifact was
noted in the raster outputs from Blocks 2 and 3 in the 50% percentile relative height band
and shrub relative density bands. This linear gap of no data correlated to the edge of flight
lines and was generally as wide as the raster’s 5 m cell size, but extended over the edge of
the entire flight line. We determined that this midstory gap was due to an extreme scan
angle at the scan overlap juncture. We attempted to fix this artifact by using all points, and
not excluding the points categorized as withheld by the original contractor and using the
scan angle of the returns to individually exclude points in the point cloud by their scan
angle. By doing this, we were able to remove the linear gaps in our rasters; however, this
also created different artifacts in our other RDCC bands, and therefore this method was
not used.

Combined models and lidar-only models showed very similar results (Table 3), while
the Sentinel-2 imagery-only models had the highest measure of errors and lowest adjusted
r2 across all response variables when compared with the models that used lidar data.
Combination models had the highest adjusted r2 values and lowest AIC scores, except
for the TPH models and the MAE for QMD models, where the RDCC models performed
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slightly better. The Sentinel-2 basal area model used here varied slightly from the one
presented in [41], as that study used a hurdle modeling approach to exclude field plots
with zero basal area (n = 2), while this study included the zero basal area plots.

Table 3. Model results for basal area per hectare (BAH), trees per hectare (TPH), and quadratic mean diameter (QMD).
Variables were either from only lidar (RDCC), only satellite spectral imagery (Sentinel-2), or a combination of both (Combo);
v is the number of variables used in the model, RMSE is the root mean squared error, MAE is the mean absolute error, and
AIC is the Akaike information criterion. Best model results for each response variable are in bold.

Response Variables Adj. R2 v RMSE MAE AIC

Sentinel-2 0.428 5 12.034 9.553 2660.07
BAH RDCC 0.774 4 7.590 5.118 2431.31

Combo 0.795 4 7.224 5.090 2406.99

Sentinel-2 0.203 7 36.201 23.895 1821.59
TPH RDCC 0.779 7 10.033 5.570 1505.89

Combo 0.773 6 10.353 5.618 1511.61

Sentinel-2 0.193 6 7.623 5.804 1254.85
QMD RDCC 0.593 5 5.428 3.747 1085.76

Combo 0.596 4 5.415 3.780 1082.55

The full list of the variables selected for use in these general linear models is shown in
Appendix B. The most selected variable was the relative density 3.048 m to 6.096 m variable
(RD_10to20ft), followed by the canopy cover greater than 3.048 m variable (CC_gt10ft).
RD_10to20ft was selected in every single model when it was available, while the CC_gt10ft
was selected in all the RDCC and combo BAH and TPH models. These two variables
were moderately correlated, but still provided complimentary information about the forest
structure. The correlation chart of the four variables used in the BAH RDCC model is
presented in Figure 3, and shows the variables’ distribution in the diagonal boxes, as well
as their bivariate correlation scatterplots, correlation scores, and significance.
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Figure 3. Correlation chart (Peterson & Carl, 2020) of BAH RDCC model variables. The variable
name and distribution are shown in the diagonal boxes. Below the diagonal are the bivariate scatter
plots, with fitted lines showing the relationship between the variables in that column and row. Above
the diagonal line are boxes showing the bivariate correlation and the significance of that correlation
between the variables in the corresponding column and row. For significance, the p-values of 0.001
and 0.05 correspond to the symbols “***” and “*”.
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As seen in Figure 3, RD_10to20ft was only slightly correlated with one of the other two
variables selected in the model besides CC_gt10ft, while CC_gt10ft was strongly correlated
with both. The correlation plot of the BAH combo model, which included the Sentinel-
2-derived PCA variables and is shown in Figure 4, demonstrates that the RD_10to20ft
variable was also not significantly correlated with the Sentinel-2 variables selected in
that model. This pattern continued across all models and variables (see Figures A1–A6),
suggesting that RD_10to20ft was capturing unique information about forest structure that
other variables were not, including the Sentinel-2 imagery-derived variables. CC_gt10ft
contained much of the same information that the other variables provided, leading to these
two combined variables capturing much of the information provided in all RDCC variables
as they related to basal area, trees per area, and quadratic mean diameter.
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Correlations with p-values above 0.01 are marked with an x.

Using the RMRS Raster Utility Arc plugin [38], the RDCC models from Table 3 (also
see Figures A7–A9) were used to produce raster surface outputs of BAH, TPH, and QMD.
These raster outputs were shared with forestry professionals in the study area to assess
their practical and qualitative value, and were given a positive assessment. Sharing was
facilitated by providing weblinks to cloud-stored raster data given to practitioners. Figure 5
shows the BAH raster that was produced from our RDCC model and distributed over the
entire ~22,900 km2 study area.
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Figure 5. Quadratic mean diameter (QMD) estimate raster from the RDCC model (lidar-only variables). The upper half of
the figure shows the entire extent of the raster with the bottom insert area bordered in red. The spatial resolution of the
raster was 5 m.

4. Discussion

In this study, we used the lidR R package and our lidR user-extension function, referred
to as RDCC (Appendix A), to rapidly process a very large (~11 TB) lidar point cloud dataset
into multiband rasters of height, relative density, and canopy cover forest structure metrics.
This process was relatively user friendly; and used free, open-source, and scalable software,
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lowering the barriers for using lidar data at regional scales. It was also a robust and
transferable process that worked with lidar datasets with different units, without classified
ground points, and even from different lidar platforms. This transferability allowed us to
rapidly create products for forest managers without first needing to classify the point cloud,
which could be very important in time-sensitive scenarios such as during postdisaster
forest-damage assessments.

The free, open-source, and scalable design allows this workflow to be used on local
computers, a hybrid cloud computing environment, or a fully cloud-based environment
using any modern operating system. We chose to use a distributed cloud computing
environment because of the advantages such a setup could provide, specifically scalability
and processing efficiency [42]. The lidR package’s parallel-processing capabilities allowed
this workflow to be easily scalable [33]. Scalability in the cloud environment refers to the
ability to easily increase the number of our virtual machine’s logical cores, the number of
virtual machines, and increases in data storage without ever having to buy or maintain
hardware [42]. For example, by reading lidar point cloud data directly from a blob storage
container (and writing raster products back to this container), we were able to reduce
storage costs compared to adding large, high-speed solid-state drives, and still gained
the processing benefit of collocating our data with computational resources. However,
we did not have to rely heavily on the scalability of the cloud environment to process
our data efficiently. The R studio, lidR software package, and our RDCC function were
efficient enough at processing large lidar datasets that we did not encounter a processing
bottleneck when using our moderately equipped VM, which had the processing power
equivalent to our physical workstations. To process much larger extents, or much higher
density lidar datasets, such as state or regional scale projects, additional scaling of the
cloud environment would be required for timely processing.

As a general comparison, this study processed lidar data covering 22,900 km2 into
28 band 5 m cell GeoTIFFs in 28.5 h, while the equivalent processing software ‘Laserchicken’
reported processing a 30,000 km2 lidar dataset into 22-band, 10 m cell GeoTIFFs over 96 h [3].
This is not a direct comparison, as ‘Laserchicken’ calculates several process-intensive lidar
features, such as eigenvalues, that our RDCC function does not. However, it demonstrated
that this workflow performed well compared to other lidar-processing studies.

Our forest metric model results also compared favorably with previous studies. For
example, Sousa da Silva et al., 2019 modeled basal area in Eucalyptus plantations with r2

values ranging from 0.67 to 0.81 [43]; Pearse et al., 2018’s basal area model had an r2 value
of 0.58 [6]; and Woods et al., 2008 had r2 values of basal area of 0.79 to 0.85 and QMD of
0.68 to 0.83 [44]; and van Ewijk et al., 2011 had QMD r2 = 0.68. However, van Ewijk et al.,
2011 used field data in combination with lidar data to estimate QMD, and not just to train
their model [45]. Ahl et al., 2019 used random forest (RF) to model basal area and QMD
from lidar, with RMSEs of 9.0 and 11.7, respectively [9]. These studies had higher lidar
point densities and covered smaller study areas with a smaller range of forest types than
our study, yet our best model results for BAH and QMD had similar or better r2 and RMSE
values (adj. r2 = 0.80, adj. r2 = 0.58; and RMSE = 7.59, RMSE = 5.428, respectively).

In this study, we showed that lidar-derived canopy metrics produced better models of
forest structure when compared with Sentinel-2-only models, though this is not always that
case, as [9] demonstrated. Additionally, when we combined imagery and lidar variables
in our forest metric models, we created marginally better estimates for two out of our
three forest metrics. However, our model comparison results were possibly influenced
more by spatial resolution then data type, as the Sentinel-2 imagery data had a 10 m cell
size, meaning only 16 cells were within each field plot. The lidar-data-derived raster’s
cell size was 5 m, allowing for 64 cells for each field plot, and therefore contained more
textural information. Our correlation matrix of variables (Figures 3 and 4) did show that the
lidar data contained important midstory variables that the spectral imagery alone did not.
The degree of difference in our model results due to spatial resolution and observations
between lidar and spectral imagery is yet to be determined.
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We chose to use easily interpretable general linear models for our forest metric models.
General additive models (GAMs) were also explored to create the BAH, TPH, and QMD
model estimates, but were not found to add significant predictive power over the general
linear models. The interpretability of general linear models, over more ‘black box’ models
such as RF, allowed us to easily identify the selection of the low midstory relative-density
variable in all RDCC and combination forest metric models, and some studies have found
that linear models outperformed RF when modeling forest metrics from lidar data [43]. Our
variable correlation results (Figures 3, 4 and A1–A6) indicated that the relative density of
low midstory was a variable that captured unique data in our study area that was important
for estimating several forest metrics. We are not aware of any other studies that have shown
the importance of a lidar-derived midstory metric for estimating a broader forestry metric
such as BAH, TPH, or QMD. We also discovered a linear artifact in some datasets that
affected points at the edges of flight lines related to this important low midstory metric.
This was the result of high scan angles at the flight line overlaps. High scan angles were
shown to impact forest metrics estimates in at least one other study [46]. Future airborne
lidar contracts should address this issue by incorporating stricter limits on allowable scan
angles, which will help avoid gaps in the midstory canopy at flight line overlaps.

This study focused on estimating forest metrics using an area-based approach. A
potential next step would be to develop similar workflows focused on individual tree
observations from high-resolution point clouds that currently face the same processing
bottleneck that we addressed in this study. Previous studies have already shown the value
of lidar data from drone platforms, such as Dalla Corte et al., 2020, who estimated tree
diameter and height from drone-based lidar using R software packages [47]. Processing
these individual tree metrics from lidar datasets is becoming more accessible using free
and open-source R software packages [48]. To process large-extent lidar datasets using
an individual tree approach efficiently will require the creation of workflows such as that
presented in this study.

5. Conclusions

While lidar data is increasingly available, analysis of lidar data for forest structure
is not yet ubiquitous. This can lead to natural resource managers being data rich, but
information poor. In this study, we presented a practical, scalable, and free workflow to
help derive useful information from large lidar datasets. We used free, open-source, and
user-extendable software in a cloud-based environment to efficiently process ~11 TB of lidar
point cloud data covering 22,900 km2 of a diverse landscape containing at least 27 natural
communities. Our lidar processing workflow outputted 28-band, 5 m cell spatial resolution
height normalized GeoTIFFs, containing relative height, relative density, and canopy cover
data. These outputs were used to develop general linear models of BAH, TPH, and QMD,
which outperformed Sentinel-2 imagery-based models in our study area, and performed
as well or better than previous studies using higher-density point clouds in much smaller,
less structurally diverse landscapes. This ability to quickly process landscape scale lidar
data, with user-created functions, into forest metrics has only recently been possible, as
analysis software such as the lidR [22] package have become available. We overcame the
processing bottlenecks that large lidar datasets present by using software designed for
parallel processing (lidR) coupled with a distributed cloud computing environment. In
creating our models of BAH, TPH, and QMD, we discovered the importance of our relative
density of low midstory lidar variable (RD_10to20ft). This variable was shown to contain
information that was not captured in other lidar and Sentinel-2 variables.

Having refined and readily available workflows that extract forest metrics from lidar
data, similar to the standardization of DEM production from lidar, that overcome big data
processing bottlenecks will provide land managers, researchers, and the general public
with valuable information about landscapes at fine spatial resolutions. This will allow for
precise, efficient, and relatively inexpensive habitat and ecosystem monitoring, as well
as rapid disaster response and mitigation, and prescribed fire management. Future work
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can also be done to extend these workflows to include and be integrated with individual
tree metrics from drones or terrestrial-based lidar systems, which may further improve the
information for landscape-level monitoring and management.
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Appendix A

The following is the custom code used within the lidR R package to process the lidar
data in this study. It includes three functions: two to check and adjust the vertical and
horizontal units to meters if they are in feet, and the metrics custom function that created
the RDCC outputs discussed in this study and used the lidR tools. Finally, this code
contains lines demonstrating how to call these functions in R.

## Example LAS files can be obtained at: https://apps.nationalmap.gov/downloade
r/#/ (accessed on 18 November 2021) in the data section check the Elevation

## Source Data (3DEP)—Lidar, lfSAR box and the lidar point cloud box. Use the
viewer to navigate to your location of interest

## search products then click on download link (LAZ) next to the las files you are
interested in, use 2 or more las or laz files

## and place in the same folder so that you can create a las catalog for use with this
script, bulk download options are also

## available on the site.
## For lidR help, tutorials and updates visit https://github.com/r-lidar/lidR/wiki

(accessed on 18 November 2021)
## Install/Load packages
if (!require(“pacman”)) install.packages(“pacman”)
pacman::p_load(pacman, tidyverse, progress, rgdal, lidR, sf, raster, stringr, future)
## This function checks OS and converts file paths to comply
get.paths <- function(paths)
{

file_names <- strsplit(paths, “;”)[[1]]
if (Sys.info()[[“sysname”]] != “Windows”)
{

file_names <- gsub(‘\\\\’, ‘/’, file_names)
file_names <- gsub(‘C:/Users/’, ‘/mnt/windows_data/’, file_names)

}
file_names

}

https://apps.nationalmap.gov/downloader/#/
https://apps.nationalmap.gov/downloader/#/
https://github.com/r-lidar/lidR/wiki
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# Function to get name of first file in folder, default suffix set to ‘las’, for .lax files
provide “laz” for suffix when calling function

firstPath <- function(folder, suffix = “las”){
file_ls<-list.files(folder, pattern=paste0(‘\\.’, suffix))
first_las<-get.paths(paste0(folder,“\\”,file_ls[1]))

}

# Function to check if the vertical units are in feet
vertFTcheck <- function(las_file_path){

las = suppressWarnings(readLAS(las_file_path))
string_test = wkt(las)
ht_loc<-stringr::str_locate(string_test, fixed(“height”, ignore_case = TRUE))
if (is.na(ht_loc[2])){

ft = FALSE
} else {

sub_ht<- substr(string_test, ht_loc[2], ht_loc[2] + 25)
ft<-str_detect(sub_ht, “ft|feet|FT|Feet”)

}
las = NULL
return(ft)

}

# Function to check if the horizontal units are in feet
horFTcheck <- function(las_file_path){

library(stringr)
las = suppressWarnings(readLAS(las_file_path))
string_test = wkt(las)
if(string_test == ”){

print(“Empty wkt file, no hor unit check done”)
}
else{

## now search the wkt for the northing keyword ignoring case
hor_loc<-str_locate(string_test, fixed(“false_northing”, ignore_case = TRUE))
sub_hor<- substr(string_test, hor_loc[2]+10, hor_loc[2] + 35)
ft_hor<-str_detect(sub_hor, “foot|Foot|ft|FT|Feet|feet”)
las = NULL
return(ft_hor)

}
}

rdcc_metrics <- function(z, Classification, RetNum, folder, ft_yes = FALSE) {
n = length(z) #Total number of returns in cell
zq = stats::quantile(z, probs = seq(0.05, 0.95, 0.05)) #Quantiles of all elevations within

cell
zqnum <- as.numeric(zq) #Removing names from quantile output, just array of

numeric values

grndpts<- z[Classification==2 | Classification==7 |Classification==9 | Classifica-
tion==11]

ngrndpts =length(grndpts)

if (ngrndpts >= 1)
{

grndelev <- mean(grndpts) #Calc mean elevation of ground return pts
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zqnumrel = zqnum - grndelev #Normalize all quantile elevations to be relative
above ground level

zrel = z -grndelev #Normalize ALL return elevations to be to be relative above
ground level

}
else
{

grndelev <- zqnum[1] #use 5% elev as a proxy ground elevation
zqnumrel = (zqnum - grndelev) #Normalize all quantile elevations to be relative

above ground level
zrel = z -grndelev #Normalize ALL return elevations to be to be relative above

ground level
}
## now use result of ft_yes to adjust heights to meter
if (ft_yes==TRUE){

grndelev <- grndelev/3.28084
zqnumrel <- zqnumrel/3.28084
zrel <- zrel/3.28084

}

ht_breaks<-c(0.6096,3.048,6.096,14.9352)
zrelmax <- max(zrel)

#Now create a RasterBrick of all outputs
list(

nreturns <- n,
ngrndreturns <- ngrndpts,
nfirstreturns <- length(zrel[RetNum==1]),
grndelev,
MnRH <- mean(zrel),
SDRH <- stats::sd(zrel),
RH95 <- zqnumrel[19],
RH90 <- zqnumrel[18],
RH75 <- zqnumrel[15],
RH50 <- zqnumrel[10],
RH25 <- zqnumrel[5],
RH10 <- zqnumrel[2],
RH05 <- zqnumrel[1],
RD2to10ft <- length(zrel[zrel<ht_breaks[2] & zrel >=ht_breaks[1]])/n,
RD10to20ft <- length(zrel[zrel<ht_breaks[3] & zrel >=ht_breaks[2]])/n,
RD20to49ft <- length(zrel[zrel<ht_breaks[4] & zrel >=ht_breaks[3]])/n,
RDgt2ft <- length(zrel[zrel>=ht_breaks[1]])/n,
RDgt10ft <- length(zrel[zrel>=ht_breaks[2]])/n,
RDgt20ft <- length(zrel[zrel>=ht_breaks[3]])/n,
RDgt49ft <- length(zrel[zrel >=ht_breaks[4]])/n,

CCgt2ft <- length(zrel[zrel >=ht_breaks[1] & RetNum==1])/length
(zrel[RetNum==1]),

CCgt10ft <- length(zrel[zrel >=ht_breaks[2] & RetNum==1])/length
(zrel[RetNum==1]),

CCgt20ft <- length(zrel[zrel >=ht_breaks[3] & RetNum==1])/length
(zrel[RetNum==1]),

CCgt49ft <- length(zrel[zrel >=ht_breaks[4] & RetNum==1])/length
(zrel[RetNum==1]),
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if (zrelmax > ht_breaks[1]) {MnRHgt2ft <- mean(zrel[zrel >=ht_breaks[1]])} else
{MnRHgt2ft <- numeric(0)},

if (zrelmax > ht_breaks[2]) {MnRHgt10ft <- mean(zrel[zrel >=ht_breaks[2]])} else
{MnRHgt10ft <- numeric(0)},

if (zrelmax > ht_breaks[3]) {MnRHgt20ft <- mean(zrel[zrel >=ht_breaks[3]])} else
{MnRHgt20ft <- numeric(0)},

if (zrelmax > ht_breaks[4]) {MnRHgt49ft <- mean(zrel[zrel >=ht_breaks[4]])} else
{MnRHgt49ft <- numeric(0)}

)
}

## User Input for folder of las files
folder<- readline(prompt = “Enter las directory path: ”)
out_dir<- readline(prompt = “Enter output directory path: ”)
user_out_suffix <- readline(prompt = “Enter output tif file suffix for example Block1: ”)
out_suffix <- gsub(“ ”, “”, gsub(“/”,“”, user_out_suffix))
user_cell_size <- as.numeric(readline(prompt = “Enter output cell size in meters: ”))

## Creating a LAScatalog, filter values are only suggestions please use filters that are
appropriate for your data

ctg = readLAScatalog(folder, progress = TRUE, filter=“-drop_withheld -drop_class 18
-drop_z_below -5”)

opt_select(ctg) <- “xyzciReturnNumber”
## make output file name
opt_output_files(ctg)<-get.paths(paste0(out_dir, “\\”, out_suffix, “_{ORIGINALFILE-

NAME}”))

## Deciding whether ft or meter for horizontal, relies on keywords in first las file’s wkt
first_las<-firstPath(folder)
ft_hor <- horFTcheck(first_las)
if (ft_hor==TRUE){

cell_size<-user_cell_size*3.28084
} else {

cell_size<-user_cell_size
}

## ft_yes function deciding whether ft or meter for vertical using first las file in folder
ft_yes = vertFTcheck(first_las)

##Parallel computation, number of workers is how many las files in the catalog will
be processed, set lidr threads is the

##number of cores working on each file at a time. future::availableCores() uses the
future package to automatically select

## the number of available cores, this number is then divided by two which is the
number used in set lidr threads and

##subtracted by one so some logical cores are available for work outside this function.
All these settings can be changed

##manually these are just defaults
plan(multisession, workers = (future::availableCores()/2)-1)
set_lidr_threads(2L)

## Running the rdcc function – named ‘rdcc_metrics’
RDCCmetrics <- grid_metrics(ctg, ~rdcc_metrics(z=Z, Classification = Classification,

RetNum = ReturnNumber, folder=folder, ft_yes = ft_yes), cell_size)
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Appendix B

The following is the full list of the predictive variables and their descriptions used in
the final general linear models of basal area per hectare, trees per acre, and quadratic mean
diameter. For details on production and interpretation of Sentinel-2 principal component
analysis (PCA) variables, see St. Peter et al., 2020. Variables beginning with the ‘Sent’ came
from Sentinel-2 imagery; all other variables were derived from the Lidar RDCC function
described in this paper.

BAH Sentinel-2 Model variables:

Sent_Pred_Band2 = Plot Mean of PCA 2
Sent_Pred_Band5 = Plot Mean of PCA 5
Sent_Pred_Band6 = Plot Mean of PCA 6
Sent_Pred_Band8 = Plot Mean of PCA 8
Sent_Pred_Band18 = Plot Standard Deviation of PCA band 8

BAH RDCC Model variables:

Pred_Band5 = Plot Mean of Relative Height 75%
Pred_Band11 = Plot Mean of Relative Density 10 to 20 ft (High shrub/low midstory)
Pred_Band18 = Plot Mean of Canopy Cover greater than 10 ft (based only on first

returns)
Pred_Band20 = Plot Mean of Canopy Cover greater than 49 ft (based only on first

returns)

BAH Combo Model variables:

Pred_Band11 = Plot Mean of Relative Density 10 to 20 ft (High shrub/low midstory)
Pred_Band18 = Plot Mean of Canopy Cover greater than 10 ft (based only on first

returns)
Sent_Pred_Band4 = Plot Mean of PCA 4
Sent_Pred_Band7 = Plot Mean of PCA 7

TPH Sentinel-2 Model variables:

Sent_Pred_Band2 = Plot Mean of PCA 2
Sent_Pred_Band3 = Plot Mean of PCA 3
Sent_Pred_Band5 = Plot Mean of PCA 5
Sent_Pred_Band6 = Plot Mean of PCA 6
Sent_Pred_Band10 = Plot Mean of PCA band 10
Sent_Pred_Band13 = Plot Standard Deviation of PCA band 3
Sent_Pred_Band19 = Plot Standard Deviation of PCA band 9

TPH RDCC Model variables:

Pred_Band1 = Plot Mean of Mean of all Relative Heights
Pred_Band5 = Plot Mean of Relative Height 75%
Pred_Band6 = Plot Mean of Relative Height 50%
Pred_Band11 = Plot Mean of Relative Density of all returns 10 to 20 ft
Pred_Band18 = Plot Mean of Canopy Cover greater than 10 ft (based only on first

returns)
Pred_Band21 = Plot Standard Deviation of Mean of all Relative Height
Pred_Band33 = Plot Standard Deviation of Relative Density all returns greater than

2 ft



Remote Sens. 2021, 13, 4763 18 of 27

TPH Combo Model variables:

Pred_Band6 = Plot Mean of Relative Height 50% (50th percentile height above ground
level)

Pred_Band11 = Plot Mean of Relative Density of all returns 10 to 20 ft
Pred_Band18 = Plot Mean of Canopy Cover greater than 10 ft (based only on first

returns)
Pred_Band21 = Plot Standard Deviation of Mean of all Relative Height
Pred_Band33 = Plot Standard Deviation of Relative Density all returns greater than

2 ft
Sent_Pred_Band5 = Plot Mean of PCA 5

QMD Sentinel-2 Model variables:

Sent_Pred_Band1 = Plot Mean of PCA 1
Sent_Pred_Band2 = Plot Mean of PCA 2
Sent_Pred_Band3 = Plot Mean of PCA 3
Sent_Pred_Band7 = Plot Mean of PCA 7
Sent_Pred_Band10 = Plot Mean of PCA band 10

QMD RDCC Model variables:

Pred_Band1 =Plot Mean of Mean of all Relative Heights
Pred_Band2 = Plot Mean of Std. Dev of all Relative heights
Pred_Band4 = Plot Mean of Relative Height 90%
Pred_Band11 = Plot Mean of Relative Density 10 to 20 ft
Pred_Band23 = Plot Standard Deviation of Relative Height 95%

QMD Combo Model variables:

Pred_Band2 = Plot Mean of Std. Dev of all Relative heights
Pred_Band11 = Plot Mean of Relative Density 10 to 20 ft
Pred_Band23 = Plot Standard Deviation of Relative Height 95%
Sent_Pred_Band11 = Plot Standard Deviation of PCA band 1
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Figure A1. Correlation chart of TPH RDCC model variables. The variable name and distribution are shown in the diagonal
boxes. Below the diagonal are the bivariate scatter plots, with fitted lines showing the relationship between the variables
in that column and row. Above the diagonal line are boxes showing the bivariate correlation and the significance of that
correlation between the variables in the corresponding column and row; the larger the font, the higher the correlation. For
significance, the p-values of 0.001, 0.01, 0.05, and 0.1 correspond to the symbols “***”, “**”, “*”, and “.”.
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Figure A2. Correlation chart of TPH combination model variables. The variable name and distribution are shown in the
diagonal boxes. Below the diagonal are the bivariate scatter plots, with fitted lines showing the relationship between the
variables in that column and row. Above the diagonal line are boxes showing the bivariate correlation and the significance
of that correlation between the variables in the corresponding column and row; the larger the font, the higher the correlation.
For significance, the p-values of 0.001, 0.01, 0.05, and 0.1 correspond to the symbols “***”, “**”, “*”, and “.”.
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Figure A3. Correlation chart of QMD RDCC model variables. The variable name and distribution are shown in the diagonal
boxes. Below the diagonal are the bivariate scatter plots, with fitted lines showing the relationship between the variables
in that column and row. Above the diagonal line are boxes showing the bivariate correlation and the significance of that
correlation between the variables in the corresponding column and row; the larger the font, the higher the correlation. For
significance, the p-values of 0.001, 0.01, 0.05, and 0.1 correspond to the symbols “***”, “**”, “*”, and “.”.
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Figure A4. Correlation chart of QMD combination model variables. The variable name and distribution are shown in the 
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Figure A4. Correlation chart of QMD combination model variables. The variable name and distribution are shown in the
diagonal boxes. Below the diagonal are the bivariate scatter plots, with fitted lines showing the relationship between the
variables in that column and row. Above the diagonal line are boxes showing the bivariate correlation and the significance
of that correlation between the variables in the corresponding column and row; the larger the font, the higher the correlation.
For significance, the p-values of 0.001, 0.01, 0.05, and 0.1 correspond to the symbols “***”, “**”, “*”, and “.”.
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Figure A5. Correlation chart of BAH combination model variables. The variable name and distribution are shown in the 
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Figure A5. Correlation chart of BAH combination model variables. The variable name and distribution are shown in the
diagonal boxes. Below the diagonal are the bivariate scatter plots, with fitted lines showing the relationship between the
variables in that column and row. Above the diagonal line are boxes showing the bivariate correlation and the significance
of that correlation between the variables in the corresponding column and row; the larger the font, the higher the correlation.
For significance, the p-values of 0.001, 0.01, 0.05, and 0.1 correspond to the symbols “***”, “**”, “*”, and “.”.
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negative correlations are in red; the larger the circle, the farther from 0 the correlation value was. 

Correlations with p-values above 0.01 were left blank. 

  

Figure A6. Correlation matrix of all RDCC output variables. Positive correlations are in blue and
negative correlations are in red; the larger the circle, the farther from 0 the correlation value was.
Correlations with p-values above 0.01 were left blank.
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Figure A7. Histogram of observed versus predicted QMD from the RDCC-only QMD model, the 

adj. R-squared value of which was 0.593. 
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Figure A8. Histogram of observed versus predicted basal area from the RDCC-only BAH model, 

the adj. R-squared value of which was 0.774. Basal area in this figure is in square feet per acre. 
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adj. R-squared value of which was 0.774. Basal area in this figure is in square feet per acre.
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Figure A9. Histogram of observed versus predicted trees per acre from the RDCC-only TPH model, 

the adj. R-squared value of which was 0.779. 
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