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Supplementary Materials and Methods  

Data with separate floating vegetation classes 

In attempts to classify more species-specific classes in the  reference data that more 

closely aligned with our field observations (see first section of Methods), we created datasets by 

classifying points as either floating ‘EFB + Lily spp.’ or floating ‘Duckweed spp.’ given that 

these species were generally discernible in the UAS imagery (Fig. 1b). Distinguishing 

Submergent or Emergent points into individual species was not possible at either spatial 

resolution. The final sample size was N = 316 in the 11 cm dataset (Duckweed spp. = 103, EFB 

+ Lily spp. = 64, Emergent = 83, Submergent = 66). The final sample size of the aggregated 

points was N = 249 in 11 cm dataset (Emergent = 83, Floating = 100, Submergent = 66) and N = 

229 in the 3 cm dataset (Emergent = 83, Floating = 94, Submergent = 53). After combining the 

Floating class, we removed a random portion of the points to achieve a more balanced sample 

size between classes.  

Using field data to interpret RF outputs 

 Mohammadi et al. (in prep) collected random-stratified quadrat plot points on community 

vegetation data (including EFB abundance) and various covariates throughout vegetation zones 

at Alpena during July-August 2019. Using the spectral signals from imagery captured with our 

UAS during July 2019, Mohammadi et al. (in prep) utilized an unsupervised classification 

algorithm in ArcGIS 10.7 to define the boundaries of each vegetation zone throughout the flight 

footprint. The outputs from this approach resulted in five unique vegetation zones in the study 

site: Floating vegetation, Mixed (floating and submergent) vegetation, Open Water, Submergent 

vegetation, and Emergent Typha (Typha × glauca). Then, the authors collected plant community 

and environmental data at ten randomly distributed points throughout each zone in the flight 

footprint (N = 50). We then used these points as an additional dataset to interpret the outputs 

from our RF classification algorithm.  
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Supplementary Results  

Classification with separate floating vegetation classes  

 Upon processing of the field data, we assigned all training points to one of the four 

following classes: floating ‘EFB + Lily spp.,’ floating ‘Duckweed spp.,’ ‘Submergent 

Vegetation,’ and ‘Emergent Vegetation.’ We hypothesized that this configuration of classes in 

the training data would yield spectrally distinct values in the UAS bands and would be 

structurally separable. However, preliminary results indicate that model results on the 

disaggregated data were less accurate than when we combined the two floating classes (‘EFB + 

Lily spp.’ and ‘Duckweed spp.’ into one single Floating class (Table A1 vs. Table 5 in 

manuscript), likely due to their similar spectral and structural values (Fig. A1). Therefore, we 

decided to maintain the combination of vegetation samples and run models on three vegetation 

classes (‘Emergent’, ‘Floating’, Submergent’) for the remainder of analyses.  

Table S1. Confusion matrix for the 11 cm ‘Multispectral + DSM + Rugosity’ model on the disaggregated 

vegetation classes recorded in the field: floating EFB + Lily spp., floating Duckweed spp., Submergent, 

and Emergent vegetation. Reference data are actual recorded classes from the field as well as reference 

points determined from the imagery and predicted classes at test points were generated from the random 

forest model. The greyed out diagonal values are the number of points correctly classified by the model, 

with the bold value in the bottom right cell representing the overall accuracy of the model (sum of the 

diagonal values/the total number of points * 100). Producer’s and User’s Accuracy (PA & UA) are 

displayed in % accuracy.  

    Reference 

    

EFB + 

Lily spp.  

Duckweed 

spp.  Submergent Emergent  Total UA 

  

EFB + Lily 

spp.  1871 395 334 347 2947 63.49 

  

Duckweed 

spp.  923 4096 666 59 5744 71.31 

  Submergent 41 359 2025 56 2481 81.62 

Predicted  Emergent  365 300 275 3638 4578 79.47  

  Total 3200 5150 3300 4100 15,750   

  PA 58.47 79.53 61.36 88.73   73.4 
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Spectral and structural profiles 

For the dataset with separate floating classes, we observed the greatest spectral 

separability in the NDVI band, with Emergent and ‘EFB + Lily spp.’ points exhibiting higher 

values than either ‘S. polyrhiza’ or Submergent vegetation points (Fig. A1). The Emergent class 

also yielded higher structural and textural values than either of the three other classes (Fig. A1).  

After combining the floating classes, we observed the greatest separability in % mean 

reflectance, in both pixels and image objects, in the NDVI, Red Edge, and NIR bands from both 

flight dates and for all three vegetation classes (Figs. A2-A5). Pixels and image objects also 

exhibited similar spectral and structural profiles across both spatial resolutions and flight dates, 

with greater standard error around for image object means in some bands (Figs. A4-A5).  

 

 

Figure S1. Spectral (a), structural (d,e), and textural (b,c) profiles of the disaggregated vegetation 

classes: Emergent, Submergent, floating EFB + Lily spp., and floating Duckweed spp. (S. 

polyrhiza) extracted from mean pixel values in the 11cm dataset. All bands, except Rugosity and 

Surface Height (m), are % reflectance values calibrated for each band during pix4D processing. 
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Figure S2. Spectral (a), textural (b,c), and structural (d,e) profiles of the three aggregated 

vegetation classes: Emergent, Submergent, Floating Vegetation, extracted from mean pixel 

values 11cm dataset. All bands, except Rugosity and Surface Height (m), are % reflectance 

values calibrated for each band during pix4D processing.  
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Figure S3. Spectral and textural profiles of the three vegetation classes: Emergent, Submergent, 

Floating Vegetation, extracted from mean pixel values in the 3 cm dataset. All bands, except 

Rugosity and Surface Height (m), are % reflectance values calibrated for each band during 

pix4D processing. 
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Figure S4. Spectral and textural profiles of the three aggregated vegetation classes: Emergent, 

Submergent, Floating Vegetation, extracted from mean object values in the 11cm dataset. All 

bands, except Rugosity and Surface/Canopy Height (m), are % reflectance values calibrated for 

each band during pix4D processing. 
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Figure S5. Spectral and textural profiles of the three vegetation classes: Emergent, Submergent, 

Floating Vegetation, extracted from mean object values in the 3 cm dataset. All bands, except 

Rugosity and Surface Height (m), are % reflectance values calibrated for each band during 

pix4D processing. 
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Object summaries from optimal segmentation algorithms 

 Overall, the 3 cm imagery with its optimal segmentation parameters produced smaller 

mean object areas for each vegetation class than the 11 cm imagery, indicating that the 3 cm 

imagery included more spectral and structural detail at a finer spatial scale (Table A2).  

Table S2. Mean object size (±SD, in m2) of the points for the four vegetation classes from the 

reference data overlaid on the optimal segmentation outputs for the OBIA.  

Vegetation Class Mean Object Area (±SD, 

in m2) from DSM Data 

Mean Object Area (±SD in 

m2) from CHM Data 

11 cm spatial resolution 

EFB + Lily Spp. 1.67 (±2.2) 23.03 (±10.5) 

Duckweed Spp. 2.94 (±3.1) 36.27 (±137.6) 

Submergent Veg. 823.19 (±1147)* 720.85 (±635)* 

Emergent Veg. 8.57 (±14.1) 32.01 (±25.2) 

3 cm spatial resolution 

EFB + Lily Spp. 1.71 (±10.1) 2.71 (±8.3) 

Duckweed Spp. 2.75 (±15.8) 12.54 (±64) 

Submergent Veg. 0.85 (±3.3) 6.24 (±15) 

Emergent Veg. 0.12 (±0.16) 1.11 (±0.8) 

* The large mean values are driven by a few very large image objects (in area) produced by the 

segmentation algorithm for the Submergent class in the 11 cm imagery.  
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Band importance  

The most important bands for predicting the three vegetation classes differed between the 

high and very-high resolution datasets (Figs. A6-A17). For the very-resolution data, the NDVI 

and/or Rugosity bands were the most important (% increase in mean squared error when those 

bands are not included in models) for both the pixel- and object-based approaches (Figs. A6-11). 

For the high-resolution data, the Red, Green, and/or NDVI bands were the most important (Figs. 

A12-A17).  

 

Figure S6. Mean Decrease in Gini Importance (Importance on x-axis) for each mean and SD 

reflectance/structure for the 7 bands in the pixel-based “Multispectral + CHM’ model of the 3 cm 

data (resampled to 15 cm). Importance is based on % increase in mean squared error (MSE) for 

each band on the out of bag data for each tree in the RF and then computed after permuting a 

variable (band). 
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Figure S7. Mean Decrease in Gini Importance (Importance on x-axis) for each mean and SD 

reflectance/structure for the 7 bands in the pixel-based “Multispectral + DSM’ model of the 3 cm 

data. Importance is based on % increase in mean squared error (MSE) for each band on the out 

of bag data for each tree in the RF and then computed after permuting a variable (band). 
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Figure S8. Mean Decrease in Gini Importance (Importance on x-axis) for each mean and SD 

reflectance/structure for the five bands in the pixel-based “Multispectral Only’ model of the 3 cm 

data. Importance is based on % increase in mean squared error (MSE) for each band on the out 

of bag data for each tree in the RF and then computed after permuting a variable (band). 
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Figure S9. Variable importance for each mean and SD reflectance/structure of the segments 

(image-objects) for the 14 bands in the object-based ‘Multispectral + Both CHM’ model of the 3 

cm data (resampled to 15 cm). Importance is based on % increase in mean squared error for each 

band on the out of bag data for each tree in the RF and then computed after permuting a variable 

(band).   
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Figure S10. Variable importance for each mean and SD reflectance/structure of the segments 

(image-objects) for the 14 bands in the object-based ‘Multispectral + Both DSM’ model of the 3 

cm data. Importance is based on % increase in mean squared error for each band on the out of 

bag data for each tree in the RF and then computed after permuting a variable (band).   
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Figure S11. Variable importance for each mean and SD reflectance/structure of the segments 

(image-objects) for the 10 bands in the object-based ‘Multispectral + Only’ model of the 3 cm 

data. Importance is based on % increase in mean squared error for each band on the out of bag 

data for each tree in the RF and then computed after permuting a variable (band).   
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Figure S12. Mean Decrease in Gini Importance (Importance on x-axis) for each mean and SD 

reflectance/structure for the 7 bands in the pixel-based “Multispectral + CHM’ model of the 11 

cm data (resampled to 55 cm). Importance is based on % increase in mean squared error (MSE) 

for each band on the out of bag data for each tree in the RF and then computed after permuting a 

variable (band). 
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Figure S13. Mean Decrease in Gini Importance (Importance on x-axis) for each mean and SD 

reflectance/structure for the 7 bands in the pixel-based “Multispectral + DSM’ model of the 11 

cm data. Importance is based on % increase in mean squared error (MSE) for each band on the 

out of bag data for each tree in the RF and then computed after permuting a variable (band). 
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Figure S14. Mean Decrease in Gini Importance (Importance on x axis) for each mean and SD 

reflectance/structure for the 7 bands in the pixel-based “Multispectral Only’ model of the 11 cm 

data. Importance is based on % increase in mean squared error (MSE) for each band on the out 

of bag data for each tree in the RF and then computed after permuting a variable (band). 
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Figure S15. Mean Decrease in Gini Importance (Importance on x axis) for each mean and SD 

reflectance/structure of the segments (image-objects) for the 14 bands in object-based 

“Multispectral + CHM’ model of the 11 cm data (resampled to 55 cm). Importance is based on % 

increase in mean squared error (MSE) for each band on the out of bag data for each tree in the 

RF and then computed after permuting a variable (band). 
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Figure S16. Mean Decrease in Gini Importance (Importance on x axis) for each of the 14 bands 

in the object-based ‘Multispectral + DSM’ model of the 11 cm data. Importance is based on % 

increase in mean squared error (MSE) for each band on the out of bag data for each tree in the 

RF and then computed after permuting a variable (band).    
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Figure S17. Mean Decrease in Gini Importance (Importance on x axis) for each of the 10 bands 

in the “Multispectral Only’ dataset object-based approach for the 11 cm data. Importance is 

based on % increase in mean squared error (MSE) for each band on the out of bag data for each 

tree in the RF and then computed after permuting a variable (band).    
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Figure S18 (a) The optimal segmentation layer for the 11 cm dataset (false color composite) 

with overlaid training data points from the four vegetation classes. 18 (b) The optimal 

segmentation layer for the 3 cm imagery of the same area and training data points. Red boxes 

represent areas with varying degrees of segmentation, where OS indicates “Over-Segmented,” 

RS indicates “Realistically-Segmented,” and US indicates “Under-segmented.”  

Supplementary Discussion  

 We found that keeping floating ‘EFB + Lily spp.’ and floating ‘Duckweed spp.’ as 

separate vegetation classes resulted in suboptimal accuracies compared to those when we 

aggregated all floating species together (Table 3 vs. 4-5). We attribute this finding to the 

difficulty of assigning points to these classes during the reference data collection, given that the 

dominant duckweed species (greater duckweed, Spirodela polyrhiza) were detected in almost all 

vegetation zones and classified functional types (Table 6). Although we were seemingly able to 

distinguish ‘EFB + Lily spp.’ from the more yellow ‘Duckweed spp.’ in both the multispectral 

and true color imagery (Figs. 1-2), the prevalence of S. polyrhiza throughout all floating 

vegetation likely resulted in classifier confusion between the two floating classes (Table 3). 

Moreover, many of the mean spectral and structural values were similar between the two 

separate floating classes (Fig. A1). Merging these two classes into one ‘Floating’ class generally 

resulted in greater spectral and structural separability compared to either Submergent or 
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Emergent vegetation across many of the RS bands (Figs. A2-A5), thereby positively influencing 

classification accuracies (Wicaksono & Aryaguna 2020). We also note that the delineation of 

vegetation zones by Mohammadi et al. (in prep) was based on UAS imagery from mid-July 

2019, potentially contributing to some disagreement between designated vegetation zone and 

RF-predicted vegetation class (Table 6) since the latter was derived from imagery in August. 

Nevertheless, we suggest for future studies that aim to detect invasive vegetation in UAS data to 

prioritize collecting as much ground reference data in the field as reasonably possible to avoid 

such limitations of assigning classes to training points via RS imagery alone.  

 

 

 

 

 

 

 

 

 

 

  

 

 


