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Abstract: Fires are a disturbance that can lead to short term dune destabilisation and have been
suggested to be an initiation mechanism of a transgressive dune phase when paired with changing
climatic conditions. Fire severity is one potential factor that could explain subsequent coastal dune
destabilisations, but contemporary evidence of destabilisation following fire is lacking. In addition,
the suitability of conventional satellite Earth Observation methods to detect the impacts of fire
and the relative fire severity in coastal dune environments is in question. Widely applied satellite-
derived burn indices (Normalised Burn Index and Normalised Difference Vegetation Index) have
been suggested to underestimate the effects of fire in heterogenous landscapes or areas with sparse
vegetation cover. This work assesses burn severity from high resolution aerial and Sentinel 2 satellite
imagery following the 2019/2020 Black Summer fires on Kangaroo Island in South Australia, to
assess the efficacy of commonly used satellite indices, and validate a new method for assessing fire
severity in coastal dune systems. The results presented here show that the widely applied burn
indices derived from NBR differentially assess vegetation loss and fire severity when compared in
discrete soil groups across a landscape that experienced a very high severity fire. A new application
of the Tasselled Cap Transformation (TCT) and Disturbance Index (DI) is presented. The differenced
Disturbance Index (dDI) improves the estimation of burn severity, relative vegetation loss, and
minimises the effects of differing soil conditions in the highly heterogenous landscape of Kangaroo
Island. Results suggest that this new application of TCT is better suited to diverse environments like
Mediterranean and semi-arid coastal regions than existing indices and can be used to better assess
the effects of fire and potential remobilisation of coastal dune systems.

Keywords: fire severity; differenced normalised burn ratio; tasseled cap transformation; disturbance
index; differenced disturbance index; Kangaroo Island; transgressive dunes

1. Introduction

Fires are an ordinary, recurring, and integral part of ecosystems around the globe
and across many parts of Australia [1], and provide many benefits to ecosystems [2—4].
Shifts in fire regimes (frequency and severity) are associated with climate change, extreme
weather events, and drought [5-8], and may alter vegetation succession [9,10] or landscape
stability [11]. Fire severity is a measurement of the effects of fire on landscapes and
can be irregular within a burnt area due to variation in fuel loads, fuel type, weather
conditions, topography, or maturity of the plant community [12,13]. Measurements of
fire severity provide data that can be used to better understand the subsequent post-
fire recovery, such as shifts in ecological diversity or stability of the landscape [14,15].
Significant research has been applied to mapping and understanding fire severity from
space [16], but many conventional methods are influenced by soil conditions and pre-
vegetation communities, or require region-specific adjustments, thresholds, or training
data [17-20], which limit their wider application. Furthermore, the forecast of fires in
Australia and globally shows a continued increase in frequency and intensity with extended
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fire seasons [21,22], highlighting the need for the study and development of space-based
Earth Observation (EO) methods to assess fire severity that can be applied broadly across
heterogenous environments.

In situ assessments of burn severity estimate the effects of fire by measuring soil
characteristics such as char depth, organic matter loss, colour [23], and descriptions of
vegetation loss [24], whereas space-based and airborne EO assessments of fire severity
provide estimates of above-ground biomass loss and ecological impact as measured from
active or passive sensors [25]. Large extent fire severity mapping has been predominantly
accomplished with passive optical spectral indices to discriminate between burnt and
unburnt areas, and assessing severity from an index value [17,26]. Classification thresholds
have been established with comparisons to in situ observations and methods such as the
Composite Burn Index (CBI) [27,28], but are limited to the region and vegetation community
for which they are optimised [29]. Two of the most commonly used indices that are used to
map the extent of burnt area and fire severity are the normalised burn ratio (NBR) and the
normalised difference vegetation index (NDVI) [30-33] that combine the shortwave infrared
(SWIR), near-infrared (NIR), or red spectral bands of the electromagnetic (EM) spectrum.
These bands are ideal for monitoring vegetation dynamics as the NIR wavelengths shows
greenness and chlorophyl concentration, whereas the SWIR wavelengths are sensitive to
water content and woody biomass [16,34].

Many studies compare pre-fire with post-fire pixel values to assess the impact and
recovery of areas and produce a differenced measurement of change (ANBR or dNDVI)
that can be interpreted as fire severity [19]. ANBR and dNDVI were developed for use in
landscapes with continuous canopy cover [35] and under-assess fire effects in regions with
heterogeneous and/or sparse vegetation communities [27,36], as the resulting absolute
difference is directly related to the amount of chlorophyl of the pre-fire vegetation com-
munity and fraction of canopy consumed [37,38]. Ideally, absolute differenced analysis
rasters need independent calibration for different vegetation and landscapes to adjust the
thresholds for fire severity [37]. Miller et al. [37] developed the relative dNBR (rdNBR) to
standardise severity values, reduce the effects of diverse vegetation types, and account for
variations in soil conditions. Comparisons of efficacy of the rdNBR have shown varying
results in certain landscapes [19,39], but the index is commonly used in studies in semi-arid
conditions [19,32,33,36,40] to minimise effects of heterogenous landscapes and discontinu-
ous canopy coverage [37]. Although Klinger et al. [19] showed that there was no significant
improvement between dNBR and rdNBR for assessing severity within fires in their desert
study sites. Dual-band indices do not use the full spectral resolution available within
multi-spectral imagery and are influenced by the sensitivities of individual bands. There
is potential in methods that utilise additional parts of the EM spectrum in multi-spectral
imagery that exhibit changes due to fire.

The Tasseled Cap Transformation (TCT) was developed by Kauth et al. [41] to model
the spectral trajectory of agricultural crops as monitored from Landsat Multispectral
Scanner (MSS) data with outputs of brightness, greenness, yellowness and non-such com-
ponents. Crist et al. [42] adapted the TCT yellowness output to target soil moisture and
formed the widely applied three TCT outputs: brightness (TCB), greenness (TCG), and
wetness (TCW). These outputs represent values of the three principal surface components:
brightness with albedo, greenness with vegetation and wetness with soil and vegeta-
tion moisture [43]. TCT outputs are derived from linear combinations of imagery bands
weighted with sensor-specific coefficients sourced from representative global samples on
a rotated principal component axis [44]. Healey et al. [45] developed the Disturbance
Index (DI) to track both short and long-term changes in forests by exploiting the differ-
ences between brightness compared to greenness and wetness in a cleared forest. TCT
outputs are normalised to mean and standard deviation values of pre-disturbance pixels
and combined into a single value that represents the normalised difference from a repre-
sentative mean value [46-50]. The full spectral resolution of an image that is combined
with TCT and the normalised DI helps to minimise the effects of different soil spectra and
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varying vegetation types or phenology that can be influential in multi-band indices [50-52].
The DI has been shown to be effective at tracking disturbances in forests and assessing
severity in landscapes that are characterised by a dense and continuous canopy, as nor-
malisation values are influenced by non-tree or forest pixels [50,52]. Non-forest pixels,
such as bare ground or mixed areas, reduce the effectiveness of DI as they increase the
variance within the representative mean pixel values; therefore, this diminishes the ability
to detect disturbances in a tree canopy with less vigour due to disease or a low intensity
fire. Masek et al. [50] used DI in a time series analysis to track deviations from annually
aggregated representative pixels terming it the ADI, with significant deviations suggesting
disturbances or regeneration over time. To date, there has been one publication that has
applied the DI as a differenced temporal index, highlighting the change over time between
two dates as a result of a disturbance. Axel [51] used the difference in pixel values between
two DI images to conduct burn scar mapping in the dry forests of Madagascar, utilising
local mean and standard deviations to illustrate the effects of fire. The requirement for
locally derived statistics has limited the application of DI to forests and discrete study areas
and reduced its precision for heterogenous landscapes.

Coastal dune systems are diverse in structure, ranging from highly stabilised, veg-
etation covered systems to fully active systems with mobile sand, with most dunefields
containing both stable, semi-stable or partially vegetated, and active areas [53], depending
on the climate [54] and stage of evolution [55]. The long-term stability of coastal dune sys-
tems can be altered by anthropogenic factors or variations in climate that alter the sediment
supply, vegetation cover, wind regimes, wave conditions, water table, and relative lake or
sea levels [55-59]. The destabilisation or reactivation of previously stabilised coastal dunes
may occur after a short-term disturbance, such as fire or storm-driven wave and/or wind
erosion [53,55] but contemporary evidence for fire as the initiator of destabilisation or dune
transgression is lacking [32,33]. Post-fire dune stability has been shown to be influenced
by type of vegetation [60], burn severity [61] and climatic conditions [53]. Although dune
destabilisation directly following fires has been suggested in the literature, currently the
evidence is limited to observations from the stratigraphic record [62-71]. Central to these
inferences is the fact that the fires are followed by increased aridity or drought conditions,
and that fire acts as an initial catalyst for dune reactivation [72,73]. The severity of fire may
affect the recovery of landscapes as dormant seeds or re-sprouters may not survive above
certain temperature thresholds [74-76].

Coastal dune landscapes have characteristics that limit the effectiveness of many
remotely sensed fire severity indices: heterogeneity, discontinuous canopies, and bright
soils. Whereas research has shown alternatives to the widely used indices, region-specific
adjustments and statistics, training data, and thresholds limit their wider application. This
study uses the TCT outputs of brightness, wetness and greenness from Sentinel 2 imagery
and computes a differenced Disturbance Index (dDI) based on pre- and post-fire pixels
to assess fire severity in coastal dune areas. dDI measures the severity of a disturbance
as it computes the transformed spectral difference between, before, and after an event at
the per pixel scale. This allows it to scale in an automated process for wider geographical
applications and potentially provides an improved estimation of disturbance severity in
heterogenous environments. The 20192020 Australian fire season resulted in thousands
of burnt hectares across Australia [77], with a significant portion of Kangaroo Island’s
stabilised and semi-stabilised coastal dune systems affected [21]. This case study explores
the effect of an intermittent canopy and soil variability on widely used burn severity indices
and presents a new and novel application that aims to improve severity assessments.

2. Materials and Methods
2.1. Study Area
Kangaroo Island (KI) is in South Australia, southwest of its capital city, Adelaide

(Figure 1). It has a coastline of approximately 458 km in length and a total area of
3890 km? [78]. More than one-third of the island lies within a protected wilderness or
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national park area and holds important ecological value due to its geographical isola-
tion [79]. The proximity and exposure to the Southern Ocean and its cold waters have
a unique meteorological effect on the island’s weather, climate, and subsequent fire pat-
terns [79]. KI has a Mediterranean climate characterised by hot dry summers and wet
winters, with most rain occurring outside of the summer months [80]. Fires are com-
mon and occur annually, primarily as a result of intentional burn offs and dry lightning
strokes [79]. In December of 2019, lightning strokes ignited multiple fires that burned
until 21 January 2020, affecting nearly half of the island. The fire spread throughout the
national park on the western side of the island and swept east into the agricultural region
and was the largest recorded fire in contemporary records [30]. Historical records date
to the 1930s [30] with anecdotal records from early Europeans suggesting a dramatically
increased and altered fire regime from the 19th century after colonisation [81]. Bauer [81]
suggests that fires were widely and repeatedly used to clear land, and by the 20th century
it was likely that no parts of the island or its vegetation remained unaffected.
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N

)

T
6,060,000

6,045.000

6,030,000

6,015.000

Figure 1. Kangaroo Island in South Australia as shown by Sentinel 2 MSI (L2A) satellite imagery from 16 December 2019
(A) and 30 January 2020 (B). S2 imagery is shown in bands 4, 8 and 12 (BGR)to highlight fire affected areas. Inset (C) shows
exaggerated (2 x elevation) relief map (metres) of the Holocene transgressive dunefield.

The extent of modern land and agricultural use (pastoral and forestry) on the eastern
portion of the island is a result of poor soils that discouraged earlier development, with the
other 46% of the island under tree, mallee, or shrub cover (Figure 2) [82]. Native vegetation
can be generally grouped into eucalyptus woodland, eucalypt mallee, and sparse shrubland
communities [82]. The vegetation and landscape is broadly characterised by three major
regions, the interior raised plateau/tableland, the lowland plains, and coastal formations
(Table 1) [83]. The plateau is dissected by riverine systems which have formed narrow
valleys through pre-Quaternary bedrock characterised by eucalyptus woodland and dark
soils coloured by humus and iron oxides [83]. Along the coastline, late Cambrian granite
and Pleistocene aeolian calcarenite cliffs form headlands and capes [83]. The south and west
coast of the island is exposed to the full force of the Southern Ocean and is characterised by
high wind and wave energy, actively eroding cliffs, pocket beaches, and embayments [78].
Northern and eastern coastlines are sheltered from the predominant wind and wave
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energy and are characterised by high cliffs, pocket beaches, and tidal inlets [78]. Sandy
beaches occupy 34% of the coast which are backed by Quaternary aeolian sediments
rich in carbonate; indurated Pleistocene calcarenite and unconsolidated Holocene sands
form exposed isolated units [78,80]. The Holocene sands form complex transgressive
and parabolic dunefields that are mostly stabilised by vegetation (Figure 1C), with some
areas actively transgressing and fully destabilised [80,83]. Coastal dune vegetation is
highly heterogenous, sparse shrubland in areas with active aeolian sediment transport and
dominated by densely populated mallee in stabilised or sheltered regions [83].
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Figure 2. Landscape unit classifications of Kangaroo Island from Northcote [83], dominant native vegetation communities

and plantation forests of hardwood and softwood species. Extent indicator in the SW part of island refers to Figure 3.
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Figure 3. Flow chart of data and methods used.
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Table 1. Landscape units associated with soils in fire affected regions of Figure 2. Dominant soils
reflect classification used by Northcote [83].

Unit. Landscape (Classification) Dominant Soils
Linois Plains-LP Calcarenite lowlands (ElO). Calcarenite and dune hme.Stone
with pockets of red sandy soils.
Gosse Plateau-GP Dissected tableland (Wal) .ACld dup'lex soils. Le'a chegl
sands, high organic and alluvial soils.
Gantheaume Dunes-GD Coastal dune (A1) Carbonate rich sands on dune
limestone, calcarenite
McDonnel Hills-MH Steep hilly upland (D2) Shallow grey-brown acidic soils

containing ironstone gravel.
(Wb2) Duplex soils. Leached sands,
Seddon Plateau-SP Dissected tableland ironstone gravel and high organics
alluvial soils.

2.2. Datasets and Pre-Processing

Data management, image analysis, and figure generation were primarily carried out in
ArcGIS Pro (2.8), ERDAS Imagine 2020, and python environments. Sentinel 2 (52) imagery
and aerial imagery were used to assess fire severity (Table 2). High resolution aerial imagery
with 4 spectral bands (RGB, NIR) for 2016 and 2020 was sourced from the most recent
ortho-images from the State Government of South Australia. Pre-fire aerial imagery was
resampled via cubic convolution to geometrically match the spatial resolution of 2020 aerial
imagery. S2 imagery was sourced from the European Space Agency’s Copernicus Open
Access Hub (https:/ /scihub.copernicus.eu, accessed on 22 November 2021). Cloud free
S2 imagery was acquired for before and after the fire event as well as to coincide with the
dates of the high-resolution aerial imagery in 2016 and 2020. S2 imagery was resampled to
the highest spatial resolution of 10m via cubic convolution. Level 2A imagery was acquired
for the 2019 and 2020 imagery and Sen2Cor was used to apply atmospheric corrections
for 2016 imagery [84]. All datasets were analysed in the Geocentric Datum of Australia
1994 (GDA94) with a Universal Transverse Mercator (UTM) datum in zone 53 South. An
overview of the methods is shown in Figure 3.

Table 2. Imagery used to assess fire effects from 2016 to 2020. Table shows date or range of dates for
satellite (L2A) and aerial ortho-imagery collected, number of spectral bands and respective pixel size.

Platform Date Number of Bands Pixel Size
Aerial 18-22 December 2016 4 40 cm
S2A 11 December 2016 12 10 m—60 m
S2A 16 December 2019 12 10 m-60 m
S52B 30 January 2020 12 10 m-60 m
Aerial 30 January 2020 4 10 cm

2.3. Index Design

To transform imagery to the orthogonal TCT axes, bands are scaled to individual coef-
ficients developed from representative imagery sets and combined in a linear equation. At
the time of writing, specific coefficients for all bands within 52 ground reflectance imagery
have not been published. Recently, some authors [85,86] have used coefficients developed
for Landsat at-sensor reflectance products on S2 level-2A imagery. Others [87-91] have
applied TCT coefficients to 52 level-2A data that were developed for at-sensor S2 (level-1C)
imagery [43,92]. The spectral range and similarities of bands from Landsat and S2 bands
are well documented [93-95], and the coefficients as developed by Crist [96] have been
used in various studies using surface reflectance Landsat imagery [51,97-99]. For this
study, coefficients were applied to S2 L2A bands (2490, 3560, 4665, 842, 111610, 122190) and
sourced from Landsat-derived coefficients for atmospherically corrected imagery [96] to
derive TCB, TCG, and TCW.
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dDI (Equation (1)) combines the Tasseled-cap indices (brightness, greenness, and
wetness) into a single index value of transformed spectral distance and temporal change. In
this application, a pre-disturbance image is used to assess the transformed spectral change
that has occurred as a result of a fire.

(TCG' + TCW' — 0.5+TCB')

dbI = 10,000

)

where TCB’, TCG', and TCW’ (Equation (2)) represent the transformed spectral difference
in brightness, greenness, and wetness indices between the image dates, respectively.

TCB' = preTCB — postTCB 2)

The change in brightness values was found to be disproportionately high compared
with the combined greenness and wetness in regions where the tree canopy was fully
consumed and had bright soils; therefore, a scaling factor (0.5) was applied to the TCB’
output in the dDI calculation. Index values are rescaled to represent change in transformed
reflectance values [84] by dividing by 10,000. The order of the equation has been shifted
relative to the previously published DI equation [45] to ensure that areas disturbed resulted
in a positive value. Larger index values indicate a likely disturbance event, with higher
brightness and lower greenness and wetness giving greater positive values and severity.
Low positive (<0.1) values indicate minimal changes in relative transformed spectral
change with negative values or values close to 0 suggesting that brightness decreased or
was unchanged relative to greenness and wetness and that disturbance was unlikely.

2.4. Satellite Fire Severity

The normalised burn ratio (NBR) (Equation (3)) was developed by Key et al. [28] and
is the standard index used for burn severity and burnt area research and for large extent
monitoring programs [100]. dNBR (Equation (4)) and rdNBR (Equation (5)) were calculated
to compare conventional fire severity indices with the dDI. To align with the spectral
resolution of Landsat [95] and previous applications of the index, NBR was computed with
the bands 8g4p and 125199 of S2 imagery.

NIR — SWIR
BR= ————
N NIR + SWIR ®)
Pre- and post-fire NBR were combined to calculate the differenced NBR (ANBR). dNBR
values are the absolute change between images with positive pixel values indicating burnt
areas, and higher values often interpreted as higher fire severity [39].

dNBR = preNBR — postNBR )

Miller et al. [18] developed the relativised dNBR (rdNBR) to better assess fire effects
in pixels where pre-fire vegetation cover is low and an absolute measure of change would
result in low values, regardless of total vegetation loss. Similar to dNBR, positive values
indicate burnt areas and negative values represent areas with increased vegetation cover
or vigour [37]. The dNBR value is relativised by dividing by square root of the absolute
preNBR value and was calibrated based on in situ comparisons with fire severity [18].

rdNBR = —ONPR ®)
|preNBR|

As acknowledged in its development [18], low preNBR values will cause exceptionally
large burn severity estimations in the resulting rdNBR index due to the division by a
small value, causing significant overestimations of fire severity. For comparisons and
visualisations in this analysis, the pixel values outside of 3 standard deviations (STDs) from
the mean of rdNBR were considered outliers and removed.
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2.5. High Resolution Aerial Assessment of Fire Severity
2.5.1. Representative Dune Sites

High spatial resolution aerial images provide a source of data that can be used to
estimate burn severity, help track the recovery of vegetation [101-106], and corroborate
observations from satellite imagery [104,107]. Aerial imagery from 2016 and 2020 (Table 2)
was used to extract and measure vegetation loss in representative coastal dune systems
(Figure 4 and Table 3). For further review of coastal dune types, see Hesp et al. [108]. Sites
A and B are a mix of active and stabilised dune systems, characterised by high exposure
to wave and aeolian energy. Both sites (A and B) were burnt in all regions except in the
foredune areas (foremost depositional dune landward of the waterline). Before the fire
event, Sites C and D were fully stabilised parabolic dunes characterised by thick mallee
vegetation cover. The extent of site D was derived from the boundary of soil groups
between Holocene sands and Pleistocene lowlands (GD and LP Table 1).

Table 3. Representative coastal dune sites used to assess fire severity with aerial and satellite imagery.

. - o Vegetation
Site State Description Burnt (%) Cover Pre-Fire
A Active Foredune l?lowout complex backed ~80% 70%
by active parabolic dunes
. Foredune blowout complex backed o o
B Active by stabilised parabolic dunes ~80% 75%
C Stabilised Parabolic dunes 100% 95%
D Stabilised Parabolic dunes 100% 95%

2.5.2. Measuring Fire Severity from Aerial Imagery

The Modified Excessive Green Index (MEGI) (Equation (6)) was calculated for the
2016 aerial imagery to distinguish between sand/soil and vegetation pixels in areas with
a discontinuous canopy and exposed soils. MEGI emphasises the height of the green
reflectance peak [109] and was used to isolate exposed soil and sand pixels after it was
found that MEGI derived a larger spectral difference between sand and non-sand pixels
(including green vegetation and woody bio-mass) than other NIR/RGB indices.

MEGI = 2xGreen — Red 6)

The non-sand classes, representing vegetation and other surface biomass, were merged
to form an analysis mask. This focused the spectral analysis onto pixels that contained
vegetation pre-fire in 2016, excluded previously active dune features or exposed soils, and
gave a measurement of sand percentage per pixel for satellite index comparisons.

NDVI (Equation (7)) was calculated for 2016 and 2020 aerial images and differenced
to show change in greenness and vegetation loss, producing a dNDVI (Equation (8)). The
dNDVI image was masked to the MEGI-derived analysis mask to estimate canopy and
vegetation loss, independent of exposed soil in the pre-fire image. An absolute measure
of change (ANDVI) was chosen because non-vegetation pixels were excluded and did not
necessitate the use of a relative index. Zonal statistics from the aerial imagery were taken
according to the pixel size (10 m) and location of S2 imagery to produce average dNDVI

values per pixel.

NIR — Red
NDVI= ————— 7
NIR + Red )

dNDVI = preNDVI — postNDVI 8)
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Figure 4. Sites for comparing satellite and aerial-derived burn indices. Aerial imagery is from 30 January 2020 and is
displayed in colour infrared. Sites (A-D) are described in Table 3 and extent of analysis area is shown in Figure 2. Site D has
a mask outline (white) based on the soil boundary between Holocene dune (CDC) in the southern portion and Pleistocene
lowlands in the northern section (GD and LP Table 1). Interactive perspective web map of locations can be viewed at this
https:/ /arcg.is/0j1T450, accessed on 22 November 2021. Black dotted lines show 10m contours.
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2.6. Comparisons of Satellite-Derived Fire Severity

Satellite indices were extracted to a focused analysis mask, composed of the extent of a
thresholded dNBR image (>0.2) to remove unburnt pixels and a thresholded rdNBR image
(3 STDs) to remove outliers. Spatial statistics were generated for satellite indices grouped
by Landsystem (LS) Soil classifications [110] in regions with the highest burn severity
indices, in dune formations, and within the protected National Park regions (Figure 5).
Means and STDs of individual LS groups were compared to show differences between soil
groups and the aggregate of all high burn severity LS groups (Figure 5). To compare the
separability of index populations, a Welch’s t-test using Z-scores was completed comparing
soil groups. Z-scores for individual soil groups were calculated based on aggregated mean
and STDs from the total population of LS classes.

6451000 660i000 675,000

61)4,7,()0()

6,030,000

wy
=)

Figure 5. Locations of Landsystem (LS) soil units used for comparing statistics of fire severity indices.
Additional descriptions of LS units can be found in Appendix A, Table Al. Soil groups are chosen
based on areas with highest severity and within regions of Flinders Chase National Park and Ravine
des Casoars Wilderness Protection Area.

2.7. Comparisons to Aerial Fire Severity

Satellite and aerial fire severity index values were compared with the four repre-
sentative dune sites in the fire grounds on Kangaroo Island (Table 3 and Figure 4). The
high-resolution aerial imagery provided the absolute measures of greenness lost from
dNDVI values and the percentage of exposed sand per pre-fire pixel. Trend lines and
coefficient of determination (r?) values were generated to show the relationship between
satellite-derived indices and the information extracted from aerial imagery: the absolute
measure of greenness and vegetation loss independent of exposed sand and the total
percentage per pixel of sand exposed pre-fire.

3. Results
3.1. Differenced Disturbance Index

The outputs from dDI show the difference in transformed spectral distance between
two dates, with a larger index value indicating a greater spectral difference and a larger
deviation from previous pixel values. Figure 6 shows the results of two separate dDI
calculations between two distinct time periods, 2016 to 2019 (panel A) and 2019 to 2020
(panel B). From 2016 to 2019, few large disturbance events are detected with most areas
showing low dDI values. The largest dDI values between 2016 and 2019 are in agricultural



Remote Sens. 2021, 13, 4739

11 of 24

6,015.000

6,045,000

6,030,000

areas and are likely a result of irrigation and land use changes. Panel B shows the results
of the 2019/2020 fires, with high index values shown in darker pixels. Panels B1 and
B2 of Figure 6 show the dDI values across different soils and landscape types. The clear
boundary between light and darker soils is visible in B2 and shown in Figure 2 as the
border between the landscape units of Northcote’s Gantheaume Dunes and Gosse Plateau.

I I

660,000 675,000 690,000

2016-20195

Figure 6. Differenced Disturbance Index taken from Sentinel 2 imagery from December 2016 to December 2019 (A) and

December 2019 to January 2020 (B). Index symbology (white to black) and scale is set from 3 standard deviations of (B) image,
showing the high burn severity values from the 2019/2020 fires and relatively low dDI values for (A,A1). (A2,B2) are colour
infrared insets of area of (A1,B1), showing the landscape before and after the fire.

3.2. Comparisons of Satellite Fire Severity

To illustrate the differences in fire severity, imagery from 2020 and change over time
indices from 2016 and 2020 are shown in Figure 7. Fire severity is derived from the two
forms of NBR, with its absolute and relative version and a dDI image. All indices are
extracted to the extent of a dANBR threshold (>0.2) and presented in 3 STDs from white
to black, showing low to high fire severity. In the inset maps of Figure 7, the boundaries
between the brighter and darker soils (Figure 8) are visible in both NBR fire severity indices,
showing a lower relative value as a result of soil brightness. Compared with the index
output from dD], the effects of soil brightness have been removed and there is a consistent
measure of high fire severity between the two soil groups and across the firegrounds. In
the left-hand panels of Figure 7B, the highest values in dNBR correspond to the riverine
soils, seen in the dendritic pattern of the dissected tableland and in areas of agroforestry in
the centre of the panel.
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Figure 7. Top row of figure (A) is colour IR imagery from January 2020 with inset map showing extent of burned dune soils
(CDC) and the border of the darker soils from the low-land Pleistocene formation (ROR). Rows 2-4: Comparison of fire
severity values overlain on colour infrared aerial imagery from dNBR (B), rdNBR (C) and dDI (D). Darker values show
higher relative index values and severity. Enlargements on the right-hand side showing the effect of soil brightness on
dNBR and rdNBR values. Imagery is masked according to a dNBR threshold (>0.2) with all indices displaying data 3 STDs
from mean with 1.5 Gamma.
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Figure 8. Oblique aerial photograph (taken 16 January 2020) showing clear boundary in soil groups between the brighter

Holocene sands and the darker brown Pleistocene lowlands in the foreground. This boundary corresponds to lower fire

severity in both NBR-derived fire indices with dDI giving a more uniform estimation of very high severity in these regions

with a fully consumed canopy.

Figure 4 shows the extent of each Landsystem (LS) soil classification used in Figure 9
to show the spatial variability of means and standard deviations per LS group. Even at the
aggregated LS unit, soil brightness decreases the severity of both NBR indices in the bright
dune soils. The SAB LS group is considered a dune formation although it is characterised by
darker Pleistocene calcarenite overlain by shallow sandy Holocene deposits [110], meaning
its soil reflectance is considerably darker than adjacent dune formations. The resulting NBR
indices suggest higher severity (Figure 9) in these regions due to its predominant darker
soil profile (and therefore surface colour). dDI shows similar relative fire severity for the
tableland and riverine soil groups, with the dune soils reflecting the complete loss of canopy
and vegetation across the dune soils of CDC and SAB. The results of a Welch’s t-test indicate
that all compared indices exhibit significant differences in their population’s mean, with the
Pearson’s correlation showing their divergence presented in Appendix B, Table A2.

Riverine and Tableland Soils Dune Soils

dDI

RS BRI
tr bR

GOS BKR CTO FLC RIT ROR SAB CDC  CBO

Figure 9. Showing mean (u) and standard deviations (o) of burn indices, differenced Disturbance
Index (dDI), differenced Normalised Burn Ration (dANBR) and relative differenced Burn Ration
(rdNBR), grouped by Landsystem soil unit. Indices have been thresholded according to dNBR
threshold (>0.2), with outliers above 3 STDs removed from individual soil groupings.
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3.3. Comparison with Aerial Fire Severity

Figure 10 illustrates the positive association between dNDVI and satellite fire severity
indices in the representative dune sites A-D (Figure 4), suggesting that all three indices
track loss of greenness with increasing index values. The negative association of index
value and increasing sand percentage per pixel in Figure 10 shows that all severity values
decrease as the percentage of sand per pixel increases.

26

dDI
=

26 1

20

dNBR
=

20

r? =0.62 ~ -
r?=0.69 e,
r:=10.25 S \\ﬁ\ﬁ’
r?=0.20 ~o

20

rdNBR
=

20

0.2 0.3 0.4 05 0 20 40 60 80 100
dNDVI Percent Sand per Pixel

Figure 10. Trend lines and coefficient of determination (r?) values showing the relationship between satellite-derived

indices and aerial-derived fire severity from dNDVI (greenness and vegetation loss independent of exposed sand) and the

total percentage per pixel of sand exposed pre-fire. Indices are compared at representative dune sites A-D with a direct

comparison between S2 pixel locations and aggregated statistics (mean dNDVI and percentage of sand per pixel).

Figure 11 demonstrates the resulting effects of soil brightness on index value within
site D. Interdune swales are low points in dune landscapes that are more sheltered environ-
ments, characterised by increased moisture, higher humus and organic surface deposits,
lower wind areas, accumulation and trapping of surface water, and commonly, a different
vegetation community than in adjacent higher areas, often resulting in darker soils [111].
The canopy loss is uniform within this area according to the high-resolution aerial im-
agery, suggesting very high severity throughout site D. The darker soils located within the
interdune swale have substantially higher index values in both NBR (Figure 11) indices,
contrasted to the more consistent rating of fire severity from dDI that aligns with full
canopy consumption.
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Figure 11. (A) 3D view of site D with an elevation exaggeration (3x), (B) Nadir view of site D with red outlined pixels
shown in 3 indices compared against ANDVI. The clear effects of soil brightness on index values (ANBR and rDNBR) are
shown by the higher severity in darker soil areas (red points in plot) compared with the lighter-coloured soils (blue points
in plot). All plots are set to mean and 2 Stds of their respective index per the CDC soil grouping (Figure 5).

4. Discussion

Kangaroo Island is a highly heterogenous landscape, exhibiting multiple broad soil
groups and vegetation communities. The fire in the summer of 2019/2020 affected large
swathes of the island and many of the predominant vegetation communities and soil
groups. Desktop studies of the effects of the fire have shown that large portions of the
island exhibited very high fire severity [30,112], although those studies assessed the fire
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impacts on the Holocene dunes (Figure 1) to be relatively less severe due to fixed severity
thresholds. It has been well documented that NBR values are influenced by changes in
soil colour, often attributed to residual char or ash and differing soil types [13,100]. The
results of this work show that the fire severity values from NBR are influenced by soil
type and brightness, both at the local level (Figure 11) and across the broad soil groups
(Figures 5 and 9). The border between the bright carbonate rich sands of the Holocene
dune formations and the darker Pleistocene lowland soils with verdant riverine woodlands
is clearly visible within the imagery (Figures 7 and 8) and NBR-based indices (Figure 7),
resulting in differential classifications of fire severity in Government reports [112]. The
results of this work show that uncalibrated coarsely applied severity thresholds will result
in differential fire severity more closely aligned with differences in soil brightness and
predominant vegetation communities than actual effects of fire.

The differenced Disturbance Index (dDI) presented in this work computes the trans-
formed spectral difference between two dates, measuring the effects of a disturbance such
as fire. The results show that dDI is less affected by soil brightness and corresponds
to the absolute measures of greenness loss irrespective of varying canopy cover. dDI
allows for the effects of soil brightness to be mitigated with a scaling factor to reduce
its overall contribution to the resulting index, and the applied factor (0.5) shows good
results for the heterogenous soils and landscapes of Kangaroo Island. Whereas others
have successfully applied the normalised version of DI [45-51,113,114], the prerequisite
information of representative pixel values of target landscapes for normalisation limits
its broadscale application. The dDI presented here is a direct pixel to pixel comparison,
requiring no region-specific adjusted thresholds or mean values for normalisation. The
index output of dDI denotes the magnitude of change between two dates, with the highest
index values indicating a complete consumption of canopy and removal of vegetation. The
three outputs from the Tasseled Cap Transform; TCB, TCG, and TCW represent the three
surface components of brightness, greenness and wetness. The linear combination of these
three surface components models the vegetation stand replacing nature of severe fires by
an increase in brightness and non-vegetation reflectance and decreases in greenness and
wetness or spectra associated with vegetation’s reflectance. dDI incorporates all spectral
information transformed with TCT coefficients within satellite imagery, harnessing the
benefits of the enlarged spectrum from SWIR, NIR, and RGB bands. Combined, SWIR
and NIR bands are sensitive to the characteristic effects of fires, showing changes in forest
structure, soils, and moisture content [26] and the variations in greenness or chlorophyl
from the NIR [29,34]. The RGB regions of the EM contains often discarded data showing
the effects of disturbances which can be helpful for Mediterranean or semi-arid to arid
environments or areas with lower NIR reflectance, illustrated in pre- and post-disturbance
comparisons of true colour imagery.

Certain limitations of dDI have been shown by the methods and results of this work.
These are reviewed below with suggested areas for improvement resulting from uncer-
tainty around TCT coefficients, large spectral changes resulting from non-disturbance
(land use) changes, and the decreasing severity index value as a result of discontinuous
canopy coverage.

As reviewed in Section 2.3, TCT coefficients have not been published for atmospheri-
cally corrected S2 imagery, and Landsat’s surface reflectance coefficients [96] do not cover
all 52 bands. Whereas certain authors have used at-sensor-derived coefficients on surface
reflectance S2 imagery [87-91], in a multi-temporal change application, the ever-changing
effects of atmosphere result in inconsistent indices of brightness, greenness, and wetness
that are directly a result of fluctuating atmospheric conditions. Although the exact effects
onto index values such as dDI are not fully understood, Crist et al. [42] suggests that
changing atmospheric conditions will alter subsequent results derived from TCT indices.
The development of coefficients for all S2 (level-2a) bands will improve the consistency of
spectral information derived from combinations of TCT indices such as dDI and ensure its
fidelity when compared with other sensors’ surface reflectance products in a time series.
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The high-resolution aerial imagery used in this work (<40 cm) quantifies the spectral
differences between burnt and unburnt pixels and provides an estimation of the absolute
greenness and canopy loss following fire. Due to its 2D resolution, it is unable to pro-
vide a detailed estimate of vegetation structural changes or net amounts of biomass loss
which would improve severity estimates. Additionally, in regions that have experienced
large spectral changes resulting from shifts in land use (Figure 6A), dDI values suggest
a disturbance due to the large spectral difference between dates. Indices of change to
vegetation from passive optical sensors, such as Sentinel 2, are derived from changes in
the spectral reflectance of pixels and measure differences in object chemistry before and
after a fire. However, changes observed in near simultaneously acquired SAR imagery,
particularly in cross-polarized backscatter, indicate changes to object structure resulting
from fire [115-117]. Thus, it is likely that a combination of indices such as dDI with differ-
ences in calibrated cross polarized backscatter from sensors such as Sentinel 1, NovaSAR1,
and the future NISAR are likely to improve an understanding of the impact of fire on
natural landscapes such as those in coastal dunes. The addition of simultaneous texture
information could greatly increase the ability of severity estimates in areas with sparse
canopies and reduce the effect of decreasing pre-fire canopy coverage and post-fire severity
estimates as shown in Figure 10 and Section 3.3. Additional datasets such as the fractional
cover products from Digital Earth Australia (DEA) [118] could be used to adjust or scale
severity indices according to the pixel’s percentage of pre-fire exposed soils, improving
severity estimates in areas with sparse vegetation cover. Fractional cover is derived from
endmembers of representative pixels and spectral unmixing, deriving percentage per pixel
of bare ground, green vegetation, and woody biomass [119]. If sufficiently validated and
calibrated, there is significant potential to implement a fire severity mapping method that
measures the severity of a fire as a result of its spectral and textural changes and leverages
the vast datasets and processing capabilities available through initiatives such as DEA’s
Open Data Cube (ODC) [120,121].

The suitability of fire severity indices are often evaluated by comparisons with local
observations of the CBI [27-29,122], a linear combination of up to 23 in situ factors of
which the effects of soils is only one component [18]. Further investigation of the suitability
of satellite-derived spectral indices to varied landscapes requires studies to validate and
calibrate their accuracy and precision for diverse vegetation communities and soil variabil-
ity. The inclusion of structural estimates from active sensors on airborne platforms could
provide high-resolution validation datasets for diverse calibration sites and reduce the
inherent subjectivity of conventional in situ burn severity estimates. Research has shown
that active sensors on airborne platforms, either in the form of airborne LIDAR [123] or
airborne synthetic aperture radar (SAR) [124], can significantly increase the understanding
of structural and 3D changes as a result of fire. Within diverse and representative calibra-
tion sites, these sensors could assess net structural changes caused by fire and improve the
accuracy of space-based fire severity estimates in heterogenous environments.

Coastal dunes are dynamic and resilient systems that are continually adjusting to
disturbances and extreme events [125]. The stratigraphy-based research suggesting dune
destabilisations after fires [62-71] has not been confirmed by contemporary observa-
tions [32,33,53], but the consequences of increasing frequency [30] and severity [8] of
fires may result in altered landscape morphology and dominant vegetation communi-
ties [10]. Specific to Kangaroo Island, the highly fire-adapted vegetation community is
likely a result of the evolution in its fire regime since colonisation. The pre-European fire
regime of Kangaroo Island is thought to be driven by dry lightning strokes characterised
by infrequent but severe fires [83], as the archaeological record indicates the island was
uninhabited by humans for at least 400 years [126,127], with others suggesting closer to
2500 years BP [128]. Bauer [81] suggests that fire intensity and frequency were dramatically
scaled up after European colonisation to facilitate land clearance and that non-developed
areas of the island may be a modern artifact reflecting a shift in fire regimes. The implica-
tions of this suggest that the island’s vegetated areas may be less susceptible to landscape
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destabilisation from fires as the vegetation communities are highly adapted to frequent
and severe fire.

5. Conclusions

This paper provides a new application of a temporally differenced Disturbance Index
(dDI) based on the Tasseled Cap Transformation (TCT) features of brightness, greenness
and wetness which improves burn severity measurements for heterogeneous environments.
Satellite-derived fire severity indices are compared with high resolution multi-spectral
aerial imagery to show the relationship between loss of greenness and canopy consumption
and fire severity in representative dune sites across Kangaroo Island. dDI calculates, at the
pixel level, the transformed spectral difference between two image dates and quantifies
severity within burnt areas. This is the first application of the dDI in a direct pixel to pixel
comparison, not requiring the use of prerequisite image or landscape-derived statistics
as implemented in previous applications. Comparisons with both versions of the Nor-
malised Burn Ratio (NBR) indicate that dDI is less affected by soil brightness at local and
regional scales; therefore, it is able to detect and measure high burn severity in dunes on
Kangaroo Island.

Fire severity is suggested to be one possible trigger for landscape instability and a
possible initiation mechanism for transgressive dune phases, but coastal dune landscapes
have characteristics that display the precise limitations of the conventional NBR-derived
indices: heterogeneity, discontinuous canopies, and bright soils.

It is unclear as to what effect the widespread use of NBR-based severity estimates
influence the responses of Governments or policy makers for recovery and fuel load
management decisions. If resource allocation or response plans are shaped by broadly
applied uncalibrated fire severity thresholds, then there is a significant risk of under-
assessing areas that have experienced a high severity fire.

Improving the estimations of fire severity in coastal dune and other heterogenous
systems will better illustrate the true effects of fires in these landscapes and aid in studies
of their subsequent recovery or destabilisation.
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Appendix A

Table Al. Showing the Landsystem (LS) Unit used to compare fire severity in Figures 5 and 9. All
descriptions are available at https://data.environment.sa.gov.au/, accessed on 23 November 2021.

Unit Landscape Soil Descriptions

https:/ /data.environment.sa.gov.au/

Breakneck River-BKR Riverine Valleys Content/Land-System-reports/BKR.
pdf, accessed on 23 November 2021.

https:/ /data.environment.sa.gov.au/

Cape Bouger-CBO Coastal Dune Content/Land-System-reports/CBO.
pdf, accessed on 23 November 2021.

https:/ /data.environment.sa.gov.au/

Cape Du Couedic-CDC Coastal dune Content/Land-System-reports/CDC.
pdf, accessed on 23 November 2021.

https:/ /data.environment.sa.gov.au/

Cape Torrens-CTO Dissected Tableland Content/Land-System-reports/CTO.
pdf, accessed on 23 November 2021.

https:/ /data.environment.sa.gov.au/

Flinders Chase-FLC Dissected Tableland Content/Land-System-reports/FLC.
pdf, accessed on 23 November 2021.

https:/ /data.environment.sa.gov.au/

Gosse-GOS Dissected Tableland Content/Land-System-reports/GOS.
pdf, accessed on 23 November 2021

https:/ /data.environment.sa.gov.au/

Ritchie-RIT Dissected Tableland Content/Land-System-reports/RIT.
pdf, accessed on 23 November 2021

https:/ /data.environment.sa.gov.au/

Rocky River-ROR Riverine Valleys Content/Land-System-reports/ROR.
pdf, accessed on 23 November 2021

https:/ /data.environment.sa.gov.au/

Sanderson Bay-SAB Coastal Dune Content/Land-System-reports/SAB.
pdf, accessed on 23 November 2021

Appendix B

Table A2. Pearson’s R correlation coefficient as derived from the Welch's t-test comparing Z scores for
index values grouped by Landsystem (LS) Soil groups. Index values from the differenced Disturbance
Index (dDI), differenced Normalised Burn Ratio (NBR) and the relativised differenced Normalised
Burn Ratio (rdNBR) are compared in pairs to show significant differences in population means (all
pairs assessed to be significant by p value 0.05 except highlighted and bold). Higher values indicate
larger deviations from the compared means of individual indices.

LS dDI-dNBR dDI-rdNBR dNBR-rdNBR
GOS 0.08 0.18 0.11
BKR 0.28 0.04 0.27
CTO 0.11 0.20 0.10
FLC 0.00 0.31 0.32

RIT 0.25 0.12 0.16
ROR 0.09 0.12 0.03
SAB 0.55 0.65 0.07
CDC 0.64 0.80 0.38

CBO 0.27 0.44 0.20
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