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Abstract: Advances in spaceborne hyperspectral (HS) remote sensing, cloud-computing, and ma-
chine learning can help measure, model, map and monitor agricultural crops to address global food
and water security issues, such as by providing accurate estimates of crop area and yield to model
agricultural productivity. Leveraging these advances, we used the Earth Observing-1 (EO-1) Hype-
rion historical archive and the new generation DLR Earth Sensing Imaging Spectrometer (DESIS)
data to evaluate the performance of hyperspectral narrowbands in classifying major agricultural
crops of the U.S. with machine learning (ML) on Google Earth Engine (GEE). EO-1 Hyperion images
from the 2010–2013 growing seasons and DESIS images from the 2019 growing season were used to
classify three world crops (corn, soybean, and winter wheat) along with other crops and non-crops
near Ponca City, Oklahoma, USA. The supervised classification algorithms: Random Forest (RF),
Support Vector Machine (SVM), and Naive Bayes (NB), and the unsupervised clustering algorithm
WekaXMeans (WXM) were run using selected optimal Hyperion and DESIS HS narrowbands (HNBs).
RF and SVM returned the highest overall producer’s, and user’s accuracies, with the performances of
NB and WXM being substantially lower. The best accuracies were achieved with two or three images
throughout the growing season, especially a combination of an earlier month (June or July) and a later
month (August or September). The narrow 2.55 nm bandwidth of DESIS provided numerous spectral
features along the 400–1000 nm spectral range relative to smoother Hyperion spectral signatures
with 10 nm bandwidth in the 400–2500 nm spectral range. Out of 235 DESIS HNBs, 29 were deemed
optimal for agricultural study. Advances in ML and cloud-computing can greatly facilitate HS data
analysis, especially as more HS datasets, tools, and algorithms become available on the Cloud.

Keywords: hyperspectral remote sensing; food security; machine learning; cloud-computing

1. Introduction

Classifying agricultural crops accurately is crucial for addressing the challenges of
global food and water security [1]. Remote sensing (RS) allows us to non-destructively
study crops at large spatial and temporal extents. However, crop classification with RS is
challenging due to high spectral variability within crop types across: crop management
practices, watering methods (e.g., irrigated or rainfed), phenological differences, geo-
graphic locations, and climatic factors. Hyperspectral (HS) remote sensing captures data as
hundreds of narrowbands, opening up possibilities for advancing the study and classifica-
tion of agricultural crops [1–5]. HS narrowbands (HNBs) and HS vegetation indices (HVIs)
have been used successfully over decades to classify crops, model crop photosynthetic and
non-photosynthetic fractional cover, and estimate crop characteristics [1,3,6–13].

There are challenges in using HS data [1,10,11,14–16], including finding ways to store
and process large volumes of data [17], minimize data redundancy, and acquire high-quality
training and validation data with high signal to noise ratio [1,5,18]. However, there are
ways to combat these challenges. For example, one way to minimize data redundancy and
decrease data volume is through band selection. Recent research [2–5,11,12,17,19–22] has
shown as much as 80% of HNBs can be redundant in Earth Observing1 (EO-1) Hyperion
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data in the study of agricultural crops. Band selection can also reduce noise (with noisy-
band removal) and save time and computing resources. Advances in satellite sensor-based
big-data analytics, machine learning, and cloud-computing [1,14,18,23–25] also facilitate
HS analysis by providing a fast and reliable way to process large volumes of data [18,26–33],
enabling real-time decision-making to support next generation agricultural practices [25].

The increasing availability of HS data from spaceborne platforms [1,16,34,35] makes
this the ideal time to capitalize on these technological advancements. Recently launched sen-
sors include CHRIS/PROBA, the Hyperspectral Imager (HySI) on the Indian Microsatellite-1
(IMS-1), the Hyperspectral Imager for the Coastal Ocean (HICO), the Italian PRecursore
IperSpettrale della Missione Applicativa (PRISMA), and Germany’s Deutsches Zentrum
für Luftund Raumfahrt (DLR) Earth Sensing Imaging Spectrometer (DESIS) [1,36]. In
addition, upcoming sensors include Germany’s Environmental Mapping and Analysis
Program (EnMAP), the Israeli and Italian Spaceborne Hyperspectral Applicative Land and
Ocean Mission (SHALOM), and NASA’s Surface Biology and Geology (SBG) mission [1,37].
DESIS is onboard the Multiple User System for Earth Sensing Facility (MUSES) platform
on the International Space Station (ISS) [38]. It acquires data from 400 to 1000 nanometers
(nm) in discrete 2.55 nm bandwidths in 235 spectral bands [39].

A comparison of new generation DESIS hyperspectral data with established older
generation Hyperion data leveraging advances in machine learning and cloud-computing
is of considerable interest and value. The narrow bandwidth of 2.55 nm (relative to
10 nm for Hyperion) and higher signal to noise ratio (unitless) of DESIS (Table 1) may
make significant differences in capturing and differentiating the subtle changes in plant
quantities and characteristics. On the other hand, the wider spectral range of Hyperion
(Table 1) may be more advantageous for crop classification.

Table 1. Comparison of Hyperion and DESIS sensor characteristics.

Hyperion DESIS

Sensor Type Polar-Orbiting On MUSES platform of ISS
Years of Image Availability 2001–2015 2019–present

Spectral Range 356 to 2577 nm 400 to 1000 nm
Number of Bands 242 235

Spectral Resolution 10 nm 2.55 nm
Spatial Resolution 30 m 30 m

Signal to Noise Ratio at 550 nm 161 195 with no binning
Radiometric Resolution 12 bit 13 bit

The development of hyperspectral libraries has been used extensively for various
classification applications including vegetation, minerals, and pigments [40–43]. The use
of crop hyperspectral libraries to analyze crop characteristics is an evolving area of re-
search [44–47]. The availability of large libraries is crucial for training and validating
machine learning classification models. Several classification methods such as the super-
vised pixel-based random forest and support vector machines or unsupervised pixel-based
statistical ISOCLASS clustering exist. In addition to sensor comparisons, obtaining clarity
about the strengths and limitations of these classification methods and approaches for
classifying agricultural crops is of great importance.

Thus, this study provides a number of novelties that will advance our understand-
ing of hyperspectral data by examining: how a narrow bandwidth of 2.55 nm can help
improve crop classification and characterization; how a new generation hyperspectral
sensor (DESIS) compares with an old generation hyperspectral sensor (Hyperion) in the
study of agricultural crops; how spectral signatures of some of the major world crops
compare between the two sensors; and how we can address the challenges of analyzing
large datasets from hyperspectral sensors using machine learning on the Cloud.
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The overarching goal of this research was to develop and evaluate hyperspectral
libraries of agricultural crops using new and old generation spaceborne hyperspectral
sensors to classify crop types.

Objectives

Our specific objectives were to:

1. Develop Hyperion and DESIS hyperspectral libraries of corn, soybean, and winter
wheat in the study area over Ponca City, Oklahoma. To make the libraries robust
by including spectral signature variability, we included images from wet, normal,
and dry years for Hyperion, and spectral signatures throughout the growing season
for DESIS.

2. Establish DESIS optimal hyperspectral narrowbands required to achieve the best
classification accuracies. This was done using lambda by lambda correlation analysis
to determine the most unique and informative bands.

3. Classify agricultural crops using supervised (Random Forest (RF), Support Vector Ma-
chine (SVM), Naive Bayes (NB)) and unsupervised (WekaXMeans (WXM)) machine
learning classifiers on Google Earth Engine (GEE).

2. Materials and Methods
2.1. Overview

This analysis was performed for the crop growing season (June–September) over
Ponca City, Oklahoma. The study area has five classes: three leading world crops (corn,
soybeans, and winter wheat), a class that combines all other cropland classes, and a non-
cropland class.

2.2. Study Area

We focused on images over an area in Ponca City, Oklahoma, USA (Figure 1), selected
because of the presence of study crop types and the availability of time-series images in the
growing season from both Hyperion and DESIS sensors (Table 1). Although the Hyperion
and DESIS imagery footprints did not overlap, they could appropriately be compared
because of the small distance between the footprints, similar crop types and distributions,
similar crop calendars, and similar growing conditions.

Annual temperatures and precipitation in the area around Ponca City are approxi-
mately 15 ◦C and 89 cm, respectively [48]. Soil is mostly clay, with a surface layer (5 cm)
of clay-loam [49]. The area is approximately 961 feet above sea level [49] and has about
205 days in the growing season [48]. Predominant land cover includes winter wheat; corn;
soybean; and non-crop classes such as grassland/pasture, developed areas, and deciduous
forest [50]. Other crop types in the region include sorghum, canola, alfalfa, herbs, oats,
millet, sunflower, peas, and triticale [50]. For this study, we considered fallowland and
sod/grass seed as non-crop [50].

2.3. Hyperspectral Data

Hyperion data during the growing season (June through September) from 2010 (wet
year), 2012 (normal year), and 2013 (drought year), and DESIS data from the 2019 (wet year)
growing season, were used for crop classification analyses (Table 2). Hyperion images were
preprocessed to surface reflectance in GEE using the SMARTS model. For algorithm details
and code, please refer to Aneece and Thenkabail [3]. DESIS images were downloaded as
Level 2A surface reflectance products from Teledyne (https://teledyne.tcloudhost.com/,
accessed on 1 January 2021). All 13 images were collected near Ponca City, Oklahoma.

https://teledyne.tcloudhost.com/
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Figure 1. Hyperion and DESIS images. Hyperion and DESIS images used over Ponca City, Oklahoma,
USA. CDL data source: [50].

Table 2. Hyperion and DESIS images used. Timing of collected Hyperion and DESIS imagery and precipitation regime. All
images contain samples of corn, soybean, and winter wheat spectra.

Sensor Image Area Year Precipitation Regime Month

Hyperion

EO1H0280342010152110K7_PF2_01 OK-1 2010 Wet June
EO1H0280342010222110T6_SGS_01 OK-1 2010 Wet August
EO1H0280342010245110P3_SGS_01 OK-1 2010 Wet September
EO1H0280342012200110K7_SGS_01 OK-1 2012 Normal July
EO1H0280342012234110K7_SGS_01 OK-1 2012 Normal August
EO1H0280342012255110P3_SGS_01 OK-1 2012 Normal September
EO1H0280342013162110K7_SG1_01 OK-1 2013 Dry June
EO1H0280342013191110K7_SG1_01 OK-1 2013 Dry July
EO1H0280342013236110K7_SG1_01 OK-1 2013 Dry August
EO1H0280342013252110P3_SG1_01 OK-1 2013 Dry September

DESIS
DESIS-HSI-20190621T132231-001 OK-2 2019 Wet June
DESIS-HSI-20190727T230233-001 OK-2 2019 Wet July
DESIS-HSI-20190811T170907-001 OK-2 2019 Wet August

2.4. Reference Data

Hyperion and DESIS data were used to distinguish corn, soybean, and winter wheat
from other crops and non-crops. These three crops comprise large portions of land in the
U.S. (almost 200 million acres) and across the world (over 1.3 billion acres). Crop type
data were obtained from the USDA Cropland Data Layer (CDL) [51] available through the
public catalog in GEE. CDL data have high classification accuracies in this study area for
these study crops [3,52]. Many researchers have used the CDL for reference due to its high
classification accuracies of 85–95% for major crop types [53–57]. Crop growth stages were
inferred using expert knowledge, information in the Nelson crop calendar [58], and Julian
Day (JD) of crop growth.

Sample pixels were randomly generated for 2010 (wet year), 2012 (normal year), and
2013 (dry year) for Hyperion images with minimum distances set to avoid spatial auto-
correlation. We subsequently filtered samples using the USDA CDL confidence layers,
discarding samples with confidence levels less than 70%. There were no highquality July
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2010 or June 2012 Hyperion images over the study area. For the 2010 Hyperion images,
a total of 346, 292, and 364 samples were generated for June, August, and September,
respectively (Table 3). Similarly for 2012 Hyperion images, a total of 339, 314, and 339 sam-
ples were generated for July, August, and September, respectively (Table 3). For the 2013
Hyperion images, a total of 434, 336, 404, and 419 samples were generated for June, July,
August, and September, respectively. The crop type sample proportions were determined
by their prevalence in the images. Out of all Hyperion samples generated, 75% were
randomly selected for training (37.5%) and testing (37.5%), and the remaining 25% for
validation. When images were stacked within GEE, we were able to combine all samples
across images. For example, for a sample location that was within the footprint of the June
image but not within the footprint of the July image, we were still able to generate a stack
consisting of June and July spectral bands with the July data masked as NA for that sample.
Thus, the sample size increased with number of images used.

Table 3. Total samples. Hyperion and DESIS total samples. Hyperion samples were then split into
training (37.5%), testing (37.5%), and validation (25%) subsets. Similarly, DESIS samples were split
into training (33.3%), testing (33.3%), and validation (33.3%) subsets.

Number of Samples

Sensor Month, Year Corn Soybean
Winter
Wheat

Other
Crop

Non-
Crop

Total

Hyperion

June, 2010 26 65 75 28 152 346
August, 2010 17 68 52 28 127 292

September, 2010 22 61 74 28 179 364
July, 2012 27 27 114 29 142 339

August, 2012 9 24 115 27 139 314
September, 2012 26 25 114 25 149 339

June, 2013 22 23 148 65 176 434
July, 2013 21 22 111 43 139 336

August, 2013 21 24 129 51 179 404
September, 2013 19 24 139 49 188 419

June, 2019 326 111 253 145 431 1266
DESIS July, 2019 403 254 382 352 520 1911

August, 2019 386 237 352 292 495 1762

Total Hyperion Samples 210 363 1071 373 1570 3587
Total DESIS Samples 1115 602 987 789 1446 4939

Total Samples 1325 965 2058 1162 3016 8526

We also selected 2019 DESIS images for June, July, and August; there were no high-
quality September images. Similar to Hyperion, samples were randomly generated, but
within the Global Food Security-support Analysis Data North America Cropland Extent
(GFSADNACE) data at 30 m resolution [59] to reduce the number of non-crop samples and
thus achieve more balanced sample sizes across classes. To also reduce the number of winter
wheat samples, they were randomly subset to further balance sample sizes. A total of 1266,
1911, and 1762 samples were generated for June, July, and August respectively, consisting
of 426 corn, 289 soybean, 3350 winter wheat, 660 other crop, and 3634 non-crop samples
(Table 3). Similar to Hyperion, DESIS samples were randomly split into three equal subsets
for training, testing, and validation. Both the 75:25 and 60:40 training/validation splits
have been used in agricultural classification [13,60,61]. On comparing overall accuracies
for classifying an image using varying training/validation splits, we found differences in
accuracy of less than 5% (Table S147 in Supplementary Materials). Downloaded DESIS
images were not exactly georeferenced and thus did not match with the USDA CDL.
Therefore, we georeferenced them in ArcMap; however, we were unable to ingest the
georeferenced images back into GEE. Instead, we ran the analyses in R, where only samples
across multiple images could be used. This led to a decrease in sample size as the number
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of images used increased. There were not enough samples to conduct triple image analyses
for DESIS.

2.5. Optimal Band Selection

Hyperion has 242 HNBs of 10 nm bandwidth over the 400–2500 nm spectral range,
some of which are uncalibrated. In this study, only the calibrated bands outside of atmo-
spheric windows were used, discarding bad bands. For classification with Hyperion data,
we used the earlier established 15 optimal HNBs in Aneece and Thenkabail [3]: 447, 488,
529, 681, 722, 803, 844, 923, 993, 1033, 1074, 1316, 2063, 2295, and 2345 nm. These bands have
been used in other agricultural crop studies to measure biomass/leaf area index, estimate
nitrogen/pigment, lignin/cellulose, and water content; determine leaf area index; differen-
tiate crop types and their growth stages; and assess crop health/stress [3,12,20,62–73].

There are more non-redundant bands over a given range of the electromagnetic spec-
trum for DESIS relative to Hyperion data because of the narrow bandwidths (2.55 nm)
of DESIS relative to Hyperion (10 nm), as seen below when comparing the spectral sig-
natures of Hyperion to those of DESIS. Thus, 29 optimal DESIS bands (as opposed to
Hyperion’s 15) were selected using lambda-by-lambda correlation analyses during this
study. To do this analysis, we assessed the correlation plots to determine bands with low
R2 values. We then located the features along the spectral profiles that were closest to those
bands. The bands with low correlations corresponding with spectral features of interest
were selected for analysis. Classifications were conducted using only the selected optimal
bands to avoid issues of auto-correlation and Hughes Phenomenon, or the curse of high
data dimensionality [21]. Previous research [6–9,12,19,20,74] has shown the optimal band
selection method of lambda-by-lambda correlation analysis is robust. We selected this
method because it allows for band selection with a focus on the entire spectral profile.

2.6. Classification Algorithms

Using Hyperion images from June through September in the years 2010 (wet year),
2012 (normal year), and 2013 (dry year), we made single, double, triple, and quadruple
image sets. Similar analysis was also done using DESIS imagery for June, July, and August
2019 (wet year). For DESIS analysis, we made single and double image sets, but did not
have enough samples across all three images to do triple image analyses. We used three
supervised (RF, SVM, and NB) and one unsupervised (WXM) algorithms to classify five
classes (corn, soybean, winter wheat, other crops, and non-crops). These algorithms were
selected based on frequent use in literature (e.g., RF and SVM), and their availability in GEE
(e.g., NB). Out of the unsupervised clustering algorithms available in GEE, we selected
WXM because a priori selection of the number of clusters was not necessary. Overall,
producer’s and user’s accuracies were calculated using error matrices (i.e., confusion
matrices, see Supplementary Materials).

In supervised classification, the user knows which classes are present in a dataset
and trains the model to classify those known classes. Coarse grid searches were used to
optimize the parameters for these supervised algorithms by building models with training
data and optimizing with the test data. The best parameter values were then used to classify
the validation data. For Hyperion, parameter optimization and analyses were run in GEE.
However, as mentioned above, we found DESIS imagery did not match exactly with the
USDA CDL. These images needed to be georeferenced in ArcMap and then parameter-
optimized and analyzed in R due to the inability to ingest the georeferenced images into
GEE. Different models were built for each image and image combination.

RF is a popular supervised classification algorithm that generates many decision trees
to classify a sample, with majority voting being used for final classification [1,10,27,75–77].
In the coarse grid search for parameter optimization, the number of trees (100–900 in
increments of 100) and variables per split (1–20 in increments of 5) were optimized.

SVM is another widely used supervised classification algorithm that generates a hyper-
plane to separate classes in n-dimensional spaces, maximizing the distance between classes
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while minimizing misclassification [1,10,18,77–79]. Although the radial basis function
kernel is most commonly used with SVM, we found the linear kernel was more successful
at classifying these data. A coarse grid search for the best cost parameter value (0.001 to
1000) was performed.

The NB supervised classification algorithm is simplified and uses probability to
determine the weightings of variables and classify samples [80–82]. This algorithm assumes
that all variables are independent; although this assumption is usually violated in the real
world, the assumption still holds mathematically and the resulting classifier performs
well [80]. Naive Bayes is commonly used because of its stability, robustness, computational
efficiency, and interpretability [81]. A coarse grid search for the lambda value (1 × 10−8 to
10,000) was conducted.

There are also several unsupervised clustering algorithms available in GEE. These
algorithms are useful when the user does not know which classes are present in a dataset.
We selected WXM based on preliminary data exploration. WXM is similar to K-means, but
with modifications to make it faster and less susceptible to local minima [83–85]. Another
advantage of WXM is that the user does not need to set an a priori number of clusters,
which is often difficult to determine and influential on results. Instead, this algorithm
automatically computes the best number of clusters for the input data. First, the algorithm
randomly assigns nodes and initial clusters. It then splits each cluster into two, and if the
model improves, it keeps those new clusters. If not, the cluster is not split. This process
is iterated until the best model is selected using the Bayesian Information Criterion (BIC).
We set minimum cluster size to the low value of 5 and maximum cluster size to the high
value of 1000 to maximize model flexibility. Then we tested for the best distance algorithm
(Euclidean, Chebyshev, or Manhattan) for model optimization.

3. Results
3.1. Optimal Band Selection

While 15 previously established optimal HNBs were selected for Hyperion, 29 HNBs
were selected from DESIS data used in this study within the range of 500–1000 nm. The
bands in the 400 to 500 nm region were discarded because many of the reflectance values
were negative or zero. The centers of the selected bands were: 504, 522, 540, 556, 574, 588,
602, 614, 625, 637, 648, 660, 678, 704, 718, 740, 763, 778, 796, 824, 848, 866, 885, 906, 919,
934, 945, 960, and 979 nm (Figure 2, Table 4). We used the optimal DESIS and Hyperion
bands to classify crop types using various machine learning classification algorithms; their
performance is described below.

Figure 2. DESIS optimal bands. The twenty-nine optimal DESIS bands shown with example spectral
profiles for corn and soybean.
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Table 4. Most important DESIS bands. The 29 most important bands from DESIS data for vegeta-
tion classification, similar narrow bands selected by other researchers from multiple sensors, and
applications for which the bands were used. LUE = Light-use efficiency, LAI = Leaf Area Index,
LULC = Land use and land cover.

Band Similar Narrow
Bands

Application References
(nm)

504 502, 503, 504 Disease, LAI [86–89]
522 521, 528, 529 LUE, stress, disease, LAI [3,86–89]
540 531, 536, 541, 546 LUE, stress, disease, crop growth stage classification [21,87,89–91]

556 556, 557, 560 Nitrogen, crop growth stage classification,
pigments, weed detection [87,91–93]

574 569, 570, 578 Nitrogen, pigments, weed detection [3,21,90,92]
588 589, 590 Biomass/yield [12,87]
602 599 LULC classification [87]
614 609, 613, 618 LULC classification, LAI [86–88]
625 627, 628, 630 Biomass/yield, crop growth stage classification [12,87,91]
637 632, 638, 640 Biomass/yield, disease [12,86,87,89]
648 648, 650 Biomass/yield [21,87]
660 657, 658, 665 LULC classification, pigments, weed detection [86,87,92,93]
678 677, 678, 680, 681 Biomass/yield, disease, pigments, LAI, weed detection [3,88,89,92,93]
704 703, 705, 709 Stress, pigments, LAI [88,90,93]
718 715, 720, 722 Stress, pigments, crop growth stage classification [3,21,90,91]

740 734, 738, 740, 742 LULC classification, crop growth stage
classification, LAI [87,88,91]

763 754, 760, 763 Biomass/yield, pigments [3,21,87,93]
778 773, 774 Biomass/yield, crop classification [12,87]
796 793, 803 Biomass/yield, crop classification [12,87]
824 824 Biomass/yield [12]
848 844, 849, 852, 855 Biomass/yield, pigments, disease, LAI [3,21,88–90]
866 864, 869 Crop classification [12,86]
885 885 Crop classification [12]
906 909, 910 Biomass/yield, pigments [21,86]

919 915, 923 Biomass/yield, pigments, crop growth stage
classification [3,91]

934 933, 938 Biomass/yield, LAI [12,88]
945 951, 953 Biomass/yield, LAI [12,88]

960 968, 970 Moisture, biomass/yield, protein, growth stage
classification, LAI [21,88,90,91]

979 970, 973, 983 Water absorption, LAI, crop classification,
biomass/yield [12,86,88,91]

3.2. Classification Results

Hyperion classifications were run separately for each year (2010, a wet year; 2012,
a normal year; and 2013, a dry year in the study area). Results for separate years are
available in Supplementary Materials (Tables S1–S116). However, for clarity we have
presented results averaged across all 3 years. A summary of sample sizes across all 3 years
for Hyperion analyses is shown in Table 5, along with sample sizes for DESIS analysis for
2019, a wet year.

With Hyperion data, crop spectral profiles substantially changed over time, and these
changes varied by crop type (Figures 3–5). For example, in Hyperion June 2010 data,
soybean crops were in early growth stages and had spectra that were highly reflective
in the visible (VIS) and shortwave infrared (SWIR) bands, whereas vigorously growing
vegetative (i.e., growth and development of non-reproductive structures) stages of corn had
higher reflectivity in the near-infrared (NIR) (Figure 3a). However, by August (Figure 3b),
vigorously growing soybean had greater absorption in the VIS and greater reflectivity in
NIR relative to senescing corn crops.
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Figure 3. Average Hyperion 2010 (wet year) spectra by crop type for: (a) June (Julian Day 152),
(b) August (Julian Day 222), and (c) September (Julian Day 245). N is number of spectra included in
the average.
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Figure 4. Average Hyperion 2012 (normal year) spectra by crop type for: (a) July (Julian Day 200),
(b) August (Julian Day 234), and (c) September (Julian Day 255). N is number of spectra included in
the average.
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Figure 5. Average Hyperion 2013 (dry year) spectra by crop type for: (a) June (Julian Day 162),
(b) July (Julian Day 191), (c) August (Julian Day 236), and (d) September (Julian Day 252). N is
number of spectra included in the average.
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Table 5. Validation samples. Sample sizes in the validation subsets across all years for Hyperion
classification analyses (2010, 2012, and 2013), and DESIS classification analyses for 2019.

Number of Samples

Sensor Image(s) Used Corn Soybean Winter Wheat

Hyperion

June 12 22 56
July 12 13 56

August 11 29 74
September 17 27 81
June–July 11 11 52

June–August 19 40 87
June–September 23 42 96

July–August 14 22 105
July–September 23 21 106

August–September 19 51 143
June–July–August 16 15 66

June–July–September 16 15 65
June–August–September 27 58 127
July–August–September 19 31 156

June–July–August–September 21 19 87

DESIS

June 109 37 84
July 134 85 127

August 129 79 117
June–July 78 24 5

June–August 87 22 9
July–August 91 49 11

DESIS spectral profiles also varied with crop type and growth stage (Figures 6–8).
Corn was in the vegetative growth stage on JD 172 (21 June 2019), reproductive in early
July (when we have no images), initially senescing by JD 208 (27 July 2019), and mostly
senesced by JD 223 (11 August 2019) (Figure 7). Soybean reached the early growth stage on
JD 172 (21 June 2019), the vegetative stage on JD 208 (27 July 2019), and the reproductive
stage by JD 223 (11 August 2019) (Figure 8).

These spectral differences enabled the differentiation of crop types, especially with
RF and SVM, as shown in Tables 6–11. For EO-1 Hyperion data, the results indicated that
SVM provided the best results, closely followed by RF (Tables 6–9). SVM and RF provided
overall accuracies of 66–76% with single date images, 89–98% with double images, and
96–100% with triple images. Relative to RF and SVM, the NB and WXB algorithms provided
much lower accuracies. Across crop type, the RF and SVM classifiers provided 82–100%
producer’s accuracies (except for one instance with 64%) and 82–100% user’s accuracies
with two or three image dates (Tables 6 and 7). Again, the NB and WXM accuracies were
lower (Tables 8 and 9). Additionally, the best results were obtained with images later in the
growing season (August or September) and/or when two later season images (August and
September) were combined, or a later season image (August or September) was combined
with an earlier season image (July or June). For Hyperion, later season images when the
crop canopy cover was closer to 100% and crops were in vegetative or reproductive growth
stages were the best.



Remote Sens. 2021, 13, 4704 13 of 24

Figure 6. Average DESIS 2019 (wet year) spectra by crop type for: (a) June (Julian Day 172), (b) July
(Julian Day 208), and (c) August (Julian Day 223). N is number of spectra included in the average.
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Figure 7. DESIS Corn Spectra for the year 2019 (wet year). DESIS corn spectra on Julian Days 172
(June), 208 (July), and 223 (August) in Oklahoma, USA.

Figure 8. DESIS Soybean Spectra for the year 2019 (wet year). DESIS soybean spectra on Julian Days
172 (June), 208 (July), and 223 (August) in Oklahoma, USA.

As with Hyperion images, DESIS results indicated that RF and SVM provided the
best results with overall accuracies of 62–85% as opposed to 34–80% with NB and WXM
(Table 10). Also like with Hyperion, the double images yielded higher accuracies than
single images. For example, RF single image accuracies of 68–80% were slightly lower than
double image accuracies of 67–83%. Similarly, SVM single image accuracies of 62–70% were
slightly lower than double image accuracies of 67–85%. However, these improvements
going from single to double images were substantially smaller with DESIS images than
with Hyperion images. In fact, producer’s and user’s accuracies for winter wheat decreased
when using double images (Table 11). Due to the distinct differences in the phenological
growth stages of the crops in the June DESIS image, it yielded the highest single image
accuracies rather than later in the season. The highest double image accuracies were most
often from using one early (June) and one late (August) image (Tables 10 and 11).
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Table 6. Hyperion Random Forest Accuracies. Classification accuracies for Random Forest separating
three leading world crops (corn, soybean, and winter wheat) using 15 Hyperion narrowbands.
Analysis was conducted across 3 years, for 4 months throughout each growing season when available;
these accuracies are averages across those 3 years.

Image(s) Used
Overall Producer’s (User’s) Accuracies (%) *

Accuracy (%) * Corn Soybean Winter Wheat

June 68 42 (53) 44 (32) 76 (72)
July 66 41 (88) 29 (50) 73 (73)

August 71 32 (33) 72 (72) 75 (78)
September 77 42 (67) 42 (58) 88 (75)
June–July 94 100 (100) 64 (100) 96 (93)

June–August 93 91 (85) 100 (94) 97 (92)
June–September 95 91 (95) 91 (92) 100 (100)

July–August 94 100 (100) 95 (100) 96 (89)
July–September 98 100 (100) 88 (100) 100 (97)

August–September 94 93 (93) 85 (93) 94 (93)
June–July–August 97 100 (100) 100 (100) 100 (92)

June–July–September 100 100 (100) 100 (100) 100 (100)
June–August–September 96 91 (100) 94 (98) 100 (98)
July–August–September 99 100 (97) 93 (100) 100 (99)

June–July–August–September 100 100 (100) 100 (100) 100 (100)
* These results are for the validation subset, which was not used for training and testing.

Table 7. Hyperion Support Vector Machine Accuracies. Classification accuracies for Support Vector
Machine separating three leading world crops (corn, soybean, and winter wheat) using 15 Hyperion
narrowbands. Analysis was conducted across 3 years, for 4 months throughout each growing season
when available; these accuracies are averages across those 3 years.

Image(s) Used
Overall Producer’s (User’s) Accuracy (%)

Accuracy (%) * Corn Soybean Winter Wheat

June 77 50 (48) 60 (53) 88 (82)
July 76 56 (75) 75 (59) 91 (79)

August 76 23 (23) 87 (66) 75 (84)
September 77 59 (56) 47 (66) 87 (79)
June–July 89 82 (90) 100 (100) 92 (86)

June–August 93 91 (85) 90 (88) 96 (95)
June–September 93 100 (82) 98 (91) 96 (95)

July–August 93 100 (83) 100 (100) 96 (90)
July–September 94 100 (93) 96 (100) 99 (95)

August–September 91 100 (79) 85 (94) 94 (93)
June–July–August 99 100 (100) 100 (100) 100 (97)

June–July–September 100 100 (100) 100 (100) 100 (100)
June–August–September 99 100 (97) 100 (98) 100 (100)
July–August–September 99 100 (100) 97 (100) 99 (99)

June–July–August–September 100 100 (100) 100 (100) 100 (100)
* These results are for the validation subset, which was not used for training and testing.

More detailed results are included in the Supplementary Materials, which contain
confusion matrices and associated calculations of producer’s, user’s, and overall accuracies.
From these matrices, the user can see when crop types were classified correctly and
incorrectly. For example, Table S119 shows Random Forest results for the August DESIS
imagery data. Out of 129 corn samples, 110 were classified correctly for a producer’s
accuracy of 85%. Out of the other 19 misclassified samples, 5 were classified as winter wheat,
6 as other-crop, and 8 as non-crop. Similar error matrices are available in Supplementary
Materials for other years, months, sensors, and algorithms (Tables S1–S144).
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Table 8. Hyperion Naive Bayes Accuracies. Classification accuracies for Naive Bayes separating three
leading world crops (corn, soybean, and winter wheat) using 15 Hyperion narrowbands. Analysis
was conducted across 3 years, for 4 months throughout each growing season when available; these
accuracies are averages across those 3 years.

Image(s) Used
Overall Producer’s (User’s) Accuracy (%)

Accuracy (%) * Corn Soybean Winter Wheat

June 66 17 (100) 92 (50) 76 (65)
July 66 17 (63) 23 (75) 91 (59)

August 67 17 (25) 70 (70) 77 (75)
September 67 26 (41) 40 (53) 91 (69)
June–July 68 91 (67) 82 (56) 81 (66)

June–August 72 46 (42) 94 (67) 84 (80)
June–September 77 75 (42) 78 (76) 86 (83)

July–August 71 25 (50) 69 (70) 82 (73)
July–September 79 81 (68) 54 (79) 94 (78)

August–September 70 52 (45) 62 (47) 87 (76)
June–July–August 75 88 (82) 93 (64) 86 (80)

June–July–September 86 100 (84) 87 (81) 95 (87)
June–August–September 79 70 (48) 90 (78) 93 (84)
July–August–September 79 53 (43) 72 (69) 91 (79)

June–July–August–September 82 90 (79) 89 (68) 91 (86)
* These results are for the validation subset, which was not used for training and testing.

Table 9. Hyperion WekaXMeans Accuracies. Classification accuracies for WekaXMeans separating
three leading world crops (corn, soybean, and winter wheat) using 15 Hyperion narrowbands.
Analysis was conducted across 3 years, for 4 months throughout each growing season when available;
these accuracies are averages across those 3 years.

Image(s) Used
Overall Producer’s (User’s) Accuracy (%)

Accuracy (%) * Corn Soybean Winter Wheat

June 60 50 (23) 73 (46) 80 (72)
July 34 93 (30) 31 (10) 41 (66)

August 54 33 (12) 88 (58) 57 (77)
September 61 44 (25) 31 (88) 46 (69)
June–July 70 82 (45) 73 (57) 87 (69)

June–August 71 83 (33) 89 (81) 80 (88)
June–September 77 45 (25) 86 (69) 91 (86)

July–August 66 73 (54) 60 (69) 61 (78)
July–September 59 86 (47) 47 (46) 68 (83)

August–September 63 56 (24) 40 (64) 74 (76)
June–July–August 75 81 (87) 73 (65) 86 (70)

June–July–September 78 88 (67) 73 (61) 91 (86)
June–August–September 76 74 (41) 71 (80) 91 (93)
July–August–September 73 71 (54) 69 (82) 81 (79)

June–July–August–September 88 81 (94) 89 (89) 93 (89)
* These results are for the validation subset, which was not used for training and testing.

In addition, to ensure robustness of these classification models, we generated five
different training subsets with DESIS data and ran RF and SVM algorithms for each single
and double image combination. Overall accuracies were similar across training subsets,
with most standard deviations less than 3, and none greater than 5 (see Supplementary
Materials Tables S145 and S146).
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Table 10. DESIS Overall Accuracies. Overall classification accuracies for three leading world crops
(corn, soybean, and winter wheat) from four classification algorithms (Random Forest, Support Vector
Machine, Naive Bayes, and WekaXMeans) using 29 DESIS hyperspectral narrowbands. Analysis was
conducted for June through August 2019.

Overall Accuracy (%) *

Image(s) Used Random Forest Support Vector Machine Naive Bayes WekaXMeans

June 80 70 56 61
July 68 62 34 42

August 79 65 50 48
June–July 78 79 80 63

June–August 83 85 70 75
July–August 67 67 44 57

* These results are for the validation subset, which was not used for training and testing.

Table 11. DESIS Producer’s and User’s Accuracies. Producer’s and user’s classification accuracies for three leading
world crops (corn, soybean, and winter wheat) from four classification algorithms (Random Forest—RF, Support Vector
Machine—SVM, Naive Bayes—NB, and WekaXMeans—WXM) using 29 DESIS hyperspectral narrowbands. Analysis was
conducted for June through August, 2019. Soy = Soybean, WW = Winter Wheat.

Image(s)
Used

Producer’s (User’s) Accuracies (%) *

Corn RF
Soy WW Corn SVM

Soy WW Corn NB
Soy WW Corn WXM

Soy WW

June 91
(99)

81
(75)

69
(67)

98
(99)

70
(65)

49
(48)

89
(96)

76
(42)

62
(49)

90
(91)

38
(41)

63
(51)

July 83
(74)

58
(80)

65
(64)

85
(68)

51
(74)

54
(64)

61
(38)

15
(21)

54
(37)

57
(43)

12
(38)

63
(48)

August 85
(76)

80
(91)

61
(76)

81
(74)

73
(77)

53
(60)

74
(53)

61
(56)

47
(62)

55
(51)

54
(72)

56
(51)

June–July 100
(87)

100
(63)

0
(0)

100
(98)

79
(59)

0
(0)

100
(96)

100
(55)

0
(NA)

100
(78)

75
(78)

0
(0)

June–August 84
(99)

77
(74)

11
(33)

89
(94)

82
(90)

56
(36)

80
(96)

86
(83)

56
(15)

92
(86)

82
(69)

33
(27)

July–August 75
(78)

69
(92)

9
(33)

81
(80)

69
(92)

18
(13)

64
(73)

57
(45)

27
(6)

69
(65)

65
(51)

9
(10)

* These results are for the validation subset, which was not used for training and testing.

4. Discussion

Use of selected HS narrowbands reduces data volume, making analysis more efficient
and faster. Previous research [3] has found 15 unique and informative Hyperion bands
best for agricultural study. However, narrower DESIS bands reveal more spectral features
than smoother Hyperion spectral profiles (Figures 3–8). As a result, 29 out of 235 DESIS
narrowbands (about 12%) were selected as opposed to 15 out of 242 Hyperion narrowbands
(about 6%).

Figure 2 shows the band centers of the 29 DESIS narrowbands, which correspond
to sudden steep peaks or troughs representing specific crop biophysical or biochemical
crop parameters. Several bands in the 400–500 nm region have been used for estimating
nitrogen and pigment content, crop biomass and yield, and light use efficiency (LUE); they
have also been used to detect weeds and plant stress [3,12,21,86,87,89,90,92]. However,
these bands were discarded in DESIS imagery because many of the values were negative or
zero, perhaps due to over-correction during the removal of atmospheric effects (standard
Level 2a data provided by Teledyne).

Bands selected in this study from 500 to 1000 nm are listed in Table 4, along with similar
bands (within 5 nm) used in other studies for various applications [3,12,21,86–93]. These



Remote Sens. 2021, 13, 4704 18 of 24

applications include estimation of various plant biophysical and biochemical characteristics
like crop biomass and yield, LUE, Leaf Area Index (LAI), nitrogen and pigment content,
and moisture. The bands have also been used to detect plant stress, plant disease, and
presence of weeds. Additionally, they have been used to classify crop types, crop growth
stages, and land use and land cover (LULC) classes. Many of these DESIS optimal bands
are similar (within 10 nm) to Hyperion narrowbands: 522 nm (vs. 529 nm for Hyperion),
678 (vs. 681), 718 (vs. 722), 796 (vs. 803), 848 (vs. 844), and 919 (vs. 923). Ultimately,
15 of the 242 Hyperion bands and 29 out of 235 DESIS bands were used for agricultural
crop classification. Further studies using different band selection methods (see [94] for
examples) may reveal additional important bands.

For Hyperion classification results, Kappa coefficients ranged from 0.28 to 1 with
an average of 0.77 (see Supplementary Materials Tables S141–S143). Similarly, for DESIS
classifications, Kappa coefficients ranged from 0.51 to 0.77 with an average of 0.64 (see
Supplementary Materials Table S144). These high Kappa values indicate the classification
results are not due to chance, but to the algorithms effectively classifying crop types,
especially when using two or three images throughout a growing season.

All algorithms yielded lower accuracies from DESIS data than from Hyperion data,
likely due to its shorter spectral range (Table 1), which does not include information in
the SWIR region. Several studies have successfully used RF [95–97] and SVM [96–100]
for classification of Hyperion data. A few studies have also used NB [98] with Hyperion.
However, this is the first study that used WXM with hyperspectral data. Researchers
have also successfully used RF [101–103] and SVM [101,103] to classify hyperspectral data
like APEX and HySPEX. However, this study is among the first to use these algorithms
for DESIS classification because DESIS data have become available only recently. We
recommend further classification of hyperspectral data should use RF, SVM, and deep
learning algorithms such as neural nets. Deep learning (see [104–108] for examples) could
yield higher classification accuracies with DESIS data than would traditional machine
learning algorithms like those used here.

Deep learning tools are now available in cloud-computing platforms, such as Tensor-
Flow in GEE and PyTorch in Amazon Web Services. When imagery is already available
on the cloud-computing platform (e.g., through the platform’s data catalog), as is the case
with Hyperion data, many analyses can be done within the Cloud. However, DESIS images
are not currently available in GEE’s data catalog. Additionally, as of now, cloud-computing
platforms still lack some of the functionality available through proprietary software like
ArcMap (e.g., georeferencing). This limitation is particularly challenging for hyperspectral
images, which often need more specialized processing than do multispectral data. Nev-
ertheless, DESIS has the potential to provide valuable detailed spectral information that
may prove more advantageous with a more comprehensive study across multiple crops,
growing conditions, and growth stages.

This study contributes to the existing knowledge base in several novel ways. First, it
is currently one of few papers using DESIS data that have the high spectral resolution of
2.55 nm from 400 to 1000 nm, recording data in 235 bands. This unto itself provides several
distinct characteristics at specific portions of the spectrum that helps model and map
subtle features in plant biophysical and biochemical characteristics (Figure 2 and Table 4).
Second, comparison of fine spectral resolution (2.55 nm) DESIS hyperspectral data with
another hyperspectral sensor (Hyperion) with significantly coarser spectral resolution of
10 nm provides an interesting study of two generational spaceborne hyperspectral sensors.
Third, in an age of evolving high spectral and spatial resolution sensors, development of
spectral libraries from multiple sensors becomes critical. In this respect, we have used two
generations of hyperspectral sensors to develop spectral libraries of three leading world
crops grown in the study area. Fourth, we are currently in an age of machine learning on
the Cloud. This study was conducted on GEE using four distinct ML algorithms and adds
to evolving literature on optimal machine learning algorithms for agricultural research.
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5. Conclusions

In this study, we first developed Hyperion and DESIS hyperspectral libraries of three
leading world crops (corn, soybean, and winter wheat) in the study area over Ponca City,
Oklahoma. Within- and across-year variability was represented to make the libraries more
robust and applicable for training crop models. Second, we established 29 optimal DESIS
bands, several of which were like the 15 previously determined Hyperion narrowbands
used to study agricultural crops. Lastly, we found agricultural crop types were best
classified by the Random Forest (RF) and Support Vector Machine (SVM) supervised
classifiers using two generations of hyperspectral narrowband data: new generation DESIS
and old-generation Hyperion. The performances of the supervised classification algorithm
Naive Bayes (NB) and the unsupervised clustering algorithm WekaXMeans (WXM) were
substantially inferior to the SVM and RF for both Hyperion and DESIS hyperspectral
sensors. Classification accuracies (overall, producer’s and user’s) increased with the
number of images, especially with Hyperion images. The image combinations of late season
images (August or September) with early season images (July or June) returned the best
results for both sensors. Twenty-nine out of 235 DESIS narrowbands were selected (Table 4)
for studying agricultural crops. DESIS images yielded lower classification accuracies
relative to Hyperion, probably due to its shorter spectral range (400–1000 nm for DESIS
versus 400–2500 nm for Hyperion) that does not include information in the Shortwave
Infrared region. We conclude that advances in machine learning, such as through neural
nets, will be especially important for analysis of hyperspectral data, which consist of
many correlated but potentially informative variables for assessing specific biophysical,
biochemical, and plant health characteristics necessary for measuring, modeling, mapping,
and monitoring crops. Cloud-computing will facilitate hyperspectral data analysis as new
tools, algorithms, and datasets are incorporated within the cloud-computing platform.
This study contributes in novel ways to the advancement of hyperspectral data analysis by
comparing the new generation spaceborne hyperspectral DESIS data with old generation
Hyperion data, through classification of agricultural crops using four different machine
learning algorithms on Google Earth Engine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13224704/s1, File S1: Supplementary Material for this Journal Article entitled “Classifying
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