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Abstract: Economic inequality at the local level has been shown to be an important predictor of
people’s political perceptions and preferences. However, research on these questions is hampered
by the fact that local inequality is difficult to measure and systematic data collections are rare, in
particular in countries of the Global South. We propose a new measure of local inequality derived
from nighttime light (NTL) emissions data. Our measure corresponds to the local inequality in per
capita nighttime light emissions, using VIIRS-derived nighttime light emissions data and spatial
population data from WorldPop. We validate our estimates using local inequality estimates from
the Demographic and Health Surveys (DHS) for a sample of African countries. Our results show that
nightlight-based inequality estimates correspond well to those derived from survey data, and that
the relationship is not due to structural factors such as differences between urban and rural regions.
We also present predictive results, where we approximate the (survey-based) level of local inequality
with our nighttime light indicator. This illustrates how our approach can be used for new cases where
no other data are available.

Keywords: economic inequality; nighttime light emissions; VIIRS; spatial measurement

1. Introduction

In the social sciences, there is an increasing trend to use fine-grained data to capture
political and economic mechanisms. Measured at high levels of resolution such as indi-
viduals or households, they allow for a precise analysis of local conditions and the social
processes that people are embedded in [1]. The availability of fine-grained data is usually
very good for developed countries, where researchers can rely on extensive surveys or
administrative data. For many countries of the Global South, however, the availability
of disaggregated data is usually limited. Oftentimes, these countries are unlikely to be
covered by surveys, and administrative data shared for research purposes is sparse or does
not exist.

For this reason, social science scholars have increasingly turned to alternative sources
of data, such as remote sensing. One prominent example in this strand of research is the
use of nighttime lights (NTL) data collected by satellites. First attempts have used NTL
emissions at aggregated, lower levels of resolution. For example, earlier work has shown
that nighttime light emissions can track economic performance and human development
at the level of large geographic units, for example countries or states [2–5]. However, more
recent work has tried to increase the resolution of these tests. For example, Weidmann
and Schutte [6] show that nighttime light emissions correlate well with ground truth
measurements of household wealth, as recorded in surveys. This means that satellite-based
NTL data can be used also at high levels of resolution, for example for the estimation of
wealth, human development or regional inequality between provinces and sub-national
administrative units [7–11].

In this paper, we build on this work and attempt to use NTL data for the estima-
tion of local inequality. In recent years, and in particular following the influential work
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by Piketty [12], inequality has attracted a lot of interest from the research community. Using
aggregated country- or group-levels measures of economic inequality, this research has
shown for example that inequality can be an important driver of social conflict and political
instability [13]. Again, research in this vein has relied on NTL data, but only at aggregated
levels to measure inequality between [14–16] or within social groups [17]. However, re-
cent research has also shown that people do not perceive aggregated/systemic levels of
inequality. Rather, it is the local context that matters for explaining individuals’ behavior.
In particular, there is a number of studies showing that local inequality, i.e., inequality
with an individual’s immediate spatial context, affects citizen’s political preferences in
behavior [18–24].

To find out how this local context matters in the Global South, we need fine-grained
estimates of local inequality. This is what we present in this article. Our study, however,
is not the first to study local inequality with NTL data. Existing work, however, has not
used night light emissions to measure local inequality directly; rather, these studies first
approximate economic performance or wealth from night lights for small geographic units,
and then calculate inequality between them [9,25,26]. Our approach, in contrast, operates
directly on the NTL data in combination with a population raster, and is therefore able to
produce local inequality estimates for arbitrary locations on the globe and at a high levels
of resolution.

2. Data and Methods

In this paper, we present an approach to computing satellite-based estimates of local
inequality, which we validate with local inequality estimates derived from large-scale
survey data. In the following, we first describe the nighttime light data we use for our
indicator, before turning to the survey data used for validation.

Our satellite-based estimates of local inequality rely on the VIIRS nighttime light
data [27] (V2). We use the annual composites, where non-stationary light sources and
other erroneous influences have been removed by a combination of the different images
available for a given year. This methodology is described in Elvidge et al. [27]. The VIIRS
nighttime lights is one of the most recent freely available data products of remote-sensed
nighttime light emissions, and it is available for the years 2012–2021. Compared to earlier
products such as the frequently-used DMSP-OLS nighttime light data [28], it has a number
of advantages. Most importantly, VIIRS nighttime light rasters have a higher resolution
of 15 arc-seconds, which corresponds to about 500m at the equator. Furthermore, VIIRS
reduce the problem of top-coding: in the DMSP-OLS NTL data, high emissions are all
coded at the maximum value of 63, which eliminates a lot of variation at the upper end
of the spectrum. Therefore, with VIIRS data, we can exploit considerably more variation
within well-lit areas. Not surprisingly, existing research has concluded that VIIRS-derived
data should be preferred for work that uses nighttime lights to study socio-economic
processes [29,30].

For our approach, we rely on earlier work by Weidmann and Schutte [6], which
has analyzed nighttime light emissions as a proxy for economic wealth at high levels of
resolution. This work has shown that on average, more intensely illuminated areas are
also the richer ones. However, since variation in illumination to a large extent driven by
settlement patterns, more populated areas emit more light at night. In our analysis, we take
this into account by using a second spatial data source that maps the global population
at a high resolution: the WorldPop dataset, available from https://www.worldpop.org/
(accessed on 30 July 2021) [31]. We use the population counts raster from WorldPop,
which provides annual population estimates at the level of cells with a resolution of 30 arc-
seconds. These counts are computed in a “top-down” fashion, by disaggregating official
population statistics for administrative divisions using spatial covariates as described in
Lloyd et al. [32].

For combining the VIIRS NTL data and WorldPop, we aggregate the former to a
resolution of 30 arc seconds. Dividing the nighttime light emissions value by the population

https://www.worldpop.org/
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living in the same cell, we obtain per capita values of nighttime light emissions at the level
of the raster cells. This allows us to compute inequality estimates for any given point on the
globe: Given a set of longitude/latitude coordinates, we retrieve all cells within a buffer of
a certain radius, and simply compute an inequality index—the Gini coefficient—across all
of them. For this computation, we need the per capita nighttime light emissions as well as
the population counts of each grid cell. In line with results by Weidmann and Schutte [6],
we log-transform the nighttime light value before computing the inequality estimates. In
our analysis below, we vary the buffer size from 2 km to 20 km, to find out what produces
the most accurate estimates of local inequality. Figure 1 (left panel) illustrates the data
we use for this procedure. In principle, it is possible with this approach to compute local
inequality estimates for any point on the globe. For our validation exercise below, we do
this for the spatial locations where the survey was conducted, which allows us to compare
survey-based inequality estimates to those calculated from the nighttime lights.

Figure 1. Satellite imagery of nighttime light emissions in raster format for the town Kansanshi
in Zambia. (Left panel): The computation of the local Gini coefficient requires log-transformed
nighttime light emissions at the level of cells (in yellow) and population estimates (in white).
(Right panel): The DHS Wealth Index values of the households in the survey cluster at that location.
All values are hypothetical and only displayed for illustration purposes.

For our validation exercise, we require alternative estimates of local inequality. For
countries where detailed official income or wealth statistics are available, these estimates
can easily be computed (as for example in [33]). However, for many countries in particular
in the Global South, these data cannot be used for research purposes, or are simply not
collected regularly. This is why we rely on large cross-national survey data from the
Demographic and Health Surveys (DHS) project (see https://dhsprogram.com, accessed
on 30 July 2021). The DHS is a regular survey on living conditions and health-related
data that is conducted across many countries. It uses the same survey instrument in
all countries, which contains questions at the individual level but also the household
level. Most importantly, the DHS also include an assessment of the household’s wealth by
means of a wealth index. The wealth index is created from different questions answered
by the enumerator (not the respondents) about the household’s assets. These answers
are collapsed to the most important underlying dimension using factor analysis, and
the factor scores are used to assign each household to its corresponding quintile in the
distribution of scores in the country [34]. The household’s quintile (1–5) is the wealth index
for this household. Figure 1 (right panel) gives an example of the DHS data we use for the
validation. The entire sample covers 26 countries from DHS survey waves 6, 7 and 8, with
data collected in the years 2012–2019. Appendix A lists all the countries and survey waves
included in the sample.

To link the survey results to our spatial index of local inequality, we also require
geographic information about the location of households in the survey. These coordinates
are not provided at the level of households, but at the level of survey clusters or primary
sampling units (PSUs). In the DHS, a cluster is a group of about 25–30 households in close
proximity to each other, which were selected according to the DHS’s sampling scheme [35].

https://dhsprogram.com
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The DHS categorize clusters into urban and rural ones. For each cluster, the DHS provide
a point (longitude/latitude) location, which, however, is randomly distorted to preserve
anonymity in the data. More precisely, an urban cluster’s location is randomly shifted
within a radius of 2 km, while a rural location is assigned a random location with a radius
of 5 km of its original location (10 km for a randomly chosen 1% of all rural clusters in a
given country and survey wave). Therefore, the spatial reference for the survey cluster
is approximate, and we construct the spatial buffers for the computation of our local
inequality index such that it contains the original cluster location (with the exception of
the randomly chosen 1% of the rural cluster with a spatial error of up to 10 km, which
introduces measurement error in our analysis that we cannot prevent).

For our survey-based measure of local inequality, we compute the Gini inequality
coefficient over the wealth index values of all households in a cluster. Since the input
values have a limited range of 1–5, the upper bound of the Gini coefficients is less than
1 (the usual upper bound of the Gini index). To normalize the resulting coefficient values,
we divide them by 0.382. The derivation for this value is presented in Appendix B.

3. Results

In this section, we first present the satellite-based and survey-derived estimates of
local inequality separately, before turning to a comparison of the two.

3.1. Estimates of Local Inequality from Nighttime Lights Data

As stated above, we compute spatial estimates of local inequality for all survey cluster
locations in our sample, so that we can later compare them to the survey-derived inequality
scores. These computations use NTL data for the same year in which the cluster was
included in the survey (see below). In Figure 2, we show the overall distribution of our
spatial estimates, computed with a buffer radius of 5 km. The distribution is bimodal,
which is an aggregate result of the different distributions of urban and rural clusters: While
urban clusters tend to have low values of inequality (most of them located around 0.20),
the opposite is true for rural clusters. Here, the majority of the cases has Gini values of 0.5
and above. This could partly reflect more segregated residential patterns in cities, where
neighborhoods tend to be inhabited by similarly poor or rich households. This could be
different in rural areas, where rich and poor households can be located close to each other,
thus resulting in a high level of local inequality.

0
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NTL−based Gini coefficient (5km radius)
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Figure 2. Histogram of the overall distribution of nightlight-based Gini-coefficients, computed with
a buffer radius of five kilometers. The light-grey histogram shows the distribution of urban clusters,
the distribution of rural clusters is shown in dark-grey.

At the same time, this pattern can also indicate potential limitations of our satellite-
based measurement method. In urban areas, a small buffer radius (2 km or 5 km) will
include many cells with similar levels of illumination and similar population counts, thus
leading to low levels of the NTL-based inequality indicator. A plot of the inequality scores
for different buffer sizes (see Figure 3 partly confirms this: as the buffer size increases,
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cells within the buffers become more diverse as regards their illumination and population
values, and inequality scores increase as a result. Our validation exercise later will have to
test how buffer size affects the correlation between NTL-based and survey-based inequality
scores, and which of them results in the best fit.
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Figure 3. Histogram of the overall distribution of nightlight-based Gini-coefficients for different
buffer sizes.

We also show the distribution of nightlight-based inequality scores separately for each
country in Figure 4. The results show that the distribution of NTL-based local inequality
values differs by country. Our validation exercise will have to test whether these patterns
reflect actual differences in local inequality.
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Figure 4. Boxplot of the NTL-based Gini-coefficients for a buffer radius of 5 km for individual
countries. The lower and upper hinges correspond to the 25th and 75th percentiles, and the centerline
indicates the 50th percentile.

3.2. Estimates of Local Inequality from the DHS

What is the level of local inequality according to the survey data from the DHS? In
Figure 5, we plot the overall distribution of the survey-based inequality scores, distinguish-
ing again between urban and rural clusters. Again, we observe a similar distribution as for
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the NTL-based estimates above, with urban clusters on average exhibiting lower levels of
local inequality, while rural clusters have high Gini values. This is somewhat reassuring,
since it shows that the patterns we found for the nightlight-based indicator above are not
entirely driven by the measurement method.
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Figure 5. Histogram of the overall distribution of survey-based Gini-coefficients. Distribution of
urban clusters in light-grey, the dark-grey histogram shows the distribution of rural clusters.

We again plot the indicator distribution separately for each country (see Figure 6). In
contrast to the pronounced differences between countries for the NTL-based indicator, we
see considerably less variation across countries here, with most distributions centered in
the range 0.25–0.5.
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Figure 6. Boxplot of the distribution of survey-based Gini coefficients for the individual countries.
The number indicates the survey wave.

3.3. Validation

In this section, we compare the local inequality estimates obtained from the surveys to
those computed from the nighttime light data. As explained above, for each survey cluster
and the associated level of (survey-based) local inequality, we compute a nightlight-based
estimate for the same year in which the survey was conducted. In Figure 7, we show simple
scatterplots of the two indicators, as well as a line indicating the linear fit. Overall, the plot
shows a positive and significant correlation between the two indicators. In other words,
our nightlight-based indicator is able to pick up some of the variation in local inequality
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we see in the surveys. Still, the large point clouds also indicate that there is considerable
error where the two indicators disagree.
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Figure 7. Scatterplot of NTL-based Gini coefficients (computed with a buffer size of five kilometers)
and survey-based Gini coefficients, separately for urban and rural clusters.

To test how buffer size affects the fit between the nightlight-based and the survey-
derived indicator, we plot the full distribution of clusters for different buffer sizes in
Figure 8. Here, we see that neither small nor large buffer sizes maximize the fit between
the two indicators. Rather, a buffer size of 5 km seems to give the best results over the
entire sample.
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Figure 8. Scatterplot of NTL-based and survey-based Gini coefficients, for different buffer sizes.

Can we also observe different patterns for the different countries in our analysis?
Following our approach above, we plot the two indicators separately for each country in
Figure 9. In all countries except one (Ghana), the correlation between them is positive,
which is encouraging. In some countries, we observe high levels of agreement (as for
example, Burkina Faso, Uganda or Zambia), while in a few others, our satellite-based
measurement method does not seem to work well. In Gabon and Ghana, for example,
correlations between the indicators remain low.
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Figure 9. Scatterplot of nighttime light-based Gini coefficients (with a buffer size of five kilometers)
and survey-based Gini coefficients, by country and survey wave.

Our bivariate comparison of survey-based and NTL-based indicators cannot control
for other factors that could potentially affect the positive correlation we find between the
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nightlight-based and the survey-based indicator. For that reason, we run multivariate re-
gression models for each buffer size (2 km, 5 km, 10 km and 20 km), with the survey-derived
Gini coefficient as the outcome. Our main predictor is the inequality index computed from
the satellite data. We include a number of control variables. First, we include a dummy
variable for urban clusters, to remove variation in the outcome that is driven by the dif-
ference between urban and rural locations (see the discussion above). We also control for
demographic factors such as the average size of the household, as well as the number of
households included in the cluster. To make sure that the results are driven by inequality in
the nightlight emissions and not the overall level of emissions or the size of the buffer, we
also control for the sum of the nighttime light emissions in a buffer, and the total population
as well as the number of cells in the buffer. The results of the regression models are shown
in Table 1. We provide additional results with country/wave fixed effects in Table 2, to take
into account systematic differences between countries and survey waves.

Table 1. OLS regression results. Dependent variable: survey-based Gini coefficient. Standard errors clustered by country
and survey wave.

Survey-Based Inequality Index
Radius

2 km 5 km 10 km 20 km
(1) (2) (3) (4)

Intercept 0.638 *** 0.626 *** 0.507 *** 0.327 ***
(0.027) (0.028) (0.029) (0.030)

NTL-based Gini 0.098 *** 0.165 *** 0.211 *** 0.265 ***
(0.009) (0.009) (0.009) (0.009)

Urban −0.088 *** −0.116 *** −0.152 *** −0.177 ***
(0.005) (0.004) (0.004) (0.004)

Household size (mean) 0.002 * −0.001 −0.002 * −0.001
(0.001) (0.001) (0.001) (0.001)

Number of households 0.0003 −0.0005 −0.001 *** −0.002 ***
(0.0003) (0.0003) (0.0003) (0.0003)

Total NTL emissions (log) −0.003 *** −0.001 *** −0.0002 *** −0.0001 ***
(0.0004) (0.0001) (0.00002) (0.00001)

Total population (log) −0.042 *** −0.031 *** −0.016 *** −0.003
(0.002) (0.002) (0.002) (0.002)

Number of cells 0.005 *** 0.002 * 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

Observations 9343 11,029 12,946 15,211
R2 0.423 0.437 0.421 0.398
Adjusted R2 0.423 0.437 0.421 0.398
Residual Std. Error 0.158 (df = 9335) 0.163 (df = 11,021) 0.168 (df = 12,938) 0.172 (df = 15,203)

Note: * p < 0.1; *** p < 0.01.

The regression results confirm that our NTL-based indicator remains a strong predictor
of actual local inequality. We see that in both types of regression and for all four buffer sizes,
the coefficient of this variable remains positive and highly significant. This results holds in
the presence of several control variables. For example, the “urban” dummy nets out the
difference between urban and rural clusters we have seen above, with urban clusters having
lower levels of inequality. Furthermore, the effect of the NTL-based indicator remains when
we control for the overall level of night light emissions and the total population, which
are additional controls that go beyond the simple urban/rural distinction and provide
additional support for the impact of our NTL-based indicator. In Appendix C, we provide
additional results that limit the sample to clusters with at least 30 households, since we
may be concerned that survey-based local inequality may be measured with considerable
error if we have fewer observations in a cluster. Furthermore, we repeat the analysis
without log-transforming the NTL. The substantive results from our main analysis remain
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unchanged. In short, these results show that our indicator can capture local inequality
well and that the relationship we see is not due to some a spurious correlation with other
characteristics of the survey clusters and their spatial features.

Table 2. OLS regression results with country/wave fixed effects. Dependent variable: survey-based Gini coefficient.
Standard errors clustered by country/survey wave.

Survey-Based Inequality Index
Radius

2 km 5 km 10 km 20 km
(1) (2) (3) (4)

Intercept 0.218 *** 0.164 *** 0.042 −0.115 ***
(0.034) (0.035) (0.035) (0.037)

NTL-based Gini 0.105 *** 0.171 *** 0.207 *** 0.257 ***
(0.009) (0.009) (0.009) (0.011)

Urban −0.079 *** −0.103 *** −0.137 *** −0.162 ***
(0.005) (0.004) (0.004) (0.004)

Household size (mean) 0.015 *** 0.011 *** 0.010 *** 0.010 ***
(0.001) (0.001) (0.001) (0.001)

Number of households 0.007 *** 0.008 *** 0.008 *** 0.008 ***
(0.001) (0.001) (0.001) (0.001)

Total NTL emissions (log) −0.008 *** −0.001 *** −0.0003 *** −0.0001 ***
(0.0004) (0.0001) (0.00002) (0.00001)

Total population (log) −0.018 *** −0.014 *** −0.005 *** 0.004 *
(0.002) (0.002) (0.002) (0.002)

Number of cells 0.007 *** 0.001 *** 0.0002 *** 0.00005 ***
(0.001) (0.0002) (0.00003) (0.00001)

Fixed effects (country/wave) Yes Yes Yes Yes
Observations 9343 11,029 12,946 15,211
R2 0.539 0.532 0.508 0.470
Adjusted R2 0.537 0.530 0.507 0.469
Residual Std. Error 0.142 (df = 9299) 0.149 (df = 10,985) 0.155 (df = 12,902) 0.161 (df = 15,167)

Note: * p < 0.1; *** p < 0.01.

3.4. Predicting Local Inequality from Nighttime Lights Data

Our above analyses show that the nightlight-based indicator picks up variation in
local inequality, even when we control for a number of factors that could be driving this
result. In a final analysis, we move from correlation analysis to prediction. We analyze a
situation where a researcher requires estimates of local inequality, and uses simple machine
learning models to predict these values based on our NTL indicator with a model fitted
on available data from other locations. Specifically, we study two scenarios. In the first
one, we use data from a given country to fit a prediction model, and then predict local
inequality for a new location. In the second and more difficult scenario, we predict local
inequality for a new country with a prediction model fitted on data from other countries.
For both scenarios, our aim is to gauge the average prediction error that the researcher
would have to incur when relying solely on our NTL indicator.

In both scenarios, we use very simple prediction models. Our first model is an OLS
regression model similar to the one we have used above, but with only one predictor: the
nightlight-based estimate of local inequality. The second model is a generalized additive
model (GAM) using quadratically penalized likelihood, fitted using the gam function from
R’s mgcv package (see [36]), while more complex machine learning models could be applied,
we do not expect significant performance gains due to the simple setup of the prediction
exercise with a single predictor only. We evaluate all our models out-of-sample. In the first
prediction scenario, this means that we keep a single cluster in a country as a hold-out, fit
the model on the remaining clusters from that country, and then predict the level of local
inequality for the cluster that was set aside. In Figure 10, we show the distribution of the
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absolute prediction errors across the 37 surveys in our sample, for satellite-based inequality
indicators with different buffer sizes (2 km, 5 km, 10 km and 20 km) and the two different
prediction models (LM and GAM). For comparison, we add an additional linear model
that only contains a binary predictor for urban vs. rural locations. The tabular presentation
of the results is provided in Appendix D.

LM 2km

LM 5km

LM 10km

LM 20km

GAM 2km

GAM 5km

GAM 10km

GAM 20km

LM Urban

0.10 0.15 0.20

Figure 10. Predicting wealth from nighttime light emissions, within-country. The figure shows the
median (black lines), the 25th and 75th percentile (hinges) and the full ranges of the mean absolute
prediction errors across the 37 surveys in our sample. Lower values indicate better performance.

The plot shows that prediction of local inequality for new locations using our spatial
indicator works well. Using small buffer sizes (2 km), we miss the level of local inequality
as given by the survey data only by around 0.11 on average, and 75% of the cases have an
error of less than 0.125 (for the GAM). The GAM performs slightly better than the LM, but
the differences are small.

In our second prediction scenario, we predict local inequality in a new country that
was not used in training the model. We again use leave-one-out cross-validation, where
we fit the model on all our data except one country, and then predict the values for that
country. In Figure 11, we show again the distribution of absolute prediction errors for
this exercise.

LM 2km

GAM 2km

LM 5km

GAM 5km

LM 10km

GAM 10km

LM 20km

GAM 20km

LM Urban

0.10 0.15 0.20 0.25 0.30

Figure 11. Predicting wealth from nighttime light emissions, across countries. As above, the figure
shows the distribution of the mean absolute prediction errors across the 37 surveys in our sample,
with lower values indicating better performance.

Figure 11 shows that as expected, prediction errors are higher as compared to the
first scenario. This is not surprising, since in the second scenario, the model is not able
to capture a possible country-specific relationship between the satellite-based estimates
and the survey-based inequality indicator. Still, prediction errors are again of limited
magnitude even in the more difficult scenario. However, unlike in the first prediction task,
we see that our NTL-based indicator improves predictive performance only marginally
as compared to the simple model using only the urban/rural dummy (“LM Urban”) in
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Figure 11. In particular, the 5 km buffers seem to work best. Together, these results show
that we can use our NTL-based indicator in a simple machine learning model to obtain
local inequality estimates for new locations in a given country, but in particular for cases
where we do have some training/calibration data available for the same country.

4. Discussion

In this article, we have introduced an indicator for local inequality derived from high-
resolution night lights data. In addition to the night lights raster data, the computation
of this indicator requires only a fine-grained population grid, both of which are freely
available. We combine these two data sources to obtain per capita emissions values at the
grid cell level, which we use to compute a Gini index of inequality for spatial buffers of
a given size. We present two main analyses. In a first validation exercise, we compare
the NTL-based indicator to estimates of local inequality derived from survey data. The
correlations are positive and significant in almost all countries in our sample, although
not surprisingly, the indicator cannot fully capture local inequality as measured by the
surveys. This is to be expected: while survey estimates of wealth take into account a variety
of household assets, only some of them are related to electricity consumption and are
therefore possibly reflected in nightlight emissions. Furthermore, in particular in urban
areas, night light emissions are less likely to be attributable to individual households, and
rather reflect public infrastructure. This will also reduce the correlation between NTL
emissions and individual wealth.

To address the question of whether it is possible to our indicator for locations where no
other data are available, we provide a second type of analysis. Here, we generate estimates
of local inequality with simple prediction models, and compare these predicted values to
the ones measured with the survey data. This analysis shows that prediction errors are
generally low. When we predict Gini coefficients of local inequality with our NTL-based
indicator, the best predictions have an average error around 0.05 on the 0–1 scale. This is a
good result, given that it is derived exclusively from simple spatial datasets (night light
emissions and population rasters). Overall, this shows that our approach can be used to
generate new estimates of local inequality for locations for which no other data exists.

While our results show that night lights emission can pick up local inequality to a
certain extent, they are necessarily weaker as compared to other approaches combining
multiple sources of data. For example, Chi et al. [37] introduce micro-level estimates of
wealth that are computed using a variety of input data, including telecommunication
coverage maps as well as Facebook connectivity data. This leads to better wealth estimates,
which could also be used to estimate local inequality. At the same time, however, the use
of proprietary data makes this approach impossible to use for many researchers without
access to these data. Furthermore, the coverage of these data may be limited to particular
countries, which restricts their applicability to country-specific studies. Our approach, in
contrast, uses only publicly available data, is fully replicable using open-source software
(PostGIS), and can be used for comparative, cross-national work in the social sciences.

Due to its ability to pick up variation in local inequality and its exclusive reliance on
publicly available data, our index enables future research in many different fields. In politi-
cal science, for example, it helps to better understand how local inequality in an individual’s
immediate context affects political preferences and behavior. Sociologists can use these
data to study the effect of local inequality on residential choice or personal relationships,
and development economists can use it to identify areas in need of particular support.

While the results presented in our article are encouraging, there are several drawbacks
associated with the NTL-based estimation of inequality. Due to its reliance on variation in
night light emissions, this approach can only work in world regions where no saturation
has been reached. For example, in most countries of the Global North, nightly illumination
of streets is commonplace, which reduces variation in night light emissions and their
correlation with socio-economic variables [38]. Consequently, we expect our approach
to be less applicable to these countries. Furthermore, there are limitations as regards the
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temporal variation the indicator is able to pick up. Night light emissions change slowly,
which is why our indicator will remain relatively stable even in cases of large population
shifts, for example due to refugee movements. When relying on night lights as a proxy
for wealth or inequality, researchers should be aware of these limitations and carefully
consider whether this data source is suitable for their project.
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Appendix A. Description of the Sample

Table A1 lists all countries, survey waves (“phases”) and years in our sample, along
with the number of PSUs and households.

Table A1. List of countries and waves included in the analysis.

Country Phase Year No. of Clusters No. of Households

Angola 7 2015 610 15,739
Benin 6 2012 704 16,480
Benin 7 2017 534 13,636
Burkina Faso 7 2014 203 5187
Burkina Faso 7 2017 214 5521
Burundi 6 2012 177 4311
Burundi 7 2016 552 15,921
Cameroon 7 2018 425 11,637
Chad 7 2014 557 15,577
DR Congo 6 2013 436 14,780
Ethiopia 7 2016 560 14,766
Gabon 6 2012 325 9537
Ghana 7 2014 416 11,552
Ghana 7 2016 192 5602
Ghana 8 2019 190 5509
Guinea 6 2012 295 7001
Ivory Coast 6 2012 325 8975
Kenya 7 2014 2 47
Kenya 7 2015 230 6189
Liberia 6 2013 310 8987
Liberia 7 2016 147 4158
Liberia 7 2019 320 8950
Madagascar 6 2013 274 8574
Madagascar 7 2016 358 11,284

https://doi.org/10.7802/2345
https://doi.org/10.7802/2345
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Table A1. Cont.

Country Phase Year No. of Clusters No. of Households

Malawi 7 2014 140 3405
Malawi 7 2015 848 26,323
Malawi 7 2017 148 3679
Mali 6 2012 376 9299
Mali 7 2015 177 4240
Mali 7 2018 313 8462
Mozambique 7 2015 8 189
Mozambique 7 2018 221 6117
Nigeria 6 2013 886 38,108
Nigeria 7 2015 301 7306
Nigeria 7 2018 1371 40,035
Senegal 7 2015 164 3550
Senegal 8 2019 176 3808
Sierra Leone 6 2013 433 12,592
Sierra Leone 7 2019 529 12,498
Tanzania 7 2015 388 8363
Tanzania 7 2017 332 7183
Togo 6 2013 329 9520
Togo 7 2017 171 4909
Uganda 7 2014 161 4197
Uganda 7 2016 650 18,392
Uganda 7 2018 309 8180
Zambia 6 2013 533 12,223
Zambia 7 2018 500 11,920
Zimbabwe 7 2015 375 9886

Appendix B. Proof: Upper Bound of Gini Coefficient for DHS Wealth Index Values

The DHS Wealth Index has values in the range 1–5, where 5 corresponds to the richest
households. For a group of households, the maximum Gini value can only be achieved if
each household belongs either to the lowest (1) or the highest group (5). Assume that we
have an income distribution with only two different groups, where a fraction n 0 < n < 1
of the population belongs to the group of poor households with wealth index 1, and
1− n belong to the group with wealth index 5. The Lorenz curve (cumulative shares of
households along the x-axis, cumulative shares of wealth along the y-axis) is piecewise
linear with two linear segments. The first line segment connects (x0, y0) = (0, 0) and
(x1, y1) = (n, n

n+5(1−n) ), the second line segment connects (x1, y1) and (x2, y2) = (1, 1).
The Gini coefficient G is defined as the area between the equality line and the Lorenz curve,
which corresponds to G = 1− 2B if B is the area below the Lorenz curve. In our case, this
means that the Gini coefficient is

G = 1− 2[
1
2

x1y1 + (1− x1)y1 +
1
2
(1− x1)(1− y1)]

or simplified
G = x1 − y1

Substituting x1 and y1, we get

G(n) = n− n
n + 5(1− n)

Taking the first derivative, we get

d
dn

G(n) =
d

dn
[n− n

n + 5(1− n)
] =

4(4n2 − 10n + 5)
(5− 4n)2

which results in a maximum at n = 5−
√

5
4 and with that a maximum value for the Gini at

0.382. In conclusion, the Gini coefficient cannot be higher than 0.382 for wealth values in
the range 1–5.
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Appendix C. Additional Results of the Validation Analysis

Table A2. OLS with country fixed effects, using only clusters with more than 30 households.

Survey-Based Inequality Index
Radius

2 km 5 km 10 km 20 km
(1) (2) (3) (4)

Intercept 0.036 0.052 0.059 −0.026
(0.080) (0.077) (0.073) (0.078)

NTL-based Gini 0.062 *** 0.116 *** 0.151 *** 0.201 ***
(0.015) (0.015) (0.016) (0.019)

Urban −0.060 *** −0.074 *** −0.099 *** −0.119 ***
(0.008) (0.008) (0.007) (0.007)

Household size (mean) 0.019 *** 0.014 *** 0.012 *** 0.009 ***
(0.003) (0.003) (0.003) (0.002)

Number of households 0.007 *** 0.008 *** 0.009 *** 0.008 ***
(0.002) (0.002) (0.002) (0.002)

Total NTL emissions (log) −0.010 *** −0.001 *** −0.0004 *** −0.0001 ***
(0.001) (0.0002) (0.00004) (0.00001)

Total population (log) −0.009 ** −0.009 ** −0.004 0.003
(0.003) (0.004) (0.003) (0.004)

Number of cells 0.009 *** 0.001 *** 0.0002 *** 0.0001 ***
(0.002) (0.0003) (0.0001) (0.00001)

Fixed effects (country/wave) Yes Yes Yes Yes
Observations 2631 3206 3824 4522
R2 0.557 0.538 0.503 0.442
Adjusted R2 0.553 0.534 0.500 0.439
Residual Std. Error 0.146 (df = 2604) 0.152 (df = 3179) 0.157 (df = 3797) 0.164 (df = 4495)

Note: ** p < 0.05; *** p < 0.01.

Table A3. OLS with country fixed effects without log-transformed NTL values.

Survey-Based Inequality Index
Radius

2 km 5 km 10 km 20 km
(1) (2) (3) (4)

Intercept 0.198 *** 0.136 *** 0.015 −0.146 ***
(0.035) (0.036) (0.036) (0.038)

NTL-based Gini 0.120 *** 0.188 *** 0.226 *** 0.282 ***
(0.009) (0.009) (0.011) (0.012)

Urban −0.077 *** −0.102 *** −0.137 *** −0.162 ***
(0.005) (0.004) (0.004) (0.004)

Household size (mean) 0.015 *** 0.011 *** 0.010 *** 0.010 ***
(0.001) (0.001) (0.001) (0.001)

Number of households 0.007 *** 0.008 *** 0.008 *** 0.008 ***
(0.001) (0.001) (0.001) (0.001)

Total NTL emissions (log) −0.008 *** −0.001 *** −0.0003 *** −0.0001 ***
(0.0004) (0.0001) (0.00002) (0.00001)

Total population (log) −0.017 *** −0.014 *** −0.006 *** 0.003
(0.002) (0.002) (0.002) (0.002)

Number of cells 0.007 *** 0.001 *** 0.0002 *** 0.00005 ***
(0.001) (0.0002) (0.00003) (0.00001)

Fixed effects (country/wave) Yes Yes Yes Yes
Observations 9361 11,046 12,968 15,221
R2 0.541 0.533 0.509 0.471
Adjusted R2 0.539 0.531 0.507 0.469
Residual Std. Error 0.142 (df = 9317) 0.149 (df = 11002) 0.155 (df = 12924) 0.161 (df = 15177)

Note: *** p < 0.01.
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Appendix D. Results of the Prediction Analysis

Table A4. Within-country prediction results (AE = Absolute Error).

Model Mean AE Min AE Max AE 95%-Confidence
Interval: Lower Bound

95%-Confidence
Interval: Upper Bound

1 LM 2 km 0.11 0.07 0.21 0.10 0.12
2 GAM 2 km 0.12 0.08 0.17 0.11 0.12
3 LM 5 km 0.12 0.08 0.18 0.12 0.13
4 GAM 5 km 0.14 0.09 0.20 0.13 0.15
5 LM 10 km 0.11 0.07 0.22 0.10 0.12
6 GAM 10 km 0.11 0.08 0.16 0.10 0.12
7 LM 20 km 0.12 0.08 0.18 0.11 0.13
8 GAM 20 km 0.13 0.09 0.17 0.12 0.14
9 LM Urban 0.12 0.08 0.18 0.12 0.13

Table A5. Across-country prediction results (AE = Absolute Error).

Model Mean AE Min AE Max AE 95%-Confidence
Interval: Lower Bound

95%-Confidence
Interval: Upper Bound

1 LM 2 km 0.15 0.08 0.31 0.13 0.17
2 GAM 2 km 0.15 0.08 0.31 0.13 0.17
3 LM 5 km 0.15 0.09 0.27 0.13 0.17
4 GAM 5 km 0.15 0.09 0.26 0.13 0.16
5 LM 10 km 0.15 0.10 0.25 0.14 0.17
6 GAM 10 km 0.15 0.09 0.25 0.14 0.17
7 LM 20 km 0.16 0.10 0.24 0.14 0.17
8 GAM 20 km 0.16 0.10 0.24 0.14 0.17
9 LM Urban 0.15 0.09 0.33 0.14 0.16
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