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Abstract: The Ku-band scatterometer called CSCAT onboard the Chinese–French Oceanography
Satellite (CFOSAT) is the first spaceborne rotating fan-beam scatterometer (RFSCAT). This paper
performs sea ice monitoring with the CSCAT backscatter measurements in polar areas. The CSCAT
measurements have the characteristics of diverse incidence and azimuth angles and separation
between open water and sea ice. Hence, five microwave feature parameters, which show different
sensitivity to ice or water, are defined and derived from the CSCAT measurements firstly. Then
the random forest classifier is selected for sea ice monitoring because of its high overall accuracy
of 99.66% and 93.31% in the Arctic and Antarctic, respectively. The difference of features ranked
by importance in different seasons and regions shows that the combination of these parameters is
effective in discriminating sea ice from water under various conditions. The performance of the
algorithm is validated against the sea ice edge data from the EUMETSAT Ocean and Sea Ice Satellite
Application Facility (OSI SAF) on a global scale in a period from 1 January 2019 to 10 May 2021.
The mean sea ice area differences between CSCAT and OSI SAF product in the Arctic and Antarctic
are 0.2673 million km2 and −0.4446 million km2, respectively, and the sea ice area relative errors
of CSCAT are less than 10% except for summer season in both poles. However, the overall sea ice
area derived from CSCAT is lower than the OSI SAF sea ice area in summer. This may be because
the CSCAT is trained by radiometer sea ice concentration data while the radiometer measurement
of sea ice is significantly affected by melting in the summer season. In conclusion, this research
verifies the capability of CSCAT in monitoring polar sea ice using a machine learning-aided random
forest classifier. This presented work can give guidance to sea ice monitoring with radar backscatter
measurements from other spaceborne scatterometers, particular for the recently launched FY-3E
scatterometer (called WindRad).

Keywords: CSCAT; RFSCAT; sea ice distribution; random forest classifier; microwave feature extraction

1. Introduction

Polar sea ice, as an important input to the global climate model and a sensitive
indicator of climate change, has always been paid attention by climate researchers [1,2].
Sea ice forms a new interface between the upper ocean and the lower atmosphere,
which can change the radiation and energy balance of the ocean surface and isolate the
heat exchange and water vapor exchange between the ocean and the atmosphere by
blocking the wind field’s momentum input to the ocean [3]. In addition, sea ice with
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high albedo can reduce the absorption of solar radiation [4]. The freezing and thawing
process of sea ice will also affect the ocean thermohaline circulation, further affecting
the redistribution of marine life [5]. Therefore, sea ice modulates the atmosphere–ocean
interaction by influencing the exchange of matter and energy, ocean surface albedo,
ocean temperature, and salinity circulation, and thus has a significant impact on global
climate [6].

The traditional sea ice monitoring method is mainly carried out by artificial field ob-
servation, which is time-consuming and laborious with limited coverage. Satellite-based
microwave sensors, however, have become the most effective means of sea ice moni-
toring and ice condition assessment with their advantages of being all-weather, near
real-time, large-scale, and having capability for long-term continuous observation [7–9].
Detection of sea ice extent is generally performed by two types of sensors, that is, the
passive microwave radiometer [10–12] and the active microwave scatterometer [13]. The
radiometer observes emissions from the Earth’s surface and can provide sea ice concen-
tration within each pixel, which is considered the main source for sea ice mapping. The
limitation is the high sensitivity to atmospheric effects and the difficulty in detecting sea
ice in summer. The scatterometer sends a microwave signal toward the Earth’s surface
and records the returned signal. It has been verified as a useful tool for polar sea ice
detection such as sea ice extent [14–16], type [17–19], and motion [20,21]. Compared
to the radiometer, the scatterometer cannot provide information on sea ice concentra-
tion, but it has higher spatial resolution and much lower sensitivity to atmospheric
effects [22,23].

Table 1 summarizes the development of the existing spaceborne scatterometers and
some related sea ice research. It can be seen that all European Space Agency (ESA) scat-
terometers operate at C-band vertical polarization with fixed fan-beam, including the
active microwave instrument (AMI) onboard ERS-1 and 2 satellites and the advanced
scatterometer (ASCAT) onboard the METOP-A, B, and C satellites. The group at IFREMER
(French Institute for Marine Development) firstly used C-band ERS/AMI data for sea
ice detection [24,25]. Two parameters, that is, the anisotropy coefficient, anis, and the
change of backscatter with incidence angle, dsigma, were first proposed for water and
ice discrimination. Breivik et al. proposed a new parameter combining the properties of
anis and dsigma, that is, anisFMB, where the measurements from three antennas sight are
used [26]. This method has been validated against ice charts from the Norwegian Ice Ser-
vice, indicating realistic ice edge results but with a weather-induced noise problem, where
auxiliary information should be used to remove this noise. Bayesian classification based
on multi-sensor parameters derived from ASCAT and SSM/I were implemented to give
high-quality ice edge details, and was therefore chosen for the EUMETSAT Ocean and Sea
Ice Satellite Application Facility (OSI SAF) ice edge product operational use [26–28]. Haan
and Stoffelen constructed the three-dimensional ice Geophysical Model Function (GMF)
using an ERS scatterometer [29], where the ice discrimination is based on the normalized
distance to the ice line model and the distance to the wind cone model. This method has
been tested using ERS-2 scatterometer data and appears to be reliable in more than 98%
of cases. Belmonte et al. extended this approach and proposed Bayesian classification
based on GMFs for sea ice detection with SeaWinds and ASCAT, respectively [15,16]. The
performance of this method has been validated against active and passive microwave sea
ice detection algorithms and high resolution optical and radar imagery, indicating that this
method can provide more accurate information for the characterization of sea ice during
melting season.

It is shown in Table 1 that National Aeronautics and Space Administration (NASA),
Indian Space Research Organization (ISRO), and National Satellite Marine Application
Center (NSMAC) scatterometers operate at Ku-band with dual-polarization, including
ADEOS-1/NSCAT, QuikSCAT/SeaWinds, OceanSAT-II/OSCAT, and HY-2A/SCAT. All
of these scatterometers use a rotating pencil-beam, except for the NSCAT (fixed fan-
beam). Remund and Long firstly proposed an algorithm for ice/water discrimination
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using NSCAT datasets [30]. The algorithm, known as Remund/Long-NSCAT (RL-N)
algorithm, used copolarization ratio and incidence angle dependence as the primary
classification parameters to distinguish water and ice. The normalized radar backscatter
coefficient σ0 estimate error standard deviation (κ) was used to correct the errors from
linear and quadratic discrimination. The resulting sea ice edge showed good agreement
with the 30% ice concentration edge derived from the NASA Team algorithm special
sensor microwave imager (SSMI). Considering the differences between the NSCAT and
SeaWinds instrument configurations, a modified RL-N algorithm was proposed for
SeaWinds sea ice extent retrieval [31], where the parameter κ gives more information
due to its increasing sensitivity to azimuthal variations. A decade of QuikSCAT scat-
terometer sea ice extent data using RL-N algorithm has been automatically processed.
The corresponding results were compared with sea ice concentration derived from SSMI
data and RADARSAT synthetic aperture radar imagery, showing that the retrieved ice
edge correlates well with 15%–30% and 0%–30% ice concentration contours derived from
the NASA Team algorithm during the ice advance and retreat phases, respectively. The
Modified RL-N algorithm has become the basis of operational use for SeaWinds sea ice
extent products. In addition, processing of OSCAT data using the RL-N algorithm with
some modifications focusing on the data gaps problem has been used to support sea
ice extent mapping and to extend the SeaWinds sea ice data record [32]. The validation
results show that the OSCAT derived sea ice extent falls between the SSM/I 0% and
30% sea ice concentration. Li et al. used Fisher’s linear discriminant analysis and image
processing technology to map the sea ice extent based on HY-2A/SCAT data, where the
combination of five parameters including polarization ratio, HH and VV polarized mea-
surement and their corresponding daily standard deviations were verified to identify
sea ice and water effectively [33]. The results show the HY-2A/SCAT ice extent falls
between SSMIS NASA Team 5% and 30% ice extent.

The China–France oceanography satellite (CFOSAT), carrying a first-ever spaceborne
Ku-band rotating fan-beam scatterometer (CSCAT), was launched on 29 October 2018 [34].
It is reported that the CSCAT instrument is generally stable in terms of noise measurements
and internal calibration, and the CSCAT sea surface wind products are of good quality [35].
However, there are few studies on sea ice detection based on CSCAT measurements [36].
The purpose of this paper is to propose a CSCAT sea ice detection algorithm based on
machine learning-aided classification methods. This paper is organized as follows. Back-
ground information about the CSCAT instrument and the datasets used for training and
validation are firstly described in Section 2. The sea ice monitoring algorithm based on ran-
dom forest and data processing flow are then described in Section 3. The sea ice monitoring
results are presented and discussed in Sections 4 and 5, respectively. The conclusions are
finally addressed in Section 6.

Table 1. Summary of spaceborne scatterometers and related sea ice studies.

Mission ERS-1/2 ADEOS-1 QuikSCAT METOP OceanSAT-II HY-2A

scatterometer AMI NSCAT SeaWinds ASCAT OSCAT SCAT

Date

July 1991–
March 2000
April 1995–
May 2011

August 1996–
June 1997

June 1999–
November 2009

June 2007–
present

October 2009–
February 2014

August 2011–
November 2020

Institute ESA NASDA
/NASA NASA ESA ISRO NSOAS

Frequency (band) 5.3 GHz
(C)

13.995 GHz
(Ku)

13.4 GHz
(Ku)

5.3 GHz
(C)

13.515
(Ku)

13.255
(Ku)

Beam
type Fixed fan-beam Fixed fan-beam Rotating pencil-beam Fixed fan-beam Rotating pencil-beam



Remote Sens. 2021, 13, 4686 4 of 25

Table 1. Cont.

Mission ERS-1/2 ADEOS-1 QuikSCAT METOP OceanSAT-II HY-2A

Polarization 3VV 3VV × 2
1HH × 2

HH-inner
VV-outer 3VV × 2 HH-inner

VV-outer
Incidence angles 18–59◦ 17–60◦ 46◦, 54.4◦ 25–65◦ 49◦, 57◦ 41◦, 48◦

Viewing geometry
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2. Datasets
2.1. CFOSAT Scatterometer (CSCAT)

The CFOSAT satellite is in a sun-synchronous orbit with an altitude of about
520 km, an inclination of 97.5◦ , and a local equator-crossing time of 7:00 a.m. in
descending node. The CSCAT operates in Ku-band frequency using one vertically
polarized (VV) fan-beam and one horizontally polarized (HH) fan-beam antenna. Both
beams observe the Earth’s surface at medium incidence angles (28~51◦), and the an-
tenna azimuths of VV and HH beams are offset by 180◦ to maximize the azimuth
diversity which favors the sea surface wind retrieval [34]. The CSCAT transmits verti-
cally and horizontally polarized pulses alternatively, and both of the pulse repetition
rates of VV and HH beams are 75 Hz. It has a large observational swath of 1000 km so
that it can provide global coverage of wind measurement in 3 days. Table 2 lists the
main specifications of CSCAT [35].

The CSCAT combines the characteristics of the fixed fan-beam and rotating pencil-
beam scatterometers [34]. Specifically, it has no nadir gap compared to the fixed
fan-beam scatterometer and has a larger number of σ0 with diverse incidence and
azimuth angles compared to the pencil-beam one. CSCAT has two kinds of wind
vector cell (WVC) configurations in the 1000 km swa including 42 and 84 WVCs with
sampling resolution of 25 km × 25 km and 12.5 km × 12.5 km, respectively. Figure 1
shows an example of the distribution of CSCAT WVCs for a descending row at latitude
of about 20◦. The WVC number is defined as the number from the leftmost to the
rightmost swath. It can be seen that the incidence angle information near the satellite
ground track is most abundant, but the azimuth angle is only at around ±180

◦
with an

observation number of less than 12. The information of incidence and azimuth angles
at the far end of the swath center is very little with the lowest observation number
being less than 10. The observation condition at around ±300 km away from the swath
center is most suitable for wind field retrieval.
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Table 2. List of the main specifications of CSAT.

Obit Parameters

Orbit height 520 km
Inclination 97.5◦

Orbital period 94.90 min
Descending node equatorial crossing (local time) ~07:00 a.m.

CSCAT payload parameters

Frequency Ku (13.256 GHz)

Polarization HH, VV

Incidence angle 28–51◦

Beam type rotating range-gated fan-beam
scatterometer (RFSCAT)

Rotation speed 3.4 rpm

Pulse repetition frequency (PRF) 150 Hz

bandwidth 0.5 MHz

Pulse duration 1.35 ms

Pulse peak power 120 W

Swath 1000 km

Wind vector cells (resolution) 42 (25 km × 25 km)
84 (12.5 km × 12.5 km)
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2.2. Sea Ice Class Data for Model Training

The purpose of sea ice monitoring is to distinguish sea ice from water, which can
be regarded as a classification problem. A general tool for combining various feature
parameters to solve the classification question has been given by a machine learning-
based approach [37,38]. The machine learning classifier can be generally categorized
into three aspects according to the model building process, that is, the supervised
learning, the unsupervised learning, and the semi-supervised learning classifier. As for
the supervised learning classifier which will be used in this study, the training datasets
with labeled or priori information are necessarily needed for training a model, and
the test datasets are then used to evaluate the accuracy of predictions given by the
trained model.
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For the training of the sea ice classification method, a reference dataset is needed.
In this study, the daily National Oceanic and Atmospheric Administration/National
Snow and Ice Data Center (NOAA/NSIDC) climate data record (CDR) [39] and
the daily near-real-time NOAA/NSIDC climate data record (NRT CDR) of passive
microwave sea ice concentration [40] are used as reference data for different temporal
coverages. NOAA/NSIDC sea ice concentration is used as the training data in this
paper because it has the same spatial resolution of 25 km as CSCAT data, and the data
has good continuity, which can ensure the stability of a priori information acquisition
of the algorithm used in this paper. The reason for using these two datasets as
reference data is that the CDR datasets are only updated to 31 December 2020 right
now, while the NRT CDR dataset is the daily-updated version of the CDR datasets,
and it can fill the temporal gap between updates of the final CDR and offer the
most recent data, which is therefore chosen as reference data during 1 January 2021–
10 May 2020.

Table 3 lists the overview of CDR and NRT CDR, respectively. The major difference
between these two datasets is the usage of brightness temperature data from different
sources, as shown in Table 3. The used variable in this study from CDR and NRT CDR
are named as “cdr _seaice_conc” and “seaice_conc_cdr”, respectively, both of which are
merged from the NASA Team and NASA Bootstrap processed sea ice concentrations
using the CDR algorithm. Basically, the CDR algorithm selects the higher concentration
value between NASA Team and NASA Bootstrap as the output concentration. Com-
prehensive validation of CDR ice concentration fields has not been studied yet, but
related studies concluded that the CDR and NASA Bootstrap results are quite similar in
both hemispheres, while larger differences exist between the CDR and the NASA Team
results [41].

Table 3. The overview of National Oceanic and Atmospheric Administration/National Snow and Ice Data Center
(NOAA/NSIDC) climate data record of passive microwave sea ice concentration.

Specification NOAA/NSIDC Climate Data Record (CDR) of
Passive Microwave Sea Ice Concentration

Near-Real-Time (NRT) NOAA/NSIDC
Climate Data Record (CDR) of Passive

Microwave Sea Ice Concentration

Website
https:

//nsidc.org/data/G02202/versions/4
(accessed on 18 November 2021)

https:
//nsidc.org/data/G10016/versions/2

(accessed on 18 November 2021)

Used temporal coverage 1 January 2019–31 December 2019 1 January 2020–10 May 2021

Projection and grid size
Polar stereographic projection

North: 304 (columns) × 448 (rows)
South: 316 (columns) × 332 (rows)

Spatial coverage (over ocean area) northern hemisphere: 31.1◦ N–89.84◦ N, 180◦ E–180◦ W
southern hemisphere: 39.36◦ S–89.84◦ S, 180◦ E–180◦ W

Spatial resolution 25 km × 25 km

Used temporal resolution 1 day

Used variable name cdr_seaice_conc seaice_conc_cdr

Used dataset
DMSP SSM/I-SSMIS

Daily Polar Gridded Brightness
Temperatures (NSIDC-0001)

Near-Real-Time DMSP SSM/I-SSMIS Daily
Polar Gridded Brightness

Temperatures (NSIDC-0080)

Brief description of used variable NOAA/NSIDC daily sea ice CDR NRT NOAA/NSIDC daily sea ice CDR

Platform(s) DMSP 5D-3/F18 DMSP 5D-3/F18

Sensor(s) SSMIS SSMIS

https://nsidc.org/data/G02202/versions/4
https://nsidc.org/data/G02202/versions/4
https://nsidc.org/data/G10016/versions/2
https://nsidc.org/data/G10016/versions/2
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The sea ice concentration data are gridded using polar stereographic projection, where
a projection plane to Earth’s surface at 70◦ N or 70◦ S is specified to minimize the distortion
in the marginal ice zones. The grid cell resolution is 25 km × 25 km, the dimensions of
which in the x and y directions of the projection grid centers are 304 × 448 for the northern
hemisphere and 316 × 332 for the southern hemisphere, respectively [42]. It was noted
that a polar orbit and wide swath provides near-complete coverage at least once per day in
the polar regions except for a small region around the North Pole called the pole hole. As
shown in Table 3, the SSMIS sensor is used for NSIDC sea ice concentration retrieval. For
SSMIS, the pole hole is 94 km in radius and is located poleward of 89.18◦N with an area
of 0.029 million km2. Similar to the definition of OSI SAF sea ice edge product which will
be described in Section 2.3, sea ice concentrations below 40%, between 40% and 70%, and
above 70% are identified as open water, open ice, and closed ice, respectively.

2.3. Validation Data

The sea ice edge product provided by OSI SAF is used as the main validation data
source in this study. There are three main reasons for using the OSI SAF sea ice product
as validation data. Firstly, the OSI SAF sea ice retrieval algorithm uses the same type of
payload data source as the one used in this paper, that is, both scatterometer and radiometer
data are used. Secondly, both of these two algorithms are supervised classification. Thirdly,
the OSI SAF sea ice product has excellent temporal and spatial continuity, providing an
effective data source for long-time series comparison and analysis.

Table 4 lists the correspondence between sea ice classes as used by operational sea ice
services, sea ice concentration range, and the sea ice class chosen for the Ocean and Sea Ice
Satellite Application Facility (OSI SAF) classification [28]. A threshold in ice concentration
of 15% is often used to define sea ice extent in scientific studies and climate applications [15].
As for the OSI SAF sea ice edge retrieval, the OSI SAF ice concentration product is used as
reference data, where sea ice concentration below 40%, between 40% and 70%, and above
70% are identified as open water, open ice, and closed ice, respectively.

Table 4. The correspondence between ice service sea ice class, sea ice concentration range, and OSI
SAF ice edge class.

Ice Service Sea Ice Class Sea Ice Concentration Range OSI SAF Ice Edge Class

Open water Less than 1/10 Open water
Very open drift ice 1/10–4/10 Open water/open ice

Open drift ice 4/10–7/10 Open ice
Closed drift ice 7/10–9/10 Closed ice

Fast ice More than 9/10 Closed ice

OSI SAF ice classes are assigned from atmospherically corrected SSMIS brightness
temperature and ASCAT backscatter values, using a multi-sensor-based Bayesian approach.
Since the sea ice properties vary with the seasons, the dynamical probability density
functions (PDFs) of different ice classes are continuously updated based on the training
dataset from the preceding 15 days. Four parameters, including three passive microwave
(PMW) parameters, PR19, GR1937, PRn90, and the ASCAT parameter aniFMB are used for
the OSI SAF ice edge product [27,28]. Since the Bayesian approach describes the probability
of occurrence of the most likely surface class, the probability itself can be an indicator of
statistical uncertainty of the classification. The OSI SAF grid is a polar-stereographic grid
with 10 km spatial resolution, the dimensions of which in the x and y directions of the
projection grid centers are 760 × 1120 for the northern hemisphere and 790 × 830 for the
southern hemisphere, respectively. Figure 2 gives an example of OSI SAF sea ice products
on 8 April 2020, including the sea ice edge in the Arctic and Antarctic, respectively.
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3. Methodology

Figure 3 shows the flowchart of sea ice monitoring based on machine learning with
CSCAT measurement in this study. Generally, the algorithm consists of two modules: the
timing module (part 1, marked with blue rectangle area) and real-time module (part 2,
marked with orange rectangle area).

The main process of the timing module is to train and evaluate the machine learning
training model for sea ice monitoring. Taking sea ice variation from different seasons and
years into consideration, in particular at the start and end of the melting and freezing
seasons, the training model is updated based on the training dataset from the preceding
7 days. The reason the preceding 7-day datasets are used for model training will be
specifically evaluated in Section 3.2. The input CSCAT σ0 measurements (contained in
Level 2A products) are resampled into polar ice maps with a pixel size of 25 km × 25 km
using the polar stereographic projection firstly. Then the NSIDC sea ice concentration is
matched for each pixel of the ice map. After the data preprocessing mentioned above, the
feature parameters derived from the σ0 measurement need to be computed to distinguish
sea ice from water, which will be described in Section 3.1. To determine the optimal machine
learning classification method for operational processing of sea ice monitoring, the several
machine learning classification methods are assessed by a comprehensive evaluation
in terms of the model accuracy, the difficulty of algorithm parameter optimization and
debugging, the time efficiency, and other aspects of different classification methods. This
process will be specifically described in Section 3.2. Finally, the trained training model
deriving from the optimal machine learning algorithm will be used for the real-time
module processing.

The input data of the real-time module includes the daily CSCAT σ0 measurements
and the sea ice monitoring result of the previous day. After the stereographic projection and
feature extraction of σ0 measurements, the automatic classification over the corresponding
projected grid cells using the trained training model exported from the timing module
are processed and updated. The uncertainty estimates of CSCAT sea ice monitoring are
defined using the probability of predicted surface class, which indicates more details of
the prediction accuracy in each grid cell. Finally, the inter-comparison is made between
CSCAT sea ice results and validation datasets.

https://osisaf-hl.met.no/quicklooks-1prod
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3.1. Extraction of Features

A difference in the scatterometer backscatter measurement exists due to the differences
of the surface target in physical structure, dielectric permittivity, salinity, temperature, and
other aspects. Generally, the radar backscattering amplitude over land or ice is stronger than
over ocean, except for in high sea surface wind conditions. Specifically, the scatterometer
measurement relies on surface Bragg scattering from wind-generated waves over the ocean,
while the scattering of sea ice is a mixture of volume and surface scattering. It is noted that
wind-induced surface roughness can result in ambiguous signatures. Furthermore, the
incidence angle, azimuthal and temporal dependence of σ0 measurement over the ocean
is generally much stronger than that over the ice. In addition, the copolarization (copol)
ratio, defined as the ratio of σvv and σhh, is a useful parameter for discriminating sea ice
and water, where the σvv or σhh is the σ0 measurement at a given incidence angle. Another
similar parameter, named the modified copol ratio, exhibits a combination of polarization
and incidence angle dependences of ocean and sea ice. Both copol ratio and modified
copol ratio have a similar signature in that sea ice has a lower ratio than that of ocean. Last
but not least, since the surface of multi-year ice is rougher than that of first-year ice, the
scatterometer measurement from multi-year ice should be stronger than the first-year ice,
which can be used for sea ice type classification.

Many studies have combined the physical mechanisms mentioned above with the
characteristics of different scatterometer viewing geometries to extract the features for
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sea ice monitoring. The feature extraction in previous studies was basically derived from
averaged daily observational datasets [33]. Since CSCAT has the advantage of large sample
observation, all features used in this study are based on every σ0 data contained in L2A
product, rather than one-day dataset. Specifically, five parameters are defined for sea ice
monitoring in this study. The first and second parameters are the mean value of horizontal
and vertical polarization backscatter, respectively, which are defined as,

σhh =
1
N

N

∑
i=1

σhh,i(θi, φi), (1)

σvv =
1
N

N

∑
i=1

σvv,i(θi, φi) (2)

where N is the number of observations at the grid cell after stereographic projection,
σhh,i(θi, φi) and σvv,i(θi, φi) are the ith horizontal and vertical polarization backscatter,
respectively, and θi and φi are the corresponding incidence and azimuth angle, respectively.

It can be seen that σhh and σvv mainly rely on different scattering mechanisms between
sea ice and ocean. The difference from previous studies is that both the incidence and
azimuth angles can affect these parameters’ performance to some extent. Figure 4(a1, b1)
shows the example image of σhh and σvv on 8 April 2020. Compared with Figure 2, it is
clear that both σhh and σvv are much lower in the ocean region than the sea ice region as
expected. Furthermore, the difference between multi-year ice and first-year ice is quite
significant, proving the feasibility of σhh and σvv for sea ice type distinguishment, which
will be analyzed in a further study. Figure 4(a2,b2) shows the distribution of σhh and σvv
for three ice edge classes, that is, open water, open ice, and closed ice, respectively, based
on collocated data from 1 April 2020 to 7 April 2020 in the Arctic region. It is seen that a
Gaussian approximation holds good for the open water class, but the distributions of open
ice and closed ice are asymmetric. Furthermore, the statistical distribution of open water
and ice (open ice + closed ice) is clearly distinguished, but that is not the case between
open ice and closed ice.

The third and fourth parameters are the standard deviations of horizontal and vertical
polarization measurements respectively, which are defined as,

∆σhh =

√√√√ 1
N

N

∑
i=1

[σhh,i(θi, φi)− σhh]
2, (3)

∆σvv =

√√√√ 1
N

N

∑
i=1

[σvv,i(θi, φi)− σvv]
2 (4)

Similar to σhh and σvv, ∆σhh and ∆σvv are affected by the incidence and azimuth
angles simultaneously. ∆σhh and ∆σvv mainly rely on the difference of the incidence and
azimuthal dependence of scatterometer measurements over sea ice and ocean. Figure
4(c1,d1) shows the example image of ∆σhh and ∆σvv on 8 April 2020. Compared with
Figure 2, it is clear that both ∆σhh and ∆σvv are much lower in the sea ice region than the
ocean region, coinciding with the fact that the incidence and azimuthal angle dependence
of scatterometer measurement over ocean is much deeper. It is noted that ∆σhh and ∆σvv
shown in Figure 4(c2,d2) has more obvious textures in the outer swath edge than σhh and
σvv shown in Figure 4(a1,b1), where the corresponding values are generally lower than
in the other swath regions. This is because the diversity of incidence angles and azimuth
angles of measurements are much lower in the outer swath than other swath regions, as
shown in Figure 1. Similar to Figure 4(a1,b1), Figure 4(c2,d2) shows the distribution of ∆σhh
and ∆σvv for open water, open ice, and closed ice, respectively. It is seen that the statistical
distribution of open water and closed ice for ∆σhh can be distinguished better than that of
∆σvv in this case.
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Figure 4. Parameters derived from one day of CSCAT measurements in the Arctic on 7 March 2019.
(a1) σhh, (b1) σvv, (c1) ∆σhh, (d1) ∆σvv and (e1) γ. Arctic images contain 448 × 304 pixels with a pixel
resolution of 25 km. The central white circular area represents no observations. Density plot for
parameters (a2) σhh, (b2) σvv, (c2) ∆σhh, (d2) ∆σvv, and (e2) γ for open water (blue), open ice (green),
and closed ice (red).
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The fifth parameter is the copol ratio γ, defined as the ratio of σvv and σhh, i.e.,
γ = σvv/σhh. Figure 4(e1) shows the example image of γ on 8 April 2020. It is shown that
the γ is much higher over sea ice than that over ocean. And γ can eliminate the orbital edge
effect very well. The Gaussian approximation shows good discrimination between open
water and closed sea ice, and these three classes can be well fitted by a Gaussian model.

3.2. Machine Learning-Aided Sea Ice Monitoring Methods

In order to make comprehensive use of the above five feature parameters to distinguish
sea ice distribution, five machine learning classifiers are evaluated firstly [43], including logistic
regression, naïve Bayes, random fore gradient boosting, and support vector machine (SVM).

Specifically, the training and prediction speed of logistic regression is very fast which
is suitable for very large datasets and high-dimensional data. However, the generalization
performance of other models may be better in the lower dimensional space. Naive Bayes
classifier learns parameters by looking at each feature individually, and collecting simple
statistical data from each feature. It has a faster training speed, but its generalization
ability is slightly worse than logistic regression classifier. Random forest and gradient
boosting classifiers belong to the ensemble learning method, both of which are based on
the decision tree method. The main disadvantage of the decision tree is overfitting. The
strategery of the random forest classifier is to use a bootstrap sample when constructing
decision tree and random feature subset at each node. The gradient boosting classifier
constructs trees in a continuous way, and each tree tries to correct the error of the previous
tree through continuously monitoring its own cumulative error and then using the residual
for subsequent training. The SVM classifier transforms the input parameter vector into
a high-dimensional space, and finds the optimal linear classification surface in this new
high-dimensional space to solve the nonlinear problem.

Taking the Arctic sea ice distribution model as an example, the NSIDC sea ice con-
centration is used as priori information to identify the sea ice and water in the CSCAT
observation area. As shown in Figure 5, the five classifiers mentioned above are evaluated
from three aspects, that is, the model accuracy derived from test dataset, the accuracy of
water discrimination (true positive), and the accuracy of sea ice discrimination (true nega-
tive), respectively. It is noted that the parameters of each classifier have been optimized
before evaluation. Ideally the time period of the training data should be as short as possible
to best represent the actual ice condition, however the length is also determined by the
need to collect enough training data to derive reliable statistics. The relationship between
the training instances and these three aspects shows that when the number of training
sets is more than 50,000, which is equivalent to a week’s dataset, the change of accuracy
is not improved as a whole, indicating the reliability of using previous one-week data for
model training. In addition, the model accuracies of SVM, gradient boosting and random
forest are superior to logistic regression and Naive Bayes. Since the training of SVM is very
time-consuming, and the gradient boosting requires more parameter adjustment process,
the random forest classifier is selected for sea ice monitoring in this study. In this case, the
accuracies of sea ice and water are 0.94, 0.98, respectively, and the importance of feature
parameters is ranked as follows: σhh > ∆σhh > γ > ∆σvv > σvv.
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4. Results

The model performance and retrieval results from 1 January 2019 to 10 May 2021 are
analyzed in this section. However, because of quality control, there are 56 days and 110
days in the Arctic and Antarctic that were skipped respectively firstly, and the specific
corresponding dates and reasons for elimination are shown in Table 5. The number of
days used for statistical analysis in the Arctic and Antarctic accounted for 93.5% and 87.3%,
respectively, ensuring the representativeness of the further evaluation.

4.1. Characteristics of CSCAT Feature Parameters

Figure 6 shows the PDF’s mean values and standard deviations of sea ice distribution
feature parameters from 1 January 2019 to 10 May 2021 in the Arctic. It is noted that
when the standard deviation-regions of the different classes are distinctively different, the
algorithm should do well in the classification, whereas overlapping between the different
PDF’s causes uncertainties in the classification.

In Figure 6a,b, the time series of σhh and σvv show distinctly seasonal trends. During
summer, the moisture at the surface produces lower backscatter due to a scattering
mechanism change from volume scattering to surface scattering. While during winter,
the refreezing process results in stronger backscatter, which is consistent with previous
studies. ∆σhh, ∆σvv and γ don’t change significantly with the seasons, as shown in
Figure 6c–e. According to the difference of the most significant feature parameters in
the training model, it is divided into eight periods (represented by double arrows) in
the Arctic. Specifically, γ dominates the training model at the end of autumn and the
whole winter time, and the ∆σhh or ∆σvv has a significant effect at the end of winter and
the beginning of spring, while in the spring, summer and autumn periods, σhh performs
best for sea ice prediction.

Similarly, Figures 6 and 7 show the statistical results of σhh, σvv, ∆σhh, ∆σvv and γ in
Antarctic. As shown in Figure 7a,b, the time series of σhh and σvv in the Antarctic also have
distinct seasonal trends, and the difference between water and ice is more distinct than
that in the Arctic, but the difficulty lies in the distinguishment between open ice and closed
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ice, which is almost indistinguishable except for in the summer period. ∆σvv, σvv and γ
don’t change significantly with the seasons in the Antarctic either, as shown in Figure 7c–e.
Nine periods are divided based on the difference of the most significant feature choice.
Specifically, σhh dominants the training model in summer, and the γ has a significant effect
in spring, autumn, and winter periods, while at the end of spring and the beginning of
summer, or at the end of autumn and beginning of winter, ∆σhh performs best for sea ice
prediction. The difference in feature important rank in the different seasons implies that
the combination of these parameters is effective in discriminating sea ice from water under
various conditions.

Table 5. The list of invalid dates and reason for statistical analysis from 1 January 2019 to 10 May 2021.

Data Source Invalid Date
In Arctic

Invalid Date
In Antarctic

Invalid Reason
(Removed Quantity)

CSCAT

4 January 2019
17 April 2019
18 May 2019

30 May–5 June 2019
19 June 2019
2 July 2019

17 July 2019
28 August 2019
1 October 2019

2–7 February 2020
14 April 2020
15 June 2020
27 June 2020
9 July 2020

29–30 December 2020
9 January 2021
31 January 2021

24 February–4 March 2021

4 January 2019
17 April 2019
18 May 2019

30 May–5 June 2019
19 June 2019
2 July 2019

17 July 2019
28 August 2019
1 October 2019

2–7 February 2020
14 April 2020
15 June 2020
27 June 2020
9 July 2020

3 August–1 September 2020
15 November–10 December 2020

29–30 December 2020
9 January 2021

31 January 2021
20 February–4 March 2021

Quality control elimination
(Arctic: 38

Antarctic: 92)

CSCAT 19 December 2019–14 January 2020
29 December 2020 No data

NSIDC sea ice concentration 20–23 February 2021 No data

4.2. Evaluation of Sea Ice Distribution Model Precision

The sea ice monitoring models based on random forest classifier are quantitatively
assessed using a confusion matrix through a comparison with the NSIDC sea ice
concentration data as reference data. Each column of the confusion matrix represents
the prediction category, and the total number of each column represents the number
of data predicted as the category. Similarly, each row represents the real category
of data, and the total amount of data in each row represents the number of data
instances in that category. The overall accuracy, kappa coefficient, and the precision,
recall, and F1 measurement for specific categories are derived from the confusion
matrix. Specifically, the accuracy and kappa coefficient are used to evaluate the overall
prediction accuracy of the model. The precision per category is defined as the ratio of
all samples with correct prediction to the total samples in this prediction category. The
recall per category represents the proportion of samples correctly predicted in a real
category. The F1 measurement is used as a comprehensive index to take both precision
and recall into account.
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It should be noted that in the multi-classification model, each type needs to calculate
its precision and recall separately, so the true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) defined for different types are different. Taking open water as
an example, TPopenwater is defined as the number of actual open water and predicted open
water, and TNopenwater is defined as the number of actual sea ice (open ice or closed ice)
and predicted sea ice. FPopenwater is defined as the number of actual sea ice but predicted
open water, and FNopenwater is defined as the number of actual open water but predicted
sea ice. Therefore, the precision and recall of open water are defined as:

Precisionopenwater =
TPopenwater

TPopenwater + FPopenwater
, (5)

Recallopenwater =
TPopenwater

TPopenwater + FNopenwater
, (6)

Figures 8 and 9 show the time series of the parameters described above to evaluate
sea ice monitoring training models in the Arctic and Antarctic from January 1 2019 through
May 10 2021, respectively, the averaged classification accuracies of which are summarized
in Table 6. Before specific analysis, it should be noted that as for supervised classification
learning which is used in this study, the collected labeled dataset is generally divided into
two parts: training set and test set, to evaluate the accuracy of the training model. It should
be emphasized that these two parts of data are independent of each other. Specifically, the
training set is used to build the model, and the test set is used to evaluate the generalization
ability of the model to new data that has never been seen before. In this paper, NSIDC
sea ice concentration is used to define the label of ice water classification. Part of the
data (called training set) is used to build the ice water discrimination model, and the rest
of the data (called test set) is used to evaluate the model performance. The two are not
contradictory, and the results of Table 6 further illustrate the good generalization ability of
the training model to new data.

Table 6. Summary of averaged classification accuracies obtained through a random forest classifier in the Arctic and
Antarctic from 1 January 2019 through 10 May 2021.

Region Classification Precision Recall F1
Measurement

Overall
Accuracy

Kappa
Coefficient

Arctic
Open water 99.69% 99.84% 99.76%

99.66% 99.31%Open ice 98.77% 93.80% 96.21%
Closed ice 99.65% 99.82% 99.74%

Antarctic
Open water 97.29% 98.23% 97.75%

93.31% 80.77%Open ice 35.29% 14.95% 19.70%
Closed ice 81.8% 88.9% 85.15%

The overall accuracy and kappa coefficient for the Arctic are quite high: 99.66%, 99.31%
on average, respectively. The precision, recall, and F1 measurement of open water and
closed ice are obviously higher than those of open ice. As shown in Figure 10, the reasons
for lower accuracies of open ice are slightly different in different seasons. Specifically, at
the end of the summer and the whole autumn season, the open ice is easily misclassified as
open water, while the open ice is easier to be misjudged as closed ice at the end of winter
and the whole spring season.

The overall accuracy and kappa coefficients for the Antarctic are 93.31% and 80.77%
on average, respectively, which are much lower than the Arctic results. Furthermore, the
kappa coefficient in the Antarctic is lower than 0.8 in summer, which is obviously lower
than other seasons, indicating that the accuracy of the ice water identification model in the
Antarctic is lower in summer. Similar to the evaluation result in the Arctic, the category
most difficult to be classified is open ice, the precision, recall, and F1 measurement of which
are 35.29%, 14.95%, and 19.70%, respectively. As shown in Figure 11b, the main reason
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for lower open ice accuracy in the Antarctic is the misclassification between open ice and
closed ice. In addition, the accuracy of closed ice in the Antarctic also has seasonal variation,
where lower accuracies appear in summer and the closed ice is easier to misclassify as open
ice in the summer period.
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Figure 11. The error analysis of the Antarctic sea ice monitoring training models from 1 January 2019 through 10 May 2021:
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open water (blue line) and closed ice (red line), respectively, and (c) closed ice is misclassified as open water (blue line) and
open ice (red line), respectively.
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5. Discussion
5.1. Daily Sea Ice Area Comparison with Different Datasets

In this study, sea ice area is computed as the sum of open ice and closed ice area,
and assuming the areas not covered by CSCAT in center of the North Pole (as shown
in Figure 4) are entirely covered by sea ice. Figure 12a shows the comparison of sea ice
area obtained from different data sources in the Arctic, where blue, red and yellow lines
represent the results of CSCAT, NSIDC ice 40% extent, and OSI SAF sea ice edge product,
respectively. An excellent consistency in the seasonal variation among all three results can
be seen in Figure 12a. In order to quantitatively compare the difference in sea ice area, the
sea ice area relative error REice and difference ∆Sice are defined as:

REice =
∆Sice

Sre f erence,ice
× 100%, (7)

∆Sice = Sobservation,ice − Sre f erence,ice (8)

where Sobservation,ice and Sre f erence,ice refer to observational and reference results, respectively.
REice represents the relative deviation percentage of the observational result compared
with the reference one.

The comparison between CSCAT and OSI SAF in Arctic is shown in Figure 12b,c
with blue lines. It can be seen that when the OSI SAF sea ice area is chosen as reference
data, the absolute REice of CSCAT results are less than 20% in 99.2% of the time series,
the corresponding REice mean value of which is 1.21%, and the absolute REice of CSCAT
results are less than 10% with REice mean value of 2.45% in about 92.1% of the time series.
In this case, the mean values of ∆Sice between CSCAT and OSI SAF results is 0.2673 million
km2, implying that the sea ice area derived from CSCAT is a little bit larger than that of the
OSI SAF results.
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The comparison of the sea ice area between OSI SAF and NSIDC 40% ice extent in
the Arctic is also evaluated and shown in Figure 12b,c with red lines. It can be seen that
when NSIDC 40% ice extent is regarded as reference data, the absolute REice of OSI SAF
results are less than 20% in whole time series with an REice mean value of −3.38%, and the
absolute REice of OSI SAF results are less than 10% with REice mean value of −3.38% in
whole time series. The mean values of ∆Sice between OSI SAF and NSIDC 40% ice extent is
−0.3873 million km2, implying that the sea ice area derived from OSI SAF is less than that
by NSIDC 40% ice extent results.

As shown in Figure 12, although different products perform well in overall consis-
tency, obvious seasonal differences exist, especially in the summer period. Many stud-
ies [13,15,23,31,44] have shown that during sea ice melt and freeze-up phases, the radiation
and backscatter properties of sea ice could change significantly, and the active and passive
microwave sensors have a different sensitivity to the sea ice with mixed volume and surface
scattering signatures. For instance, the passive microwave algorithms such as AMSR-E
(or SSM/I) NT2 underestimate the extent of summer sea ice by up to 15%–20% relative to
QuikSCAT [15]. In this study, CSCAT results are significantly underestimated compared
with the OSI SAF sea ice area. The main reason is that the CSCAT is trained by radiometer
sea ice concentration data while the radiometer measurement of sea ice is significantly
affected by melting in the summer seasons [44], resulting in a larger discrepancy between
CSCAT and OSI SAF sea ice results (noting that both scatterometer and radiometer data
are used in OSI SAF sea ice edge product).

Figure 13 shows the time series statistics of the comparisons between CSCAT, OSI SAF,
and NSIDC sea ice area in the Antarctic. Using similar analysis as Figure 12, it can be seen
that when OSI SAF sea ice area is chosen as reference data, the absolute REice of CSCAT
results are less than 20% in 79.2% of the time series, the corresponding REice mean value
of which is −3.92%, and the absolute REice of CSCAT results are less than 10% with mean
value of −2.18% in about 70.9% of the time series. In this case, the mean values of ∆Sice
between CSCAT and OSI SAF results is −0.4446 million km2.
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Figure 13. The Antarctic results from 1 January 2019 through 10 May 2021 (a) daily sea ice area for CSCAT (blue line),
NSIDC 40% ice extent (red line), and OSI SAF sea ice edge product (yellow line), respectively, (b) sea ice area relative error,
and (c) sea ice area difference between CSCAT and OSI SAF sea ice edge product (blue line), between OSI SAF sea ice edge
product and NSIDC 40% ice extent (red line), respectively.
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When NSIDC 40% ice extent is regarded as the reference data, the absolute REice
of OSI SAF results are less than 20% in 89.6% of analyzed time series with an REice
mean value of 5.04%, and the absolute REice of OSI SAF results are less than 10% with
an REice mean value of 3.25% in about 78.1% of the time series. The mean values of
∆Sice between OSI SAF and NSIDC 40% ice extent is 0.3736 million km2. Similar to the
results shown in Figure 12, both comparisons between these results in the Antarctic
show significant seasonal fluctuations, where large discrepancies appear in the summer
months of January–March.

Table 7 gives a summary of the comparison results described above. For both the
Arctic and Antarctic area, when the OSI SAF sea ice area is regarded as reference data, the
absolute REice of CSCAT are less than 10% except for in the summer season, verifying the
reliability and stability of the algorithm. Furthermore, the overall sea ice area derived from
CSCAT is lower than the OSI SAF sea ice area in the summer period. On the one hand, the
model evaluation as shown in Figures 10b and 11b implies that CSCAT open ice is easier
to be misclassified as open water in the summer period. On the other hand, it may be the
melt pond existence, where the active microwave feature parameters of sea ice are similar
to sea water.

Table 7. Statistics of the comparisons between CSCAT, OSI SAF, and NSIDC sea ice area.

Region Sobservation,ice Sreference,ice

Proportion of
REice,|20%|

(%)

Mean Value
of REice,|20%|

(%)

Proportion
of REice,|10%|

(%)

Mean Value
of REice,|10%|

(%)

Mean Value
of ∆Sice

(million km2)

Standard Deviation
of ∆Sice

(million km2)

Arctic
CSCAT OSI SAF 99.2 1.21 92.1 2.45 0.2673 0.4580
OSI SAF NSIDC 100 −3.38 100 −3.38 −0.3873 0.2958

Antarctic
CSCAT OSI SAF 79.2 −3.92 70.9 −2.18 −0.4446 0.4895
OSI SAF NSIDC 89.6 5.04 78.1 3.25 0.3736 0.2653

5.2. Seasonal Sea Ice Area Comparison with Different Datasets

Figure 14a,b shows the seasonal variation trend of the Arctic and Antarctic sea ice
area from different data sources. The red, blue, and black-marked results are derived
from CSCAT, NSIDC 40% ice extent, and OSI SAF sea ice edge product, and the solid line
and shadow represent the mean and standard deviation of sea ice area in corresponding
seasons, respectively. The results show that the three types of results have good consistency
in the seasonal variation of sea ice area. In the analyzed period, the minimum Arctic sea ice
area of these three results all appear in July–September of 2020. However, the maximum
Arctic sea ice area of NSIDC and CSCAT appears in January–March of 2019 with a mean
value of 12.5112 million km2 and 12.3123 million km2, respectively, while the maximum
Arctic sea ice area from OSI SAF appears in January–March of 2020 with a mean value of
11.6462 million km2.

As for Antarctic, the minimum Antarctic sea ice area of these three results
all appears in January–March of 2019, while the maximum Antarctic sea ice area
from NSIDC and OSI SAF appears in July–September of 2020 with a mean value of
16.5441 million km2 and 16.7289 million km2 , respectively. The maximum Antarctic
sea ice area from CSCAT appears in July–September of 2019 with a mean value of
16.3305 million km2 .

Figure 14c,d shows the relative error of the seasonal average of the Arctic and Antarctic
sea ice areas. Consistent with the diurnal variation trend of Figures 12b and 13b, the
accuracy of CSCAT sea ice area fluctuates seasonally, and the CSCAT results are significantly
underestimated compared with the OSI SAF sea ice area both in the Arctic and the Antarctic.
The accuracy of the Arctic sea ice area is slightly higher than that of the Antarctic, which is
related to the overall higher accuracy of the Arctic sea ice distribution training model than
that of Antarctic training model.
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5.3. CSCAT Sea Ice Edge Comparison with NSIDC SIC Datasets

Figure 15a–h illustrate the seasonal and geographical behavior of the CSCAT and
NSIDC (40% concentration threshold) sea ice masks for a limited subset of days in Arctic
and Antarctic, respectively. It is noted that the residual classification errors of CSCAT are
reduced using image erosion/dilation techniques and sea ice growth/retreat constraint
methods. The agreement between the sea ice edges derived from CSCAT and NSIDC
40% ice extent is very good except for in the summer period. In this case, the discrepancy
between CSCAT and NSIDC 40% ice extent for 7 September 2019 in the Arctic is due to
the CSCAT misclassification of closed ice as open water, as shown in Figure 15c with a
black rectangle-marked area. And the main difference between CSCAT and NSIDC 40%
ice extent for 7 March 2019 in the Antarctic is mainly due to the CSCAT misclassification of
open ice as open water, as shown in Figure 15e with a black rectangle-marked area.
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Figure 15. Comparison of sea ice edge from CSCAT retrieved result (red line) and NSIDC 40% SIC isoline (blue line):
(a) the Arctic on 7 March 2019, (b) the Arctic on 7 June 2019, (c) the Arctic on 7 September 2019, (d) the Arctic on
7 December 2019, (e) the Antarctic on 7 March 2019, (f) the Antarctic on 23 June 2019, (g) the Antarctic on 7 September 2019,
and (h) the Antarctic on 7 December 2019, respectively.

6. Conclusions

Compared to radiometer, scatterometer measurement can provide higher spatial
resolution and have lower sensitivity to atmospheric effect and temperature. The capability
of CSCAT to monitor sea ice in polar areas has been demonstrated in this study. Five
microwave feature parameters based on CSCAT measurements are used in the classification:
the mean value of horizontal and vertical polarization backscatter (σhh and σvv), the
standard deviation of horizontal and vertical polarization backscatter (∆σhh and ∆σvv), and
the modified coplor ratio γ. The difference of feature important rank in different seasons
implies that the combination of these parameters is effective in discriminating sea ice from
water under various conditions.

Five machine learning-aided classifiers are evaluated firstly. Taking the model ac-
curacy, time consumption, and the complexity of the parameter adjustment process into
consideration, the random forest classifier is selected for sea ice monitoring in this study.
The random forest-based method achieves an overall accuracy of 99.66% and 93.31%, re-
spectively, in the Arctic and Antarctic regions with the dataset after quality control used in
this study. Furthermore, the category which is most difficult to be classified in the Antarctic
is open ice, the main reason for which is the misclassification of open ice as closed ice.
These differences may be due to the different sensitivities of active and passive microwave
methods to mixed sea ice and summer ice.

The results of CSCAT sea ice area are validated by comparing to the OSI SAF sea ice
edge data. The results show that the absolute REice of CSCAT are less than 10% except
for summer season, verifying the reliability and stability of the algorithm. The overall
sea ice area derived from CSCAT is lower than the OSI SAF sea ice area in the summer
period, the main reason for which may be the training model misclassification error and
the effect of melt pond on active microwave feature parameters. The mean values of
∆Sice between CSCAT and OSI SAF in the Arctic and Antarctic are 0.2673 million km2

and −0.4446 million km2, respectively. In addition, the accuracy of the CSCAT sea ice area
fluctuates seasonally, and the accuracy of the Arctic sea ice area is slightly higher than
that of the Antarctic, which is related to the overall higher accuracy of the Arctic sea ice
distribution training model than that of the Antarctic training model.

In conclusion, this research verifies the capability of CSCAT in monitoring polar sea
ice. Studies on sea ice type classification in polar areas using CSCAT will be introduced in
our future work. Furthermore, the random forest-aided algorithm introduced in this study
can offer good guidance for sea ice monitoring with FY-3E/RFSCAT, i.e., a dual-frequency
(Ku and C band) scatterometer called WindRAD.
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