
remote sensing  

Communication

Landsat 8 Data as a Source of High Resolution Sea Surface
Temperature Maps in the Baltic Sea

Katarzyna Bradtke

����������
�������

Citation: Bradtke, K. Landsat 8 Data

as a Source of High Resolution Sea

Surface Temperature Maps in the

Baltic Sea. Remote Sens. 2021, 13, 4619.

https://doi.org/10.3390/rs13224619

Academic Editors: Malgorzata

Stramska and Nadia A. Kudryavtseva

Received: 10 September 2021

Accepted: 12 November 2021

Published: 17 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).
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Abstract: Sea surface temperature (SST) is a key hydrological variable which can be monitored via
satellite. One source of thermal data with a spatial resolution high enough to study sub-mesoscale
processes in coastal waters may be the Landsat mission. The Thermal Infrared Sensor on board
Landsat 8 collects data in two bands, which allows for the use of the well-known nonlinear split-
window formula to estimate SST (NLSST) using top-of-the-atmosphere (TOA) brightness temperature.
To calibrate its coefficients a significant number of matchup points are required, representing a wide
range of atmospheric conditions. In this study over 1200 granules of satellite data and 12 time series
of in situ measurements from buoys and platforms operating in the Baltic Sea over a period of more
than 6 years were used to select matchup points, derive NLSST coefficients and evaluate the results.
To filter out pixels contaminated by clouds, ice or land influences, the IdePix algorithm was used
with Quality Assessment Band and additional test of the adjacent pixels. Various combinations of
flags were tested. The results show that the NLSST coefficients derived previously for coastal areas,
characterised by a more humid atmosphere, might overestimate low SST values. Formulas derived
for the Baltic Sea produced biases close to 0 ◦C and RMSEs in the range of 0.49–0.52 ◦C.

Keywords: sea surface temperature; NLSST coefficients; Baltic; Landsat 8 TIRS

1. Introduction

The Baltic Sea is a semi-enclosed basin with a limited exchange of waters with the
ocean. The general pattern of the spatial distribution of sea surface temperature is gov-
erned by the meridian extension of the sea and changes in bathymetry. However, surface
temperature is highly variable over time, due to influence of large-scale atmospheric pro-
cesses and the proximity of the land [1–4]. In the coastal zone, it might be modified by
freshwater inflow, which is responsible for the brackish nature of the sea. Moreover, the
heterogeneity of the coastline and bottom topography favour many locations of coastal
upwelling, complex circulation and the formation of sub-mesoscale eddies, which play an
important role in horizontal and vertical mixing [2,5,6]. The significant influence of coastal
processes stems from the extent of the coastal zones which are relatively large compared to
the sea area due to the elongated shape of the basin and numerous islands [2]. The resulting
spatial inhomogeneity of the sea surface temperature (Figure 1) and the presence of thermal
fronts affect the sea–atmosphere interactions, the weather conditions in the coastal zone,
the functioning of ecosystems, fishing and tourism. Knowledge of the spatial and temporal
variability of SST is crucial for weather forecasting, monitoring of the phenomena in the
sea and supporting maritime services [7]. The boundaries between water masses which
can be seen on the temperature maps may be a good indicator of the location of fronts
and the directions in which the land substances responsible for eutrophication are moving.
In the Baltic Sea high water temperature in summer is one of the factors contributing to
cyanobacterial blooms [8] which in turn may increase the temperature locally due to the
presence of surface scum and high concentrations of optically active substances [9–12].
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with in situ bulk temperatures measured in the Baltic Sea yielded root mean square errors 
(RMSE) in the range of 0.5–1.3 °C [1,4,6,13,16,19,20]. The highest errors are usually 
attributed to imperfections in the cloud screening algorithms. Satellites equipped with 
infrared (IR) radiometers (e.g., AVHRR, MODIS, VIIRS, SLSTR or SEVIRI), commonly 
used for SST mapping in these studies, provide information with high temporal resolution 
in near-real-time mode. However, their spatial resolution (0.75–4.8 km at nadir) might be 
too coarse to observe sub-mesoscale processes in coastal regions [7]. To derive SSTs in such 
areas, higher-resolution IR radiometers, designed to observe the surface of land, may be 
used [14]. From the radiometers currently operating and providing IR data for the Baltic 
Sea, these are the Enhanced Thematic Mapper (ETM+) and Thermal Infrared Sensor (TIRS) 
on the Landsat 7 and 8 satellites, respectively, and the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) on the Terra satellite; the others do not cover 
the Baltic Sea area. The aforementioned instruments record IR data with a spatial resolution 
of 60–100 m. The Landsat mission satellites provide IR data on a regular basis from daytime 
observations (descending mode) and 185 km wide swath. The ASTER radiometer does not 
collect data continuously; they are gathered only for selected areas of 60x60 km, as requested 
by authorised ASTER users. Thanks to the long duration of the Terra mission, many scenes 
were also collected for the Baltic Sea but with a revisit time of months. Landsat satellites 
have a 16 day repeat cycle, though the large overlap between scenes in the mid-latitudes 
results in a 5–8-day revisit time for similar areas in the Baltic Sea [21].  

The Landsat mission is run by the Earth Observation Program of the National 
Aeronautics and Space Administration (NASA). Data processing and quality control is 
ensured by the U.S. Geological Survey (USGS), which provides a consistent archive 
(Collection) of Landsat data reprocessed according to a common algorithm to support 
time series analysis. Launched in 2013, Landsat 8 carries a Thermal Infrared Sensor (TIRS) 
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Figure 1. Spatial distribution of the sea surface temperature influenced by coastal processes (data
provided by System SatBaltyk www.satbaltyk.iopan.gda.pl; merged SST product [13]; 31 May 2018
06:00 UTC).

In recent decades, numerous satellite systems have been developed for sea surface
temperature mapping [7,14]. There is a growing body of literature showing their application
in studies of the Baltic Sea (e.g., [1,4–6,13,15,16]) and in operational modelling, as a source
of data for assimilation (e.g., [13,17,18]). Comparisons of satellite-derived SSTs with in
situ bulk temperatures measured in the Baltic Sea yielded root mean square errors (RMSE)
in the range of 0.5–1.3 ◦C [1,4,6,13,16,19,20]. The highest errors are usually attributed to
imperfections in the cloud screening algorithms. Satellites equipped with infrared (IR)
radiometers (e.g., AVHRR, MODIS, VIIRS, SLSTR or SEVIRI), commonly used for SST
mapping in these studies, provide information with high temporal resolution in near-
real-time mode. However, their spatial resolution (0.75–4.8 km at nadir) might be too
coarse to observe sub-mesoscale processes in coastal regions [7]. To derive SSTs in such
areas, higher-resolution IR radiometers, designed to observe the surface of land, may be
used [14]. From the radiometers currently operating and providing IR data for the Baltic
Sea, these are the Enhanced Thematic Mapper (ETM+) and Thermal Infrared Sensor (TIRS)
on the Landsat 7 and 8 satellites, respectively, and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) on the Terra satellite; the others do not
cover the Baltic Sea area. The aforementioned instruments record IR data with a spatial
resolution of 60–100 m. The Landsat mission satellites provide IR data on a regular basis
from daytime observations (descending mode) and 185 km wide swath. The ASTER
radiometer does not collect data continuously; they are gathered only for selected areas of
60 × 60 km, as requested by authorised ASTER users. Thanks to the long duration of the
Terra mission, many scenes were also collected for the Baltic Sea but with a revisit time of
months. Landsat satellites have a 16 day repeat cycle, though the large overlap between
scenes in the mid-latitudes results in a 5–8-day revisit time for similar areas in the Baltic
Sea [21].

The Landsat mission is run by the Earth Observation Program of the National Aero-
nautics and Space Administration (NASA). Data processing and quality control is ensured
by the U.S. Geological Survey (USGS), which provides a consistent archive (Collection) of
Landsat data reprocessed according to a common algorithm to support time series analysis.
Launched in 2013, Landsat 8 carries a Thermal Infrared Sensor (TIRS) with two infrared
channels (band 10 and band 11 centred at 11 µm and 12 µm, respectively) collecting data
of 100-m resolution [22]. This allows for split-window algorithms that use a two-channel
approach to correct the influence of the atmosphere. TIRS has undergone significant im-
provement over previous Landsat missions, which were equipped with single thermal
infrared band sensors (TM or ETM+). The second instrument carried by Landsat 8, an
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Operational Land Imager (OLI), collects data in the visible (VIS), near-infrared (NIR) and
short-wave infrared (SWIR) portions of the spectrum, which facilitates the identification
of clouds. Although a high spatial resolution is achieved at the expense of reduced swath
width and temporal resolution, existing research shows that TIRS data provide useful SST
information for studying sub-mesoscale phenomena [23], land–sea interactions [24,25],
coastal water quality [26,27] and ecosystem management [28,29]. An intercomparison of
SSTs derived from Landsat and lower resolution radiometers can also help to understand
variability within a satellite pixel and differences between satellite and in situ data [7]. Due
to the patchy nature of cyanobacterial blooms, the high spatial resolution of SST adds value
to the study of the relationship between SST and the occurrence of blooms [12]. Given the
challenges of expanding operational modelling capabilities in the Baltic Sea, from the basin
scale to the local coastal-estuarine scale [30], Landsat data may also be useful as auxiliary
data for assimilation.

Despite the potentially wide range of applications, no SST algorithm for Landsat 8
has been verified globally or locally for many regions, including the Baltic Sea. This
certainly limits the current use of these data in oceanographic research. Several attempts
have been made to establish a Landsat 8 TIRS algorithm for retrieving SST maps. Most
studies have only focussed on single-channel algorithms [23,28,31–33] due to the calibration
uncertainties in TIRS band 11 (~12 µm) associated with stray light issues [34]. Several
researchers have proposed correction of the brightness temperature band 10 (~11 µm)
using SSTs estimated from other satellites’ simultaneous recordings [23,28] or measured
in situ [31,32]. Unfortunately, most of these works used only individual Landsat scenes;
a wider assessment of SSTs was only presented by the authors of [28]. They showed that
SSTs may be retrieved using the TIRS brightness temperature at a single channel and
atmospherically corrected NOAA AVHRR data with an RMSE of 0.82 ◦C, calculated with
respect to in situ data from buoys. A different approach based on the radiative transfer
model has been proposed by [33] with an RMSE of 0.7 ◦C in cloud-free conditions or 1.0 ◦C
for images with scattered clouds. However, this approach requires auxiliary data on the
atmospheric profiles of relative humidity and temperature.

A solution that is less dependent on additional data sources is the split-window
algorithms that use the difference between the brightness temperature in both TIR channels
to determine the water vapour content in the atmosphere. The use of TIRS band 11 is no
longer limited since stray light correction was implemented and uncertainties were reduced
starting with Landsat Collection 1, distributed by the USGS since 2017 [35]. The authors
of [36] have used the data from this collection and in situ observations to determine the split-
window algorithm coefficients and to evaluate its accuracy based on a sufficiently large
number of comparisons with in situ data from coastal waters around the Korean Peninsula.
Other attempts were only based on a small number of Landsat 8 matchup points and/or
applied to a very narrow range of temperatures and atmospheric conditions [27,29,32,37].
Jang and Park [36] showed that SSTs may be retrieved using the nonlinear SST formula
(NLSST) with empirically determined best fit coefficients with RMSE in the range of
0.59–0.66 ◦C, depending on the source of the first guess of SSTs and whether the satellite
zenith angle is considered or neglected. They stated that the NLSST coefficients derived in
their study might be applicable for other coastal regions of the global ocean.

The NLSST formula was developed by [38] and has commonly been used in the past
few decades for NOAA AVHRR [13,19,39,40]. The main limitation of this formula is the
fact that the relationship between the attenuation of IR radiation in the atmosphere and the
temperature difference in the two TIR channels depends on a water vapour regime [40,41].
In the Baltic Sea, during the warm season (May–September) the sea surface temperature
often drops locally below 10 ◦C due to coastal upwelling, which affects the distribution of
water vapour in the lower layer of the atmosphere. The temperature difference between
the two TIR channels is greatly reduced under such conditions [41]. The authors of [36]
found that their algorithm tends to overestimate SST if the split window difference is lower
than 0.5 ◦C. Thus, the algorithm coefficients may need to be adjusted for use in the Baltic
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Sea. An additional adjustment may also be necessary due to an improved radiometric
calibration applied to Collection 2 products, currently reprocessed and provided by the
USGS [42].

The main goal of this work was to calibrate the NLSST algorithm for use in the
Baltic Sea with Landsat 8 data to derive high-resolution SST maps and to assess how the
improved radiometric correction applied to TIRS data influences the estimation of SST.
The main motivation to address these problems was the fact that the potential of the TIRS
sensor in the Baltic region has not been utilised so far. To facilitate the use of this data by a
wide group of oceanographers, the analysis was focussed on algorithm that do not require
auxiliary data from other sources and can be implemented using the freely available tools
or services.

2. Materials and Methods
2.1. Data

Satellite data gathered by Landsat 8 between March 2013 and July 2019 over the Baltic
Sea were analysed. Level 1 data from USGS OLI/TIRS Collection 2 were downloaded using
the USGS Earth Explorer Service (https://earthexplorer.usgs.gov/; accessed on 1 March
2021). Only granules with cloud cover not exceeding 60% and covering positions in the
reference in situ data were considered (Figure 2).
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Figure 2. Locations of the in situ reference buoys/stations and footprints of Landsat 8 processed granules.

A standard Level 1 USGS product includes orthorectified and gridded TOA radiances
for all OLI and TIRS spectral bands, coded into integer digital numbers, quality band (QA
Pixel) with assessment flags for each pixel, and angle coefficients and product metadata
files. To assess the impact of the newest radiometric calibration on SST estimation and
to assess the efficiency of contaminated pixels filtering, L1 TIRS data from Collection 1
were also ordered and downloaded via EROS Science Processing Architecture On Demand
Interface (ESPA USGS; https://espa.cr.usgs.gov/; accessed on 1 March 2021).

In order to validate the satellite-derived SST, in situ data provided by buoys or moni-
toring stations operating on the Baltic Sea within the framework of the Baltic Operational
Oceanographic System (http://www.boos.org/ accessed on 1 March 2021) were used.
Nine buoys and three platforms (Table 1, Figure 2) were selected, taking into account
the length of time series covering the period in question and their locations at different
distances from land and in different basins. Datasets were gathered from Copernicus
Marine Service (INSITU_BAL_NRT_OBSERVATIONS_013_032 product, MO datatype). All
observations from different platforms are aggregated by the In Situ Thematic Centre and
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provided to users after quality control [43]. Only temperatures with the quality flag “good
data” (QC = 1) measured at the first depth level (in the 0 to 0.5 m layer) were included in
the study. Despite the filtering of data in terms of quality, some of the time series were
contaminated with outliers (the most contaminated ones were the Bothnian Sea and the
Northern Baltic data). Thus, prior to further analysis, the time series were additionally
cleaned using the Hampel filter [44] with a 24 h moving window (Figure 3).

Table 1. Basic characteristics of in situ data sources and the number of matchups before (all) and
after (clear) contaminated pixel masking.

Name Type Position
Sampling
Interval

(h)

Depth (m)
Measurement/

Bottom *

Number of
Matchups
All/Clear

Arkona WR wave buoy 13.87◦E 54.88◦N 1 0.5/45 83/55
Bothnian Bay wave buoy 23.24◦E 64.68◦N 0.5 0.5/75 29/20
Bothnian Sea wave buoy 20.23◦E 61.80◦N 0.5 0.5/110 161/91

Brofjorden WR wave buoy 11.22◦E 58.25◦N 0.5 0.5/55 40/22
Fingrundet WR wave buoy 18.61◦E 60.9◦N 0.5 0.5/68 131/76
Helsinki Buoy wave buoy 25.24◦E 59.97◦N 0.5 0.5/50 97/57
Knollsgrund wave buoy 17.62◦E 57.52◦N 1 0.5/95 126/80

LT Kiel fixed platform 10.27◦E 54.50◦N 1 0.5/13 99/54
Northern Baltic wave buoy 21.00◦E 59.25◦N 0.5 0.5/95 173/100

Sopot fixed platform 18.58◦E 54.45◦N 1 subsurface/8 42/3
Tallinnamadal fixed platform 24.73◦E 59.71◦N 1 subsurface/10 140/59

Vaderoarna wave buoy 10.93◦E 58.50◦N 0.5 0.5/70 92/63
* data source: Baltic Sea Hydrographic Commission, 2013, Baltic Sea Bathymetry Database version 0.9.3. Down-
loaded from http://data.bshc.pro/, accessed on 20 October 2021.
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Figure 3. Example of in situ temperature data before (red) and after Hampel filtration (green). Data
selected for comparison with satellite data are marked with dots.

Prior to the satellite data processing steps, the matchup procedure was done taking
into account the time of scene acquisition and in-situ measurements. The granule was
further processed if there was a reference measurement taken within half an hour of the
scene acquisition and if the pixel containing the location of the measurement was valid
(contained TOA L1 data for all spectral bands). In total, 1213 matchup points were found
by taking only the most recent reference data for each pixel. The number of processed
Landsat 8 scenes was 1046, all with a scene quality score of 9 (best). All of them were
gathered during descending mode (acquisition time between 9:20 and 10:30 GMT).

2.2. NLSST Formula

To derive SST from the TIRS infrared bands, a nonlinear algorithm (NLSST) was used
as proposed by [38] and utilised for Landsat 8 by [36]:

SST = a1T11 + a2(T11 − T12)Tclim + a3(T11 − T12)(secθsat − 1) + a4, (1)

http://data.bshc.pro/
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where

Tclim ~ MCSST = b1T11 + b2(T11 − T12) + b3(T11 − T12)(secθsat − 1) + b4, (2)

SST is the sea surface temperature in ◦C; T11, T12 are the brightness temperature in K
in the TIRS bands centred at ~11 µm and ~12 µm, respectively, θsat is the satellite zenith
angle, Tclim is a first guess for SST or the climatological SST value in ◦C and a1-a4 and b1-b4
are the best-fit coefficients.

The SST first guess in Equation (1) can be estimated by the multichannel formula
(MCSST) used in this study or it can be obtained from any other SST source, for example,
climatological SST data records. Digital numbers from the TIRS bands were converted into
brightness temperatures according to standard USGS procedure [22] using the calibration
coefficients included in the metadata files. The satellite zenith angle for each pixel was
calculated using the Solar Illumination and Sensor Viewing Angle Band Tool [45] and the
angle coefficients file. Due to the along-track distribution of TIRS detectors, the viewing
angles are slightly different for each spectral band. Thus, the average values were calculated
for both TIRS bands.

The assessment of SST estimation was performed with the standard parametric mea-
sures: systematic error (bias) and RMSE defined as the average and standard deviation
of SST residuals, respectively. The determination coefficient (r2) for the relationship of
estimated SST vs reference temperature was used as well.

SST residuals (∆SST), defined as difference between the satellite-derived sea surface
temperature (SST) and the reference in situ bulk temperature (T), represent errors origi-
nating from cloud contamination, insufficient correction of radiation attenuation in the
atmosphere or diurnal warming of the surface layer. Even though the NLSST coefficients
are calibrated based on the bulk temperature measurements, IR emission and thus the
brightness temperature from the satellite only respond to a thin surface layer, where di-
urnal warming is much more pronounced than at depths where the bulk temperature is
measured. This is especially true for Landsat data that are recorded during the daytime.

2.3. Cloud and Ice Masking

To exclude erroneous pixels, contaminated by clouds, ice or land, the pixel quality
assessment band (QA Pixel) provided by USGS was used. The flags included in this product
are based on the CFMask algorithm [22] which utilises decision trees and a multi-pass
approach [46]. The L1 processing creates flags of confidence (“high”, “medium” or “low”)
for clouds, cloud shadows, cirrus and snow/ice. The cloud confidence flags are further
processed into a cloud mask, a dilated cloud mask and an additional flag indicating “water”
pixels [47]. The QA Pixel band flags are consistent with those included in the Level 2 pixel
quality assurance band for Collection 1 products (BQA L2).

Only pixels over water, with low confidence of clouds, ice and cirrus which were not
indicated as “dilated cloud”, were considered initially as “clear”. The initial mask that
excludes all other pixels is hereafter referred to as QA mask. To improve the masking
of contaminated pixels, the IdePix Landsat 8 OLI processor product was additionally
tested. This processor is implemented in Sentinel Application Platform (SNAP), an open-
source common architecture for ESA Toolboxes for the exploitation of Earth Observation
data (http://step.esa.int/main/toolboxes/snap/; accessed on 1 March 2021). The IdePix
classification algorithm was developed by Brockmann Consult GmbH (https://www.
brockmann-consult.de/portfolio/idepix/; accessed on 1 March 2021) and is based on a
neural network approach. In this study, version 8.0.0 was run with the standard neural net
applicable for most conditions. This processor classifies pixels as certainly or ambiguously
being affected by clouds, cloud shadows or snow/ice. The final cloud mask includes only
“cloudy for sure” pixels. An additional step provides the flags “white” and “bright” based
on reflectance from the OLI RED (4) and NIR (5) channels (over water). The latter also
included pixels flagged as “cloud for sure”.

http://step.esa.int/main/toolboxes/snap/
https://www.brockmann-consult.de/portfolio/idepix/
https://www.brockmann-consult.de/portfolio/idepix/
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The effectiveness of masking to reduce negative outliers was assessed on the basis
of SST residuals, and a visual assessment of the spatial and temporal distribution of
SSTs. To calculate SST, the values given by [36]—a1 = 0.9026, a2 = 0.0802, a3 = 32.0333,
a4 = −245.14619, b1 = 0.9742, b2 = 1.7742, b3 = 32.9868 and b4 = −266.03903—were taken
as a first approximation of the coefficients ai and bi in the NLSST formula applied to
Collection 1 TIRS data.

2.4. SST Algorithm Calibration

The most efficient combination of flags was used to eliminate contaminated pixels
from the matchup dataset prior to further analysis. In order to adjust the coefficients of SST
Equations (1) and (2), a non-linear regression was applied to a randomly selected training
subset of data. The analysis was carried out for two versions of the NLSST algorithm:
full (NLSST v1), taking into account the satellite’s zenith angle, and simplified (NLSST
v2), omitting the third term of Equations (1) and (2). The simplification results from the
relatively narrow Landsat viewing angle with respect to nadir, which is in the range of
approximately ±8.5◦ (secθsat ∼= 1).

To limit the impact of outliers on regression results, the SST residuals previously
calculated using the NLSST algorithm proposed by [36] were used to detect outlying cases.
They were omitted when dividing the data into the training (75%) and test (25%) subsets.
Outliers were defined as cases with residuals ∆SST greater than Q3 + 1.5 × IQR (positive
outliers) or less than Q1 − 1.5 × IQR (negative outliers), where Q1, Q3 and IQR represent
the lower quartile, upper quartile and interquartile range, respectively.

3. Results
3.1. Improvement of Contaminated Pixel Masking

For the first overall assessment of SST derived from Landsat 8 data, only pixels classified
on the base of CFMask flags as initially “clear” (free of cloud, cirrus, ice and land contami-
nation) were included (n = 790). The calculated RMSE was relatively high (1.31 ◦C), but as
shown in the scatterplot and in the distribution of residuals in Figure 4, most of the SST values
were in good accordance with in situ measurements. Estimated SSTs were in the range of
−3.4–25.3 ◦C and reference temperatures in the range of 0–25.5 ◦C. An average temperature
with the standard deviation was 10.84 ◦C ± 6.13 ◦C and 10.92 ◦C ± 6.12 ◦C, respectively. The
high RMSE resulted mainly from insufficient masking of contaminated pixels.
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Figure 4. Satellite-derived SST (estimated using NLSST formula with the coefficients ai and bi given
by [36] applied to Collection 1 TIRS data) versus in situ reference temperature for all matchups (a)
and statistics of SST residuals for pixels classified initially as clear on the base of quality assessment
flags (QA mask) (b).

Two flags, “ambiguous” clouds and “bright” pixels, were selected from the IdePix
product to extend initial QA mask. The flag “bright” also included sparse pixels flagged
as “cloud for sure” (Idepix cloud mask). The IdePix flag “white” was not considered as
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this flag was set for a considerable number of appropriate pixels. By further filtering out
matchups with the flags: “ambiguous clouds” and/or “bright” the RMSE was reduced
to 0.91 ◦C (Figure 5a). Unfortunately, single cases with errors of underestimating the
temperature even by more than 3.5 ◦C still existed. A visual inspection of the SST maps
revealed that these errors were related to pixels near the boundary of the mask (Figure 6a).
To solve this problem, a buffer of 100 m around mask was applied (Figure 5b). However,
it was noted that the IdePix “ambiguous clouds” flag was sensitive to the increase in
reflectance noted for many individual pixels or small groups of pixels when surface blooms,
aerosols in the atmosphere, direct reflections from a wavy surface or instrumental noise
were present. In such cases, many isolated pixels—for which no changes in IR channel
response were observed—were erroneously classified as ambiguous clouds (Figure 6b).
The problem increased with the use of a buffer, which eliminated a significant percentage
of the pixels where the SST was in good agreement with the in situ reference temperature
(Figure 5b).
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Figure 5. Distribution of SST residuals with different masks applied to exclude erroneous pixels (red
bars): QA mask extended with the IdePix flags (a), QA mask extended with the IdePix flags and
buffer (b), QA mask extended with corrected IdePix flags and buffer (c). Distribution of residuals
with initial QA mask is shown for comparison (blue bars).
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Figure 6. Examples of two types of problems when masking with a combination of QA mask and
IdePix flags: omission error—the boundary pixels issue (13 January 2015) and commission error—the
cloud ambiguous flag issue (16 February 2015). Maps present SST values after the QA, the IdePix
and buffer combined mask application (a,b), SST values calculated for all pixels (c,d) ang RGB
composites (e,f).
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Therefore, an amendment to the masking procedure was proposed. Groups of adjacent
pixels classified as “ambiguous cloud” were analysed in terms of their size. If they were
composed of five pixels or less, the flag was reset to False. In the next step, the pixel groups
considered to be valid were analysed. If the area enclosed by a mask was less than 1 km2,
it was treated as a whole as contaminated border pixels and added to the mask. The mask,
corrected this way, was further extended by a buffer of 100 m (Figure 5c). The final mask
eliminated fewer appropriate pixels (SST residuals close to zero) than the one without
correction, though both filtered out most of the highest negative outliers (Figure 5b,c).
The buffer size resulted from the actual resolution of the TIRS channels. Figure 7 shows
a comparison of initial and final masks’ performance for an example Landsat image. As
can be seen in the upper-right corner of the map (Figure 7d), the buffer width should be
extended to eliminate all pixels where clouds influence the SST; however, in other regions
it would lead to over masking.
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Figure 7. Landsat 8 image example—RGB composite (a) and derived SST map using different masks to exclude erroneous
pixels: no mask (b), QA mask (c), a combination of QA mask and the IdePix flags with additional corrections (d) and an SST
map derived from MODIS data recorded on the same day (e) for comparison (MODIS data provided by System SatBaltyk).

3.2. Calibration of the SST Equations

In order to adjust the NLSST coefficients, “clear” pixels were selected from the matchup
dataset using the mask which was a combination of QA mask and the IdePix flags with
additional corrections (Figure 5c). Of the selected 677 matchup points, 32 were outliers.
The remaining cases were divided into a training (75%) and a test set (25%). The best-fit
coefficients for both versions of the NLSST algorithm obtained from the training subset
of matchups are listed in Table 2. Both Landsat data collections were considered an input
to the regression analysis. The comparison of estimated SST with the in situ temperature
is shown in Figure 8. The assessment of all sets of coefficients for the training and the
test subsets of matchup points showed similar results, therefore bias and RMSE shown
in Figure 8 were calculated for all data excluding outliers. For comparison, the NLSST
algorithm with coefficients derived by [36] is also included (Figure 8a,d). In this case the
same set of coefficients was applied for data from both collections.
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Table 2. Coefficients of the NLSST algorithms (full and simplified version of Equations (1) and (2))
estimated with nonlinear regression and two different sources of TIRS data as an input, and their
statistical characteristics.

Coefficient
Input Data: Collection 1 Input Data: Collection 2

Estimate Std.
Error p-Value R Estimate Std.

Error p-Value R

NLSST v1 (full):

SST = a1T11 + a2(T11 − T12)MCSST + a3(T11 − T12)(secθsat − 1) + a4,

MCSST = b1T11 + b2(T11 − T12) + b3(T11 − T12)(secθsat − 1) + b4

a1 0.922 0.009 0.000

0.996

0.939 0.006 0.000

0.997
a2 0.086 0.004 0.000 0.092 0.005 0.000
a3 18.915 7.474 0.009 36.554 10.406 0.000
a4 −250.829 2.391 0.000 −254.753 1.759 0.000

b1 0.998 0.006 0.000

0.996

0.990 0.005 0.000

0.996
b2 1.348 0.064 0.000 1.291 0.071 0.000
b3 12.399 7.447 0.097 18.525 11.541 0.109
b4 −272.468 1.578 0.000 −268.961 1.411 0.000

NLSST v2 (simplified):

SST = a1T11 + a2(T11 − T12)MCSST + a3,

MCSST = b1T11 + b2(T11 − T12) + b3

a1 0.920 0.009 0.000
0.996

0.937 0.006 0.000
0.997a2 0.090 0.004 0.000 0.101 0.004 0.000

a3 −250.369 2.389 0.000 −254.220 1.779 0.000

b1 0.999 0.006 0.000
0.996

0.990 0.005 0.000
0.996b2 1.387 0.059 0.000 1.355 0.059 0.000

b3 −272.647 1.577 0.000 −269.117 1.410 0.000
R—nonlinear correlation coefficient.
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Figure 8. Satellite-derived SST versus in situ reference temperatures for different data sources:
Collection 1 (a–c) and Collection 2 (d–f) and different sets of coefficients: derived by [36]—listed in
Section 2.3 (a,d) and derived for the Baltic Sea—listed in Table 2 (b,c,e,f) for the full (v1) and simplified
(v2) version of the NLSST algorithm. Outliers are presented but not included in the analysis.

The data from Collection 1 and the NLSST Equation with the coefficients given by [36]
and fitted with Baltic Operational Oceanographic System data (NLSST v1 in Table 2) show
similar accuracy with respect to RMSE (Figure 8a,b), which was 0.54 ◦C and 0.52 ◦C,
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respectively. However, the new set of coefficients improved the estimation of low SSTs
that had previously been overestimated, in general. The bias decreased from about 0.2 ◦C
(Figure 8a) to close to zero (Figure 8b) and the trend of residuals with respect to in situ
temperature was reduced. The omission of the term with correction for the viewing angle
(NLSST v2) only slightly modified the other coefficients, as compared to the full version
(Table 2). The estimates of those coefficients for the NLSST v2 were generally within the
confidence intervals (95% confidence level) of the coefficients determined for the NLSST
v1, regardless of the data source (Table 2). However, the use of a simplified version of the
algorithm more often resulted in underestimating the SSTs in relation to in situ data in the
entire range of analysed temperatures (compare Figure 8b,e and Figure 8c,f, respectively).
The bias for both data sources increased from close to 0 ◦C (NLSST v1) to −0.1 ◦C (NLSST
v2). The RMSE remained almost unchanged.

The NLSST coefficients derived for the recalibrated data provided by the USGS Col-
lection 2 differed significantly (higher difference than the standard error of estimation)
compared to those derived for Collection 1 for both versions of the algorithm (Table 2). Sur-
prisingly, only a slight reduction of the RMSE error to about 0.5 ◦C for both versions of the
algorithm was obtained after using the recalibrated data provided by USGS Collection 2 and
the coefficients adjusted to these data (compare Figure 8b,c and Figure 8e,f, respectively).
It should be noted that coefficients derived for Collection 1 would lead to a significant
underestimation of SST if applied for recently recalibrated data (compare Figure 8a,d).

As shown in Figure 8, outlying residuals—both positive and negative—may be found
over the entire range of temperature considered. Differences between SSTs estimated
using the most accurate input data (Collection 2) and NLSST Equation (v1) were within
the range of −2.36 ◦C to 3.18 ◦C. Outliers increased the RMSE to 0.65 ◦C (Figure 9a) and
bias to 0.01 ◦C. The highest negative residuals (∆SST less than −1.25 ◦C) occurred at a
distance of less than 0.5 km to a maximum of 1 km from the mask (Figure 9b). Detailed
analysis of the spatial distribution of SSTs and images from the OLI instrument suggested
that it was the result of insufficient masking of the cloud effect. Overestimation of the
reference temperature by more than 1 ◦C was most often recorded in May and June for
buoys located in the Gulf of Finland and the Bothnian Sea (Figure 9b) and fixed platforms—
Tallinamandal, Sopot and LT Kiel. In the case of offshore platforms, the higher temperature
of infrastructure in the proximity (a lighthouse or pier) was the most probable reason
for positive outliers. High SST residuals, both positive and negative, were also observed
when in situ measurements were taken near thermal fronts resulting from the proximity of
different water masses. The difference may therefore be biased by an inaccurate location of
the measurement (the fixed position of the buoy was taken into account).
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4. Summary and Conclusions

In order to use L1 satellite data for SST mapping, at least two issues need to be ad-
dressed: filtering erroneous data due to the influence of clouds, ice or land and calculating
surface temperature from brightness temperature affected by absorption in the atmosphere.

With respect to the first issue, products of two different approaches were used: tra-
ditional, based on decision trees (CFMask algorithm) and a modern approach based on a
neural network (the IdePix algorithm). It was noticed that the IdePix flag marking pixels
as “ambiguous” may lead to overmasking. Nevertheless, this flag has proven to be useful
for improving the CFMask product after correction based on the analysis of adjacent pixels.
An effective mask should eliminate as many erroneous values as possible (high negative
residuals as an indicator), leaving as many appropriate pixels as possible. Maintaining a
balance between these two results in greater uncertainty of the SST estimation near the
mask if more advanced cloud screening techniques are not applied. The advantage of
both algorithms is the availability of their products or a ready-to-use tool. However, cloud
detection techniques are still developing, and many other advanced algorithms could be
applied [14,48], both those developed for Landsat and those used for satellite missions
dedicated to measuring SST. In particular, using radiative transfer simulations under clear
sky conditions to only the IR channels, could eliminate the issue observed with IdePix.

As mentioned in the literature review, the researchers in [36] showed that SSTs may
be estimated from Landsat 8/TIRS data with good accuracy using the NLSST formula
(Equations (1) and (2)). The authors derived best-fit coefficients empirically on the basis of
in situ measurements. Therefore, one of the questions in this study was whether coefficients
derived for the region with a more humid atmosphere might be applicable to the Baltic
Sea. The comparison estimated SSTs and the data from buoys showed relatively good
accuracy of the SST estimation, which slightly decreases as the temperature drops below
10 ◦C. This trend is related to the change in air humidity rather than water temperature
itself. There is a strong indication that the relationship between split-window difference
and SST changes if the difference is lower than 1.0 ◦C [41]. Cases with a difference in
TIRS bands less than 1 ◦C accounted for 49% of analysed matchups and more than 76%
of them were characterized by the in situ temperature below 10 ◦C. NLSST formula with
coefficients derived for the Baltic Sea reduced this trend and bias.

The improved radiometric calibration applied to the USGS Collection 2 dataset re-
sulted in a reduction in both the brightness temperature at band 10 (~11 µm) and the split
window difference. Therefore, the NLSST coefficients should be determined separately
for these data; otherwise, the SSTs would be underestimated, with the error increasing
with surface temperature. Nevertheless, contrary to expectations, this study did not find
a significant improvement in RMSE using recalibrated data. The NLSST algorithm with
best-fit coefficients derived for the Baltic Sea estimated SST using the most accurate input
data (Collection 2) with an RMSE 0.5 ◦C. These results match those observed in earlier
studies [28,33,36] or reported for standard SST products of lower resolution, validated
against in situ bulk temperatures measured in the Baltic Sea [1,4,6,13,16,19,20]. Taking
into account changes in the path length through the atmosphere despite the relatively
low satellite viewing angle turned out to have an impact on the results. The use of a
simplified version of the algorithm more often resulted in underestimating the SSTs. To
improve the performance of the NLSST formula, sets of temporal and spatial dependent
coefficients should be derived in order to reflect variations in the atmospheric regimes [40].
The selected set of matchups was too small to analyse this approach. The development of
the Baltic Sea Oceanographic Operational System, which currently provides a significant
number of real-time observations (e.g., from tidal stations, FerryBox lines, mooring buoys,
fixed stations, Argo profilers and research vessels) [30] should allow for such analysis in the
near future. Further improvement may be achieved using climatological SST data records
as an SST first guess, instead of MCSST. Jang and Park [36] found that the OSTIA data
provided by the Met Office allow the RMSE to be slightly reduced. A 30 year climate data
record for the North Sea and Baltic Sea region of SST has been produced by [1].
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For standard SST products derived from nighttime satellite overpasses, insufficient
cloud masking is the source of the highest uncertainties. The Landsat mission provides
only daytime observations on a regular basis. Therefore, another significant source of
uncertainty is daily heating, which is manifested more strongly in the subsurface layer
than at the depth at which the temperature is measured in situ (bulk temperature). The
IR radiances measured by the satellite instrument only respond to the temperature which
represents a 10-µm surface layer. Even if the NLSST coefficients are calibrated against in
situ data, the relationship reflects only the average difference between temperatures of
different layers while the daily heating varies over time and space depending on wind and
irradiance conditions [49]. In the Baltic Sea, diurnal warming of the sea surface (day/ night
temperature difference) for the most part does not exceed 3 ◦C, though events with daily
anomalies over 5 K can be observed. Satellite/in situ observations from moored buoys
have much smaller average differences ranging from −0.3 ◦C to 0.1 ◦C [15]. Although
high positive residuals for Landsat SST estimation occurred in late spring and summer,
they cannot be related to these effects. In most cases they appeared to be errors connected
with the influence of different objects or platforms within a Landsat pixel. However, the
range of differences between bulk and skin temperature reported by [15] indicates that the
effects of diurnal warming may have a large impact on the RMSE obtained for the NLSST
algorithm in the Baltic Sea. Another source of uncertainty for high-spatial-resolution
data may be horizontal temperature gradients if the in situ measurement location is not
accurately determined.

The NLSST algorithm applied to the newly reprocessed Landsat 8 data gives a realistic
estimate of values and maps comparable to the products of long-term earth observation
missions, e.g., AQUA MODIS (Figure 10). As this is a simple statistical approach, its
accuracy cannot be as high as with the more physical methods that are now becoming
standard in satellite remote sensing of sea surface temperature, e.g., optimal estimation.
An overview of methods with claims of improved accuracy is given by [14]. However, in
many issues where the accuracy of estimating the SST is less important than possibility of
identifying phenomena and their spatial variability, the simplicity of the NLSST algorithm
can be a great advantage. Landsat data can be accessed in different ways, both through an
interactive service (e.g., Earth Explorer) or with a Machine-to-Machine API. The USGS also
provide tools to create the angle bands needed for the full NLSST algorithm and Quality
Assessment TOOLS. There are also others, e.g., SNAP or QGIS plugins, Python and R
packages that can be used to select, download and process Landsat data. Some of them
may not yet support the new structure of metadata stored in Collection 2. However, it has
been shown that the data from Collection 1, which will be available by December 2022,
and the NLSST coefficients determined for the Baltic Sea, allow the estimation of SSTs with
similar accuracy.
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