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Abstract: Iran is among the driest countries in the world, where many natural hazards, such as
floods, frequently occur. This study introduces a straightforward flood hazard assessment approach
using remote sensing datasets and Geographic Information Systems (GIS) environment in an area
located in the western part of Iran. Multiple GIS and remote sensing datasets, including Digital
Elevation Model (DEM), slope, rainfall, distance from the main rivers, Topographic Wetness Index
(TWI), Land Use/Land Cover (LULC) maps, soil type map, Normalized Difference Vegetation Index
(NDVI), and erosion rate were initially produced. Then, all datasets were converted into fuzzy values
using a linear fuzzy membership function. Subsequently, the Analytical Hierarchy Process (AHP)
technique was applied to determine the weight of each dataset, and the relevant weight values were
then multiplied to fuzzy values. Finally, all the processed parameters were integrated using a fuzzy
analysis to produce the flood hazard map with five classes of susceptible zones. The bi-temporal
Sentinel-1 Synthetic Aperture Radar (SAR) images, acquired before and on the day of the flood
event, were used to evaluate the accuracy of the produced flood hazard map. The results indicated
that 95.16% of the actual flooded areas were classified as very high and high flood hazard classes,
demonstrating the high potential of this approach for flood hazard mapping.

Keywords: flood hazard; remote sensing; Geographic Information System (GIS); Analytical Hierar-
chical Process (AHP); fuzzy; Sentinel-1; Iran

1. Introduction

Natural hazards frequently cause a variety of physical (e.g., injuries, casualties, and
property damages) and non-physical (e.g., psychological and mental) disturbances world-
wide [1]. The number of disastrous events has dramatically increased in recent decades,
and consequently, the number of casualties/injuries, economic losses, and intense envi-
ronmental disturbances [2,3]. Flooding, as the most frequent natural hazard, is not an
exception, and over the last few decades, it has caused considerable negative environmental
and socioeconomic damages in different parts of the world [4–8]. An integrated flood risk
management approach with a focus on reducing the vulnerability of the societal system is
required to reduce future flood risks [7].

Global climate change and unsuitable urbanization are considered as the significant
factors of changing flood characteristics [9]. The frequency, scale, and extent of flood
events are increasing worldwide [10]. For instance, flood events negatively affected more
than 232,896 people and caused over 295 million USD damages in Morocco between 1995
and 2005 [11]. Likewise, the Department of Irrigation and Drainage (DID) in Malaysia
reported that around 29,000 km2 (8.79% of the area of Malaysia) land area and over 4.82
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(14.75% of the population of Malaysia) million people are annually affected by floods [12].
Moreover, heavy rainfalls resulted in various flood events in different parts of Iran in 2019.
These floods caused vast infrastructure and residential damages, as well as displacement
of over 500,000 people [13]. Accordingly, it is vital to produce reliable and precise flood
hazard maps for different regions, especially flood-prone areas, to adjust efficient resilience
policies and decrease possible direct and cascading damages.

Climate change projections for 2030 indicate that the number of people exposed to
flooding will increase [9]. Different approaches, including hydrological, geomorphological,
historic, and remote sensing-based approaches have been employed to produce accurate
flood hazard maps [14,15]. The availability of relevant data for each approach is among
the most critical elements in selecting an appropriate approach [15]. Considering this fact,
remote sensing methods are usually more appealing for flood hazard mapping because
remote sensing systems provide frequent and cost-effective observations of the Earth’s
surface in various spatial resolutions [16]. Satellite observations with high spatial and
temporal resolutions can effectively be applied to better understand how floods are chang-
ing. The global flood database generated from these observations has also facilitated flood
risk assessments [9]. Furthermore, the possibility of providing multi-source charge-free
data and generating various attributes/parameters for efficient representation of flood
hazard zones, makes remote sensing an attractive approach for low-cost flood hazard
mapping [17–19]. For example, various natural hazards, including floods, can be moni-
tored using the Copernicus Sentinels program. Sentinel-1/2 offers accurate, timely, and
easily accessible datasets that can be used for flood mapping and monitoring. Sentinel-1
is a polar-orbiting, day- and night-vision Synthetic Aperture Radar (SAR) mission for
land and ocean applications. This satellite is a C-band SAR system that collects data at
single polarization (i.e., HH or VV). Moreover, Sentinel-2 is a multispectral high-resolution
imaging satellite, which provides information about vegetation, soil, water, coastal areas
and inland waterways. Sentinel-2 has an optical sensor with 13 spectral bands: four bands
at 10 m (blue, green, red, near infrared), six bands at 20 m (narrow near infrared, three red
edge bands, and two shortwave infrared bands) and three bands at 60 m spatial resolution
(coastal aerosol, water vapor, and shortwave infrared-cirrus) [20].

The integration of remote sensing data with a Geographic Information System (GIS)
environment has created an unprecedented opportunity to combine different extracted
attributes/parameters for flood hazard mapping in a straightforward procedure [21,22].
For instance, Samanta et al. [21] employed ten different parameters to examine flood risk
zones in the Markham River Basin, Papua New Guinea in 2018. The Frequency Ratio
(FR) model was used to combine independent parameters through a weighted-based
bivariate probability approach to produce a flood hazard map. The implemented approach
was then evaluated by using 43 reference flood points extracted from a flood inventory,
resulting in 97.7% accuracy. Moreover, Bandi et al. [23] utilized seven parameters, including
rainfall, surface roughness, soil type, distance from the main river, drainage density,
and Land Use/Land Cover (LULC), to map flood hazard zones in the city of Warangal,
India in 2019. To this end, the Analytical Hierarchy Process (AHP) was employed to
calculate the weight of each attribute/parameter, and then, a Flood Hazard Index (FHI)
was generated based on a multi-criteria decision-making technique in a GIS environment.
Subsequently, the performance of the proposed method was assessed using the Soil and
Water Assessment Tool (SWAT), suggesting its high potential for flood hazard mapping.
A relative frequency ratio was also employed by Zhang et al. [24] to find the correlation
between various flood parameters and flood occurrences. The study used eight flood
parameters, including slope, elevation, LULC map, NDVI, TWI, drainage density, and
rainfall, to map flood-prone areas in the Panjkora River Basin (PRB), eastern Hindu Kush,
Pakistan. Based on their results, the success and prediction rate values were 82.04% and
84.74%, respectively. Finally, Argaz et al. [22] generated a flood risk map of the Souss
watershed in Morocco through a multi-criteria decision-making technique. To this end,
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rainfall intensity, soil erodibility, flow accumulation, LULC, elevation, slope, and distance
from drainage networks were combined.

Iran has been negatively affected by climate change over the past three decades.
Prolonged droughts have changed many ecosystems in Iran, and significant parts of forests
have disappeared [25]. Many regions in Iran are prone to floods due to their topographical
and geographical characteristics. Moreover, a large number of rivers in Iran are susceptible
to flash flooding during heavy rainfall [10]. For example, during spring 2019, almost all
provinces in Iran experienced heavy precipitations, resulting in flood events in several
parts of Iran [26]. To address flood-related issues at the basin scale, many studies have
investigated the potential of remote sensing technology for flood mapping, monitoring,
and risk assessment. For example, Shahabi et al. [27] developed a method to predict flood
hazard zones using the Evidential Belief Function (EBF) model. They employed multiple
remote sensing and GIS datasets, such as DEM, slope, curvature, Topographic Wetness
Index (TWI), Stream Power Index (SPI), distance from rivers, rainfall, soil type, LULC map,
and the Normalized Difference Vegetation Index (NDVI) to produce flood susceptibility
maps in the Haraz Catchment in Mazandaran Province, Iran. Darand et al. [28] also
employed daily precipitation and the Kriging method for flood monitoring in Iran for the
period of 1962–2013. They found significant changes in precipitation trends especially near
the Zagros Mountains, and therefore, more than 40% of Iran was determined as flood-prone
zones. Vaghefi et al. [29] used five high-resolution climate models to estimate temperature,
rainfall, and future floods in Iran between 1980 and 2004. They reported that the climate of
Iran prolonged dry periods with irregular heavy precipitations, increasing the likelihood
of floods between 2025 and 2049.

In the last few decades, the Iranian government has spent approximately 29 billion
US dollars to mitigate various natural hazards. Drought, earthquakes, and floods have
resulted in more government expenditures than other natural hazards, with more than
14, 6, 9, and 6.1 billion dollars incurred, respectively [30]. As discussed, a large portion of
Iran is prone to flooding, and thus, it is necessary to develop an advanced system for flood
hazard mapping. These flood hazard maps could effectively be employed for resilience
actions and are considered a valuable criterion in urban growth planning [31]. This work
aims to produce a flood hazard map of the Pol-e Dokhtar watershed located in the western
part of Iran, which faced a massive flood in 2019. In this regard, open-access remote sensing
and GIS datasets were integrated to produce an accurate flood hazard map that reduces
the cost and increases the applicability of the implemented approach for other regions.
To this end, nine parameters, including rainfall (i.e., satellite and in situ data), Digital
Elevation Model (DEM), slope, distance from the main rivers, Topographic Wetness Index
(TWI), LULC, soil type, Normalized Difference Vegetation Index (NDVI), and erosion rate
within a fuzzy logic system were employed. Finally, the proposed approach was evaluated
using Sentinel-1 SAR images captured over the study area before and on the day of the
flooding event.

2. Study Area and Case Study

The study area is the Pol-e Dokhtar watershed located in Lorestan province, the
western part of Iran, with an area of approximately 3738 km2 and a total population of
over 73,744 based on the 2015 census [32]. Pol-e Dokhtar is located between the latitude
and longitude ranges of 32◦28′ and 33◦28′ N and 47◦27′ and 48◦25′ E, respectively, with an
average elevation of about 700 m above the sea level (see Figure 1). The study area has a
semi-arid climate with a noticeable temperature change within a year, ranging from −4 ◦C
(around January) to 48 ◦C (in August and July). The annual rainfall value is approximately
358 mm. There are two main rivers in this area (i.e., Kashkan and Seymare). Moreover, in
the vicinity of these rivers there are many illegal constructions, some of which have been
destroyed by floods during the last two decades.
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Based on the provided reports of the United Nations Country Team (UNCT) in Iran,
successive heavy rainfalls over the Pol-e Dokhtar watershed between 25 March and 1 April
2019, caused a devastating flood along the Kashkan River and its tributaries with a water
flow rate of over 5000 cubic meters. The long-term average discharge of the Kashkan
River is 30 cubic meters [13,33]. The scale of the economic damage of the spring flood
in Pol-e Dokhtar was massive. The value of damages to production facilities, buildings
and agricultural assets was estimated to be approximately 26 million USD [10]. About 57
bridges and culverts and 250 km of major roads were damaged in this province. Besides
the financial damage in the province of Lorestan, over 46,000 families have been negatively
affected and many people had to leave their properties and all their assets behind [10].

Flooded Areas and Rainfall History

Heavy rainfalls are one of the main reasons for flooding. Flooding is most frequently
caused by excessive rainfall when natural streams are unable to control additional water.
Therefore, one of the most important parameters affecting the flood is the amount of
precipitation. The comparison between the Global Precipitation Measurement (GPM)
rainfall data and the previous flood events in Pol-e Dokhtar (see Figure 2), showed that
high precipitation rates caused several major floods in this area. For example, the highest
amount of rainfall was observed in March 2019, causing one of the largest floods in
this region. It is worth noting that we used an averaging method to combine the GPM
precipitation and local rainfall datasets to improve the accuracy of the final rainfall map.
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Figure 2. Comparison between the monthly precipitation from the Global Precipitation Measurement (GPM) data and flood
events in Pol-e Dokhtar.

3. Datasets

In this study, nine parameters were used to produce a flood hazard map for the study
area. These parameters include DEM, slope, rainfall, distance from the main river, TWI,
LULC map, soil type map, NDVI, and erosion rate. These parameters are explained and
illustrated in Table 1 and Figure 3. More details of each parameter are also briefly described
in the following subsections. Additionally, bitemporal Sentinel-1 SAR images, acquired
before and on the day of the flood event, were employed to assess the applicability of the
produced flood hazard map.

Table 1. Overview of the specifications of the nine parameters used for flood hazard mapping.

Data Spatial Resolution Source Date

Digital Elevation Model (DEM) 30 m × 30 m Shuttle Radar Topography
Mission September 2014

Slope 30 m × 30 m DEM September 2014

Rainfall 0.1◦ × 0.1◦ Global Precipitation Measurement
+ in situ data

Cumulative precipitation between
25 March and 1 April 2019

Distance from the main river 30 m × 30 m DEM September 2014

Topographic Wetness Index (TWI) 30 m × 30 m Slope September 2014

Land Use/Land Cover (LULC) 10 m × 10 m Ghorbanian et al. [34] The products of the previous
article were used [34]

Soil Type 30 m × 30 m Geological Survey & Mineral
Explorations of Iran -

Normalized Difference
Vegetation Index (NDVI) 30 m × 30 m Landsat-8 7 March 2019

Erosion Rate 30 m × 30 m Soil and Water Research
Institute, Tehran, Iran -

Sentinel-1 10 m × 10 m
Copernicus, the European
Commission’s (EC) Earth

Observation Program

2 March 2019
1 April 2019

Sentinel-2 10 m × 10 m
Copernicus, the European
Commission’s (EC) Earth

Observation Program

Sentinel-2 was not used directly;
only the products of the previous

article were used [34].
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3.1. Digital Elevation Model (DEM)

The elevation is among the most important parameters in flood risk studies. Areas
with lower elevations have higher possibilities of being affected by rainfalls and are more
flood-prone than regions with higher elevation [35,36]. This study used the Shuttle Radar
Topography Mission (SRTM) DEM data with a spatial resolution of ~30 m (see Figure 3a).
These data were published in September 2014 and are currently the best open-access elevation
data over our study area [37].

3.2. Slope

Low slopes increase the quantity of water soaked into the soil and, thus, cause a higher
risk of flooding than higher slopes [38]. This is because more water is drained by higher
slopes, which are generally located at high elevations, and much water gathers in areas
with lower slopes. Various studies have adopted different categories for the slope map.
However, since Pol-e Dokhtar is a mountainous area (Zagros Mountain), we categorized
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the slope map based on its location and topographic features. The slope map was generated
using the (SRTM) DEM data and GIS tools in this study (see Figure 3b).

3.3. Rainfall

Rainfall is another important parameter that has been extensively employed in flood
hazards and susceptibility mapping [39,40]. In this study, the Global Precipitation Measure-
ment (GPM) precipitation data, along with in situ rainfall data from 15 synoptic stations,
were employed to produce a highly accurate rainfall map. The GPM precipitation pro-
vides rainfall data with a spatial resolution of 0.1◦ × 0.1◦. GPM usually provides higher
accuracy than other precipitation datasets, such as those provided by the Tropical Rainfall
Measuring Mission (TRMM; i.e., 0.25◦ × 0.25◦) [41]. An averaging method was used in
this study to combine local rainfall data generated from 15 weather stations with GPM pre-
cipitation. The GPM is an international mission that integrates precipitation measurement
from different sensors to provide sub-daily rainfall maps. Satellite precipitation estimates
are less accurate, but cover a larger geographical area. On the other hand, the in-situ
measurements are very accurate [42] with a sparse distribution over specific locations. To
resolve each of these limitations, we combined these two datasets to produce an accurate
rainfall map over the entire study area [43]. To this end, the in situ data, obtained from the
meteorological organization of the province of Lorestan (see Table 2), were first used to
produce a rainfall raster dataset using the Kriging interpolation approach. Kriging is an
interpolation technique utilizing an estimator that is non-biased and has a linear minimum
variance. A kriging method minimizes variance, which leads to the smoothing of the field,
especially near synoptic stations [44]. Using the Kriging method is often beneficial, not
only for estimating uncertainty but also for improving forecasts [45]. Compared to other
interpolation methods, the Ordinary Kriging (ORK) was considered to provide the lowest
RMSE [46]. Therefore, in this study, we interpolated in situ rainfall data from 15 synoptic
stations using the ORK method. Finally, rainfall maps (i.e., GMP rainfall map and the map
produced through in situ data and ORK method) were spatially overlaid and averaged to
generate the final rainfall map (see Figure 3c).

Table 2. Specification of the synoptic stations that were used to produce a local rainfall raster dataset.
Rainfall values were obtained from cumulative precipitation between 25 March and 1 April.

Station Latitude (◦) Longitude (◦) Rainfall (mm)

Pa Alam 32.81 48.05 270
Ghamgerdab 32.93 47.88 320

Pas Golam Korki 32.96 48.16 310
Poldokhtr 33.06 47.80 300

Cham Mehr Bala 33.11 47.55 320
Badamak 33.15 47.95 310

Takht Abad 33.18 47.85 280
Mamulan 33.20 48.06 320
Babazyad 33.21 47.73 315
Gheshmak 33.23 48.20 310

Aboughawir 33.25 47.70 316
Shahrak valiasr 33.30 47.95 290

Cheshme Sorkhe 33.30 48.05 325
Saranje Zivdad 33.31 47.78 300

Afrine Damrood 33.41 47.95 290

3.4. Distance from the Main Rivers

The distance from the rivers significantly affects flood distribution. In fact, flood
extent and intensity are more severe in regions located closer to the main rivers [47]. In
this study, stream networks were delineated from DEM using the Flow Accumulation tool
in ArcMap [48,49]. Finally, a raster with a spatial resolution of 30 m was produced using
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the multi-ring buffer analysis by assigning the distance from the main rivers to each pixel
(see Figure 3d).

3.5. Topographic Wetness Index (TWI)

The TWI index indicates how slope affects hydrological processes. TWI describes the
water accumulation trend at a particular location, and the local slope shows the influence
of gravitational forces on the water flow [50,51]. TWI is commonly used to forecast the
amount of soil moisture and describes the tendency of an area to accumulate water [52]. In
this study, the slope and DEM datasets were applied to calculate TWI (see Figure 3e) using
Equation (1).

TWI = ln (
AS

tanβ
) (1)

where AS is the specific catchment area, and β is the local slope angle in degrees. The
specified catchment area is an integration of surface and subsurface drainage from an
upslope region per unit contour width [53,54].

3.6. Land Use/Land Cover (LULC)

Different types of land cover have different infiltration rates and debris flow, and thus,
the LULC map plays an essential role in flood hazard mapping [55]. For instance, forests
and farms have a higher infiltration capacity, while urban areas support the overland
flow of water. In this study, we used the Iran-wide LULC map produced by Ghorbanian
et al. [34]. This map was generated by processing time-series Sentinel-1 and Sentinel-2
images within the Google Earth Engine (GEE) cloud computing platform. This LULC map
includes 13 LC classes of Urban, Water, Wetland, Kalut, Marshland, Salty land, Clay, Forest,
Outcrop, Uncovered plain, Sand, Farmland, and Rangeland. In this study, the LULC map
was reclassified using the criteria demonstrated in Table 3. For example, Urban areas have a
very high risk for flooding, however Water and Marshland have very low risk [17]. Finally,
this reclassified map (Figure 4) was used as one of the inputs for flood hazard mapping.

Table 3. Reclassifying the LULC map based on the level of flood risk.

LUCL Class Flood Risk Level

Marshland, Water Very Low
Wetland, Outcrop Low

Uncovered plain, Sand, Farmland Moderate
Kalut, Clay, Salty Land, Rangeland High

Urban Very High

3.7. Soil Type

One of the most important aspects of soil is its texture, which has a considerable impact
on flooding [38]. In this study, soil types were extracted from the Geological Survey and
Mineral Explorations of Iran. The study area mainly includes Rock Outcrops/Inceptisols,
Bad Lands, Rock Outcrops/Entisols, Inceptisols/Vertisols and Inceptisols (see Figure 3g).
The soil type parameter allowed determining the amount of water penetration in soil. For
example, soil made from Entisols increases water retention capacity even more than the
roots of plants [56]. Therefore, there is a very low risk of flooding in soils containing Entisol.
However, the low water infiltration rate is one of the physiochemical characteristics of
Badlands soil. Therefore, most rainfall in areas with Badland soil drains into surface runoff.
Additionally, it has been reported that a concentration of sodium and chlorine near the
surface of badland soils occurs during the dry season, which creates a repulsive force
between the soil particles, causing the soil to become extremely hard. Badland ecosystems
are also characterized by a high sodium and chloride concentration, which increases soil
electric conductivity and makes it unsuitable for plant growth, resulting in bare landscapes.
In areas with this type of soil, a short period of rainfall may cause severe flooding due to
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the inability of the soil to penetrate water and the lack of plants that retain water [57]. The
soil type map was reclassified using the criteria reported in Table 4. Finally, this reclassified
map (Figure 5) was used as one of the inputs for flood hazard mapping.
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Figure 4. The reclassified LULC map of Pol-e Dokhtar based on the level of flood risk.

Table 4. The reclassified soil types based on the level of flood risk.

Soil Type Class Flood Risk Level

Rock Outcrops/Entisols Very Low
Inceptisols/Vertisols Low

Rock Outcrops/Inceptisols Moderate
Inceptisols High
Bad Lands Very High

3.8. Normalized Difference Vegetation Index (NDVI)

Vegetation cover on any surface reduces the water movement velocity and increases
the water infiltration of the corresponding surface [58,59]. The conversion of vegetation
cover to urban or barren areas increases the flooding risk since vegetation cover can mitigate
flood intensity and velocity [29]. Since vegetation can influence local hydrodynamics, it
can affect flood risk. In this regard, remote sensing data can be employed to provide new
insights to support the management of high waterways [60]. For example, NDVI is a
spectral index indicating the presence and vigor of vegetation cover. It can be calculated
using the red and near-infrared bands of satellite images. In this study, NDVI values were
computed using Landsat-8 satellite images with a 30 m spatial resolution and Equation (2)
(see Figure 3h). We should note that the Landsat 8 image used in this study was captured
on 7 March, which was very close to the date of the flood.
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NDVI =
ρNIR − ρRed
ρNIR + ρRed

(2)

where ρNIR and ρRed are the surface reflectance values of the near-infrared and red bands,
respectively. The NDVI map was used to categorize flooding hazards based on the numeri-
cal values. The classes with values more than 0.40 and less than −0.11 were considered
less vulnerable and more susceptible to flooding, respectively.

3.9. Erosion Rate

Erosion rate is a crucial parameter that affects the possibility of flooding during heavy
rainfalls. This is because the dissolution of soil in water affects the water flowing on the
Earth’s surface and significantly increases the water volume runoff in areas with a high
erosion rate [61]. In this study, the erosion rate (Figure 3i) was determined using the
Universal Soil Loss Equation (USLE) formula (Equation (3)) to measure annual soil loss
associated with sheet and flow erosions [32].

A = R× K× (L× S)× C× P (3)

where A is the maximum amount of land loss (ton/year), R is the monthly average rainfall
erosivity, K is soil erodibility index factor (ton/pear), L is the length factor of topography,
S is the slope factor of the topography, C is crop management index factor, and P is soil
conservation index factor.

Soil erosion has a key role in floods. Most articles have not directly used erosion
rate as a parameter for generating flood hazard maps because soil type and NDVI can
be used to consider the impacts of soil erosion in flooding. However, in this study, we
have directly used the soil erosion parameter to obtain more accuracy in determining flood
hazard locations soils with a high potential for erosion can increase flood potential because
soluble soil contributes to flooding. Besides increasing the volume of water, erosion is
assumed to cause the transport of silt together with river water. A considerable amount
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of silt is deposited at the riverbed and the banks, resulting in a rise in the bed level and
congestion of the water flow [62]. It is worth noting that erosion rates were provided by
the Soil and Water Research Institute in Tehran, Iran.

3.10. Sentinel-1 Images

In this study, two Sentinel-1 Ground Range Detected (GRD) images, captured on 2
March 2019 (before the flood event) and 1 April 2019 (the date of flooding) were used
to evaluate the accuracy of the produced flood hazard map. Several preprocessing steps
were applied to each image to prepare them for flood detection. For example, orbit
file correction was first applied to both images, followed by a thermal noise removal
step. Subsequently, both images were converted to gamma-nought (γ◦) values through
a radiometric calibration analysis, and the corresponding SRTM data were employed for
Range-Doppler terrain correction [38]. Finally, a refined Lee filter with a 7 × 7 kernel size
was implemented to reduce the undesirable speckle noise and to improve the signal-to-
noise ratio [39].

4. Methodology

After preparing different input datasets, the proposed approach comprises three main
steps of (1) input dataset fuzzification, (2) weight value determination of each dataset
through an AHP technique, and (3) combination of different datasets using a fuzzy overlay
analysis. These steps are separately explained in the following subsections.

4.1. Fuzzification

All input datasets (Section 3) were converted to fuzzy values using a linear fuzzy
membership function. As illustrated in Figure 6, a linear fuzzy membership function
converts the input values of each dataset to the range of 0-1 based on Equation (4). In this
transformation, zero and one correspond to pixels with the very low and very high potential
risk of flooding, respectively. Accordingly, for two input parameters (i.e., Rainfall, TWI),
a linear function with a positive slope was utilized, while for the remaining parameters
(i.e., DEM, slope, distance from the main river, LULC, soil type, NDVI, and erosion rate), a
negative slope linear function was considered.

f (x) =


1 or 0 x > Max
0 or 1 x < Min

x−Min
Max−Min Min < x < Max

(4)

where Max and Min are the maximum and minimum values of each parameter, and x is
the pixel value of each parameter.
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4.2. Analytic Hierarchy Process (AHP)

AHP is a decision-making method that involves organizing multiple-choice criteria
into a hierarchy, evaluating their relative values, comparing alternative solutions for each
criterion, and deciding on an overall ranking of the alternatives based on cost, benefit,
and risk [63,64]. The multi-criteria decision-making technique has extensively been used
for solving complex problems through adjusting suitable weights for different input crite-
ria [65]. In this study, AHP was used to calculate the weights of all input parameters for
flood hazard mapping. Regarding the determination of weight values, the pairwise com-
parison matrix was initially generated based on the recommendations of local experts [66].
Then, the normalized matrix was calculated by dividing each element of the pairwise
comparison matrix by the sum of each column. Next, the average value of each row was
considered as the final weight value of the corresponding parameter [64]. To ensure the
correctness and suitability of the weight value determination step, the Consistency Ratio
(CR) was computed to investigate the degree of consistency between weight values of
different parameters (see Equation (5)). The CR values less than or equal to 0.1 indicate a
suitable pairwise comparison matrix, while values greater than 0.1 indicate that the matrix
should be reconsidered. To calculate CR, λmax (the maximum eigenvector) and Consistency
Index (CI) were computed using Equations (6) and (7), respectively.

CR =
CI
RI

(5)

λmax =
1
n

n

∑
i=1

aij × wi

wi
(6)

CI =
λmax − n

n− 1
(7)

where RI is the Random Inconsistency that was set to 1.45 [64], aij is pairwise compar-
ison matrix element, and wi is the weight value of each parameter. In this study, the
CR value was equal to 0.0019, demonstrating the suitability and consistency of weight
values. The final weight value of each parameter, determined using the AHP technique, is
provided in Table 5.

Table 5. The weight value of each input parameter determined using the Analytic Hierarchy Pro-
cess (AHP).

Parameter Weight

Digital Elevation Model (DEM) 0.156
Slope 0.118

Rainfall 0.178
Distance from the main river 0.191

Topographic Wetness Index (TWI) 0.022
Land Use/Land Cover (LULC) 0.133

Soil Type 0.068
Normalized Difference

Vegetation Index (NDVI) 0.089

Erosion Rate 0.045

4.3. Fuzzy Overlay

After the fuzzification step, the fuzzy values of each parameter (i.e., each pixel in the
corresponding parameter) were multiplied by the associated weight value (i.e., determined
in the second step using the AHP technique). Subsequently, these fuzzy parameters were
integrated using a fuzzy gamma operator to produce the final fuzzy flood hazard map [67].
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As illustrated in Equation (8), the fuzzy gamma operator is the algebraic product of the
fuzzy sum and fuzzy product, which are then raised to the power of gamma (γ = 0.90) [68].

F(γ) =

(
n

∏
i=1

f (i)

)1−γ

.

(
1−

n

∏
i=1

(1− f (i))

)γ

(8)

where n is the number of input parameters, f (i) is the pixel value of each input parameter,
and F(γ) is the fuzzy flood hazard map.

4.4. Jenks Natural Breaks Classification

The Jenks optimization method, also called the Jenks natural breaks classification
method, was applied to generate the flood hazard map [69,70]. Natural class breaks are
one of the data clustering methods designed to recognize the best possible method to
assemble similar values. This method is accomplished through classification values into
different classes following the natural breaks or differences in the data. This is performed
by minimizing the amount of variance between details in the same class and maximizing
the variance between other classes [70]. This technique is frequently used in Geographic
Information Systems (GIS) applications for raster data classification [71]. In this study, this
method was used for the final classification since the Jenks optimization method has great
performance for data with high variance and this was done in the GIS environment [72].

4.5. Final Flood Hazard Map

After the production of all input parameters, the Fuzzy logic membership was em-
ployed to determine the likelihood of flooding. The AHP method was also used to assess
the weights of each parameter (see Table 5). Subsequently, these weights were applied to
each fuzzy raster. These fuzzy rasters were then combined using a fuzzy gamma operator
to produce the final fuzzy flood hazard map. Finally, the Jenks optimization method
was applied to classify the final flood hazard map into five classes based on susceptibil-
ity to flooding.

4.6. Validation

As discussed, two Sentinel-1 images acquired before and on the day of a flood event
were used for validation of the produced map. To this end, after applying the preprocessing
steps (see Section 3.10), both images were classified into two classes of water and non-
water by considering the gamma-nought (γ◦) value lower than 0.02 as water areas. Then,
the algebraic difference of these classified images produced the flooded areas on 1 April
2019. This flooded map was finally used to validate the result of the flood hazard map.
Additionally, the proposed method was applied to another flood event in April 2020 to
investigate its robustness.

5. Results

Figure 7 shows the flood hazard map of the study area produced using the proposed
methodology. The final fuzzy map was classified into five different classes by natural
breaks classification (Jenks) to provide an explicit flood hazard map. Visually, the final
classified map has a satisfactory representation of the flood hazard zonation, in which
locations with very high flood risk are appropriately bounded by high flood risk regions.
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Figure 8 presents the superimposition result of the final flood hazard map and the
delineated flooded areas based on Sentinel-1 images. It can be seen that most flooded
areas of Pol-e Dokhtar are located in regions with very high and high flooding risk in
the produced flood hazard map. Furthermore, the number of pixels and percentage of
intersection between flooded areas and flood hazard map classes are calculated based on
Figure 8. Comparing flooded areas with the produced flood hazard map, it was realized
that 74.98% of flood areas were in regions with very high flood risk, 20.18% was located
in regions with high flood risk areas, 4.25% was in moderate risk areas, and less than 1%
was in low and very low risk regions. Therefore, the obtained results demonstrate the high
potential of the implemented approach for an accurate flood hazard map in the study area.

As mentioned in Section 4.6, the proposed method was applied to another flood event
in Pol-e Dokhtar which occurred in April 2020 to evaluate its accuracy and robustness (see
Figures 9 and 10). This flood event caused many damages to agricultural and urban areas.
For example, according to the Copernicus Emergency Management Service (CEMS) reports,
1404 buildings were negatively affected by this flood. During this flood, 20 properties
were totally destroyed and 1384 buildings/properties were damaged (Table 6) [73,74]. The
comparison of the affected areas in Mamulan and Pol-e Dokhtar during this flood event
with the results of the proposed flood hazard map showed that 100% of the buildings
which were totally destroyed were located in the very high flood hazard class, and 97.9%
of the buildings which were damaged or possibly damaged were over the high and very
high flood hazard regions (see Figures 9 and 10).
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Figure 10. Buildings/Properties which were affected by the flood event in Pol-e Dokhtar in April 2020: (a) the flood hazard
map in Pol-e Dokhtar produced using the proposed method, (b) Aerial photo of the affected areas in Pol-e Dokhtar during
flood on April 2020 using the Copernicus Emergency Management Service (CEMS) reports.
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Table 6. The number of affected buildings/properties in Mamulan and Pol-e Dokhtar by the flood
event in.

Study Area Destroyed Damaged Possibly Damaged

Pol-e Dokhtar - 476 626
Mamulan 20 24 258

It was important to prove the accuracy and robustness of the proposed method
over other study areas. Therefore, in this study, the proposed method was applied to
an independent flood-prone area in the province of Lorestan, Iran, called the Nurabad
watershed. Figure 11 illustrates the produced flood hazard map over this watershed using
the proposed methodology. Figure 12 also compares this flood hazard map with the actual
flooded area on 26 February 2020. As is clear, most flooded areas of this area are located in
the regions with very high flooding risk in the produced flood hazard map. For example,
the results showed that 94.65% of the actual flooded areas in this watershed were in the
regions with very high flood risk in the produced map. These results indicated the high
potential of the proposed method to provide accurate flood risk results over different
regions in Iran.
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6. Discussion

There are a wide range of approaches for flood analysis and forecasting, such as
hydraulic, mathematical, survey and interviews, comparison, statistical, GIS, and remote
sensing methods. Most of these methods are very expensive and require special equipment
for collecting data and experts to analyze. In this way, this paper offers an efficient approach
for flood hazard management community members who do not have extensive knowledge
in remote sensing.

It is suggested that the authorities should prevent constructing new buildings in areas
that are prone to flooding. However, most urban areas of Pol-e Dokhtar and Mamulan
are falling under a high and very high susceptibility flood hazard. Therefore, diversion
canals, river defenses, self-closing flood barriers, contour trenching or even dams should
be constructed to control floods, especially during heavy rain seasons.

In this study, we improved the accuracy of flood mapping by incorporating the
important parameters for flood mapping and improving the accuracy of some of them. For
example, an accurate LULC map (i.e., generated using the Sentinel 1 and 2 images) with a
10-m resolution was used in this study instead of outdated low-spatial resolution LULC
maps. Likewise, our rainfall data were derived by integrating GPM and synoptic data,
which was more accurate than using them individually. Using such high-resolution and
enhanced parameters resulted in a highly accurate flood risk map (accuracy = ~95%) For
instance, although [75] utilized Sentinel-1 images to generate flood risk maps for the north
of Iran, its accuracy negatively affected due to using low-resolution rainfall data. Moreover,
although [67] used new flood parameters, such as check-dams, all important geospatial
datasets for flood risk mapping were not considered.

The accuracy of flood hazard maps was mostly not reported (e.g., research works [6,76–79]),
and when an accuracy was reported, the accuracy values were based on the train-test split
procedure of historically flooded/non-flooded areas. Although the train-test split method is
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a fast and efficient approach to estimate the performance of a flood model, it is not sufficient
when there are a few historical flood points. Moreover, since the nature of the test data were
almost the same as training data, the evaluation of models with such a strategy might lead
to errors. In this study, we used two validation methods which were more realistic. First, the
flooded regions generated by pre- and post-flooded Sentinal-1 images were compared. Second,
the results were compared with the CEMS reports. Additionally, the information about damaged
buildings was used in the validation process where it was observed that 100% of these buildings
were located in areas of very high flood hazard in our produced map. Although the proposed
method has several advantages, it also has several limitations as well. For example, many
man-made structures such as roads, dams, levees and urban areas, can change flood patterns.
Although urban areas are considered in LULC, it would be great if other man-made structures
are considered in future studies to improve the accuracy of flood hazard mapping. Additionally,
we mainly used open-access remote sensing datasets. For example, the SRTM DEM data with an
approximately 30 m spatial resolution were used, which is currently the best free topographic
product over the study area. However, we strongly recommend using a high-resolution DEM,
particularly when a stream network should be generated by DEM. Furthermore, high-resolution
data are optimal for post-flood detection. High resolution airborne or satellite images can be
more effectively applied to evaluate the amount of damage to infrastructure and agricultural
regions. Moreover, optical remote sensing systems cannot collect observation during nighttime
and cannot see under clouds or vegetation canopy.

7. Conclusions

In this study, we proposed an efficient approach to generate a reliable flood hazard map
using remote sensing and GIS datasets and algorithms. To this end, the potential of Sentinel-
1 images, multiple-criteria decision analysis, and fuzzy methods were employed. Two
case studies, including the Pol-e Dokhtar and Nurabad watersheds, were also considered
to evaluate the efficiency and robustness of the proposed approach of the flood hazard
mapping. The experimental results showed that the proposed method had a high potential
to accurately identify flood risk areas. For example, the accuracy of the risk of the flood-
prone areas were ~95% for these two case studies. It was concluded that using higher
resolution and more accurate flood parameters improved the accuracy of the flood risk map.
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