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Abstract: As a new-style filter, the smooth variable structure filter (SVSF) has attracted significant
interest. Based on the predictor-corrector method and sliding mode concept, the SVSF is more robust
in the face of modeling errors and uncertainties compared to the Kalman filter. Since the estimation
performance is usually insufficient in real cases where the measurement vector is of fewer dimensions
than the state vector, an improved SVSF (ISVSF) is proposed by combining the existing SVSF with
Bayesian theory. The ISVSF contains two steps: firstly, a preliminary estimation is performed by
SVSF. Secondly, Bayesian formulas are adopted to improve the estimation for higher accuracy. The
ISVSF shows high robustness in dealing with modeling uncertainties and noise. It is noticeable that
ISVSF could deliver satisfying performance even if the state of the system is undergoing a sudden
change. According to the simulation results of target tracking, the proposed ISVSF performance can
be better than that obtained with existing filters.

Keywords: state estimation; target tracking; smooth variable structure filter; Kalman filter

1. Introduction

State estimation of dynamic systems has been widely used in various engineering
fields, such as target tracking, navigation, signal processing, computer vision, automatic
control, etc. [1,2]. However, a variety of noise and interference have made systems more
complex and changeable. This makes accurate information about noise statistics and
system models not readily available. Besides that, the system state may have a sudden
change, which means that when a state encounters unknown external interference, it may
change suddenly and dramatically in forms similar to the sinusoid wave and rectangular
wave. As a result, efforts to develop new methods to improve system robustness and
estimation accuracy have been under active consideration recently.

Various filters have been developed to estimate the system state value according
to the measurements. The Kalman filter (KF) [3], the most widely used filter in linear
Gaussian systems, is the optimal method under the criteria of minimum mean square error,
maximum likelihood and maximum posterior. However, in nonlinear systems, the KF may
be affected by divergence. So, a variety of filters have been developed for better estimation
performance in a nonlinear system, which mainly can be divided into three categories. In
the first category, the nonlinear system is simplified into a linear one. A typical example in
this category is the extended Kalman filter (EKF) [4,5], in which the nonlinear system is
simplified as a linear one by only utilizing the first-order Taylor expansion and discarding
the higher-order terms. In the second category, the probability density distribution of
a nonlinear function is replaced by selecting a certain number of sigma points, and the
posterior probability density are calculated by these points. These methods have been
termed “numerical integration methods” [6]. The two most widely used methods of this
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category are the unscented Kalman filter (UKF) and the cubature Kalman filter (CKF) [7].
The last category is based on particle filter methods, which work well in nonlinear and
non-Gaussian systems but are time-consuming in iterative computation [8,9]. Given that,
the particle filters may not meet the time requirement in some real cases. Some cutting-
edge methods such as the generalized regression neural network have also been applied in
target tracking [10,11].

Knowledge of the mathematical model and noise statistics is essential in a majority
of existing methods, and the robustness of these methods would be severely reduced if
inappropriate modeling or noise modeling are used. Therefore, filters of higher robustness
have been proposed to deal with uncertainties of models and noise. For example, one of
the most widely used methods in handling model uncertainty is an adaptive strategy using
“multiple models” based on the Bayesian framework. Additionally, the strategy usually
implements the interactive multi-model method [1] or the variable structure interactive
multi-model [12]. In real cases, various noises need to be reduced, such as the heavy-tailed
noise [13], non-Gaussian distributions noise [14] and Student’s t distribution noise [15].
The combination of noise models and the adaptive methods in [13–15] have achieved good
results. However, all of the mentioned algorithms are built on the Kalman filter, and thus,
some shortcomings still exist, such as sensitivity to parameters, etc. In order to improve the
robustness of the filter in terms of model uncertainties and anti-noise interference ability,
the smooth variable structure filter (SVSF) has been developed [16].

The SVSF [16] is a recently developed filter that is designed to handle the issue of
model uncertainty and noise interference. The estimated state of the SVSF is constrained to
fluctuate around the true state trajectory within a small region and shows high robustness
and stability. The SVSF is simple in structure and feasible to implement. However, it is
regarded as a suboptimal filter [7,17] due to its low accuracy. Therefore, [18] attempts
have been made to refine the SVSF by deducing the its state error covariance. They show
that the priori and posteriori state error covariance matrices of the SVSF are similar to
the KF in linear systems, and are expected to extend to other applications. The authors
of [19] further deduced the optimal bounded layer width of SVSF based on the posterior
state covariance matrix. Based on this, the SVSF is combined with other filters (such as
KF, EKF, UKF, and CKF), which can take advantage of both the robustness of the SVSF
and the accuracy of these filters [7,17,20,21]. For example, combinations of SVSF with
the UKF (UK-SVSF) or CKF (CK-SVSF) filtering systems [20] are better than separate
methods, but will be affected by their own disadvantages and interference with each
other. In [22], the dependence of the estimation performance on parameters is avoided
by an uncertainty learning strategy. Additionally, the second-order SVSF [23] and other
methods [20,24] have been proposed to improve the stability and robustness. Since its
development, the SVSF has been applied in various applications [25], such as vehicle
navigation [24,26–31], fault detection and diagnosis [32,33], battery management [34–37],
and artificial intelligence [33,38,39]. However, it was found that the SVSF can be further
improved if two shortcomings can be solved. (1) The SVSF is generally used in systems
with one measurement corresponding to each state variable. When the dimension of the
measurement vector is less than that of the state variables, the original SVSF cannot estimate
the lower partition of the state vector. For example, tracking sensors usually measure the
target position but do not record the velocity and acceleration of the target. Thus, [16]
developed a similar Luenberger’s reduced order observer strategy, which constructs a
reduced order estimator to estimate the lower partition of the state vector. However, the
system is required to be completely observable and completely controllable, and meanwhile,
the calculation process for the lower partition of the state vector needs to be independent,
which greatly limits the versatility of the method. Another popular solution [17,21] is to
construct an “artificial” measurement of the lower partition of the state vector, which is
portable and widely used. However, the estimation of the lower partition of the state vector
cannot achieve satisfactory results when the measurement noise intensity is high. (2) In
short, compared with filters based on Bayesian theory, the SVSF is insufficient to suppress
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noise. If the noise can be further eliminated, the performance of the SVSF can be greatly
improved and the SVSF could be advantageous in more applications.

An improved smooth variable structure filter (ISVSF), devoted to solving the above
described shortcomings, is proposed here. It is built on the basis of the SVSF and inspired
by the Bayesian theory [40]. In line with the SVSF strategy, the proposed ISVSF deduces the
priori and posterior error covariance matrix of the state variables in the linear system. The
Bayesian method is exploited to calculate the new state estimation by means of estimated
state and error covariance of SVSF.

Three main advantages of the ISVSF are as follows. (1) The ISVSF can maintain
high robustness even if the system state is undergoing sudden change or the modeling
is deviating from the actual model. (2) Compared with the original SVSF, the exploited
Bayesian method contributes to a higher estimation accuracy. Meanwhile, the obtained
error covariance matrix is helpful in further improving application with other methods,
such as the interacting multiple model methods or constructing smoother. (3) When the
dimension of the state variables is larger than that of the measurements, the state error
covariance will be exploited to estimate the lower partition of the state vector in ISVSF.
ISVSF is a newer strategy than the previous method [16,17] of the SVSF system, and it has
computational complexity almost identical to that of the Kalman filter.

In general, this paper proposes the real-time ISVSF as it could achieve the high
accuracy of the Bayesian solution and robustness similar to that of the SVSF. The ISVSF
proposed here also can be applied in systems with states undergoing sudden changes.
However, our former work [41] proposed a non real-time smoother, which is also applied
in maneuvering target tracking. The rest of the paper is structured as follows: The review
of the SVSF will be presented in Section 2, the elaborate explanation of the proposed ISVSF
algorithm in Section 3, the simulation process and an analysis in Section 4 and conclusions
of the main findings in this paper in Section 5. Table 2 provides a list of nomenclature used
throughout the paper.

Table 1. The SVSF Strategies.

Symbol Definition

ˆ Notation denoting an estimated variable,
function, or model parameter

~ Notation denoting the error in an estimated
variable, function, or model parameter

F, F̂, F̃
System model, mathematical modeling, and

modeling error
H measurement (out) matrix

xk, x̂k, x̃k System state, prior estimate state, state error

esvsf
k+1|k, esvsf

k+1|k+1
The priori and posterior measurement

innovation of SVSF
ek+1|k+1 A posterior error

diag Diagonal of vector or matrix
sat Saturation function

Q, R System and measurement covariance matrix
|e| Absolute value of e
+ Pseudoinverse of some non-square matrix
• Indication or Hadamard product
T Transpose of a vector or sample rate
ψ SVSF smoothing boundary layer
<n Matrix dimension

Ksvsf
k+1

SVSF gain matrix
Kk+1 Bayes’ rule gain

E Expectation
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Table 2. The SVSF Strategies.

Symbol Definition

f , h Nonlinear function
γ SVSF “memory” or convergence
p Probability density function
β Existence subspace layer
P State error covariance matrix
zk Measurement (system output) matrix

w, v System noise and measurement noise vector

2. The SVSF Strategies
2.1. The SVSF

In 2003, Habibi and Burton proposed a novel form of predictor-corrector filter, called
the variable structure filter (VSF) [42]. The VSF uses sliding mode concepts to construct a
switching gain, which makes the state estimates converge within a boundary of the real
value to ensure system stability. Based on the VSF, the SVSF was proposed with a less
complex gain in 2007 [16]. As shown in Figure 1, the true trajectory of the system has some
fluctuations caused by dynamic interference or disturbance noises. The estimated state
trajectory gradually approaches the real trajectory until it reaches the existence subspace. If
it remains in the existence subspace, the estimated state is forced to switch back and forth
on the real state trajectory by SVSF gain [24]. If the errors caused by modeling error and
noise are bounded, then the state estimates will be kept within a limit. The SVSF strategy
ensures stability and robustness in resolving modeling uncertainties and errors.
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In the case of linear dynamic systems under a zero-mean and Gaussian noise, the state
equation and observation equation of a dynamic system are as follows:{

xk+1 = Fxk + wk
zk+1 = Hxk+1 + vk+1

(1)

where k is the discrete time, xk ∈ <n is the state vector, and F ∈ <n×n is the system
model matrix or the state transition matrix. zk ∈ <m is the measurement, H ∈ <m×n is
the linear measurement (out) matrix, wk ∈ <n and vk ∈ <m are the process noise vector
and the measurement noise, respectively, and their covariances are represented by Rk and
Qk, respectively.

The iterative process of SVSF contains two steps and can be summarized as follows:
The prediction stage: the predicted state estimate x̂k+1|k is calculated according to the

system model matrix F and the previous state estimate x̂k|k.

x̂k+1|k = Fx̂k|k (2)

A priori estimated measurement ẑk+1|k is calculated according to the priori estimated
state x̂k+1|k and the measurement matrix H is as follows:

ẑk+1|k = Hx̂k+1|k (3)

The priori measurement innovations esvsf
k+1|k are calculated in SVSF as:

esvsf
k+1|k = zk+1 − ẑk+1|k (4)

The updating stage: the SVSF’s corrective gain Ksvsf
k+1 [16] is calculated as follows:

Ksvsf
k+1 = H+diag[( |esvsf

k+1|+ γ|ek|k|)

•sat(ψ−1esvsf
k+1)][diag(esvsf

k+1)]
−1

(5)

where Ksvsf
k+1 is a gain function, H+ is the pseudoinverse matrix of H, and the diag function

is to construct diagonal matrix. |e| is the absolute value of e, γ(0 ≤ γ < 1) is the SVSF’s
“memory” (convergence rate), and • represents the Hadamard product. sat is a saturation
function. Besides that,

sat
(

ψ
−1esvsf

k+1|k

)
=



1, ψ
−1esvsf

k+1|k ≥ 1

ψ
−1esvsf

k+1|k, −1 < ψ
−1esvsf

k+1|k < 1

−1, ψ
−1esvsf

k+1|k ≤ −1

(6)

and

ψ
−1

=


1

ψ1
0 0

0
. . . 0

0 0 1
ψm

 (7)

where ψi (i = 1 . . . m) represents the width of the smoothing boundary layer in every di-
mension, the value setting is described in [16,19], and m is the dimension of state estimation.
The estimated state x̂k+1|k+1 is updated as follows:

x̂k+1|k+1 = x̂k+1|k + Ksvsf
k+1|kesvsf

k+1|k (8)
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The posterior measurement estimate ẑk+1|k+1 and its innovation ek+1|k+1 are de-
scribed as:

ẑk+1|k+1 = Hx̂k+1|k+1 (9)

ek+1|k+1 = zk+1 − ẑk+1|k+1 (10)

The influence of existence subspaces on estimation is shown in Figure 2. The width
of the existence subspace β is unknown and dynamic, and contains modeling errors and
noises. Additionally, as indicated by [16], an upper bound can be selected according to a
priori knowledge [17]. As shown in Figure 2, once the estimated state enters the existence
subspace, the estimated state (by SVSF gain) will remain in the existence subspace and
switch back and forth along the true state trajectory [17], and a high-frequency switching
is called chattering [24]. The smoothing boundary layer ψ can decrease the chattering
amplitude and make the estimated state trajectory smoother. The smoothing boundary
layer ψ can reflect the level of interference and uncertainties. As shown in Figure 2a,
when ψ ≤ β, the uncertain factors are underestimated [16] and the filter gain is more
easily affected by the uncertain factors; therefore, the chattering appears. However, when
the smoothing boundary layer is larger than the existence boundary layer (ψ > β), the
chattering effects will be removed [24], as shown in Figure 2b.
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SVSF is applied in systems where the state variables and measurement vector share
the same dimension. Compared with the KF, SVSF has to rely on Luenberger’s strategy [16]
or the “artificial” measurement [17] if measurements are less than states.

2.2. Review of Combining SVSF with Other Estimation Strategies

The development, improvement and application of the SVSF and its variants are
discussed in the introduction [20]. Particularly, among the derivative methods of SVSF, the
combination of the SVSF with different filtering is an effective solution to improve accuracy
while preserving robustness even if model uncertainties exist [20]. To satisfy different
demands, SVSF has been combined with EKF (EK-SVSF), UKF (UK-SVSF) and CKF (CK-
SVSF). Those methods have the same structure, and the difference between SVSF and those
combinations lies in the calculation of the gain as shown in Figure 3a. Given that, the
calculated time varying smoothing boundary layer ψvbl is compared with the fixed varying
smoothing boundary layer ψfixed to determine which gain will be utilized (e.g., SVSF or other
filters); if ψvbl ≤ ψfixed,the KF-based gain will be used to obtain optimality. If ψvbl > ψfixed,
the standard SVSF gain is used to keep robustness at the cost of estimation accuracy.
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The UK-SVSF is one of popular methods in the combination strategies and has been ap-
plied in many different systems [20,21,43,44]. For better understanding of the combination
strategy, the UK-SVSF is chosen and its specific process is summarized as follows. The UKF
uses the 2n+1 sigma points to estimate state. The sigma points and their corresponding
weights are selected based on the following rules.

X0,k|k = x̂k|k (11)

W0 =
κ

n + κ
(12)

where the X0,k|k is the first sigma point and W0 is its corresponding weight, n is n-
dimensional of state, κ is a design value (a small value less than 1 or that can be cal-
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culated by κ = 3− n), and the next i = 1, . . . , n points and corresponding weights can be
computed as:

Xi,k|k = x̂k|k +
(√

(n+κ)Pk|k

)
i

(13)

Wi =
1

2(n + κ)
(14)

where
(√

(n+κ)Pk|k

)
i

is the i−th column of the square root of (n+κ)Pk|k, and Wi is

associated with the Xi,k|k sigma points. The rest of the i = n + 1, . . . , 2n points and their
corresponding weights may be derived as:

Xi,k|k = x̂k|k −
(√

(n+κ)Pk|k

)
i

(15)

Wi =
1

2(n + κ)
(16)

The propagation of these sigma points can be calculated as:

X̂i,k+1|k = f (X̂i,k|k) (17)

The predicted state estimate and predicted state error covariance are calculated as follows:

x̂k+1|k =
2n

∑
i=0

WiX̂i,k+1|k (18)

Pk+1|k =
i=2n

∑
i=0

Wi

(
X̂i,k+1|k − x̂k+1|k

)(
X̂i,k+1|k − x̂k+1|k

)T
+ Qk+1 (19)

The nonlinear measurement propagation can be calculated as follows:

Ẑi,k+1|k = h
(

X̂i,k+1|k

)
(20)

where h is the measurement function. The predicted measurement ẑk+1|k and the priori
measurement innovation ek+1|k can be calculated as follows:

ẑk+1|k =
2n

∑
i=0

WiẐi,k+1|k (21)

ek+1|k = zk − ẑk+1|k (22)

The predicted measurement covariance and the cross-covariance (between state and
measurement) are calculated as follows:

Pzz,k+1|k =
i=2n

∑
i=0

Wi

(
Ẑi,k+1|k − ẑk+1|k

)(
Ẑi,k+1|k − ẑk+1|k

)T
+ Rk+1 (23)

Pxz,k+1|k =
i=2n

∑
i=0

Wi

(
X̂i,k+1|k − x̂k+1|k

)(
Ẑi,k+1|k − ẑk+1|k

)T
(24)

From (23) and (24), the UKF gain can be computed as follows:

KUKF,k+1 = Pxz,k+1|kP−1
zz,k+1|k (25)

The time varying boundary layer width is calculated as follows:

ψvbl =
(

A−1HPk+1|kHTP−1
zz,k+1|k

)
(26)
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where
A = diag

(
|ek+1|k|+γ|ek|k |) (27)

If ψvbl ≤ ψfixed, the gain is updated by Kk+1 = KUKF,k+1, otherwise when ψvbl > ψfixed,

Kk+1 = Ksvsf
k+1 is derived through the SVSF-based Equation (5). So, the state is updated

as follows:
x̂k+1|k+1 = x̂k+1|k + Kk+1ek+1|k (28)

Finally the covariance and the posteriori error are updated as follows:

Pk+1|k+1 = (I−Kk+1H)Pk+1|k(I−Kk+1H)T + Kk+1Rk+1KT
k+1 (29)

ek+1|k+1 = zk+1 − h
(

x̂k+1|k+1

)
(30)

However, those methods still have disadvantages. When the dimension of the mea-
surement vector is less than that of the state variables, the original SVSF cannot estimate the
lower partition of the state vector, and thus the accuracy will be decreased. If ψvbl > ψfixed
appears frequently, the accuracy of the combination methods will decrease because the
standard SVSF gain is used. However the proposed ISVSF can overcome this shortcoming.

3. Methodology for the Proposed ISVSF
3.1. Motivation of This Work

A generalized version of the SVSF cannot estimate the lower partition of the state
vector when there are fewer dimensions of measurements than state, which can be over-
come in Bayesian filters. This kind of filter, based on Bayesian theory, uses the state error
covariance to obtain the probability density function and calculate the optimal gain to
estimate the state value. Since the state error covariance can reflect a positive correlation
among different dimensions of the state vector, even if the lower partition of the state vector
has no corresponding measurements, it can still be precisely estimated. Inspired by this,
the ISVSF was integrated with the Bayesian theory to estimate the lower partition of the
state vector, which cannot been estimated in the SVSF.

Many practical algorithms based on the Bayesian filtering method are widely used,
such as KF, EKF, UKF, PF, etc. From the Bayesian viewpoint, the estimation is to recursively
calculate a certain degree of belief in the state xk+1 at the time k + 1, by substituting xk at
time k and zk+1 at time k + 1.

In light of the system, the state-space model can be defined with the following equa-
tions at discrete-time.

Process equation:
xk+1 = fk(xk) + wk (31)

Measurement equation:
zk+1 = h(xk) + vk (32)

where fk : <nx ×<nw → <nx is a function of the state xk, hk : <nx ×<nv → <nz is also a
known function,nx, nw, nz, nv are dimension of the state, process noise, measurement noise
and measurement vector, respectively, and {wk} and {vk} are independent process and
measurement noise sequences.

The initial probability density function (PDF) p(x0|z0) is known, and PDF p(xk|z1:k)
at time k can be obtained by iterative computing. In the prediction stage, the prior PDF of
the state at time k + 1 can be calculated by (31) and the Chapman–Kolmogorov equation.

p(xk+1|z)1:k =
∫

p(xk+1|xk)p(xk|z1:k)dxk (33)

Based on a first-order Markov process, the p(xk+1|xk) can be calculated by (31) and
the known statistics of wk.
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In the updating stage, the measurement zk+1 is obtained at time k + 1, and the state
may be used to update the prior p(xk+1|xk) through Bayes’ rule:

p(xk+1|z1:k+1) =
p(zk+1|xk+1)p(xk+1|z1:k)

p(zk+1|z1:k)
(34)

where the normalizing constant is

p(zk+1|z1:k) =
∫

p(zk+1|xk+1)p(xk+1|z1:k)dxk+1 (35)

p(zk+1|xk+1) is obtained by (32) and the known statistics of vk. According to (34), the
posterior density p(xk+1|z1:k+1) at time k + 1 is obtained. Equations (33) and (34) form the
basis for KF, EKF, UKF, PF, etc. When the noise statistics and the model of (31), (32) are
known, the Bayesian filter can achieve relatively satisfactory performance.

The ISVSF replaces Equation (31) with the SVSF to predict the state value and obtain
the prior state PDF. Figure 3b is the flowchart of the proposed ISVSF, whose process can
be divided into two steps. The main purpose of step 1 is to reduce the uncertainty of the
modeling and serious external interferences. In this step, the state and its error covariance
are estimated by the SVSF. To this end, the reformulated state error covariance of the
SVSF can be used to calculate the state PDF. The results of state and the prior state PDF
in step 1 can be utilized to calculate new estimation results by means of Bayes’ rule in
step 2. Finally, the outputs are the revised estimated state and state covariance. The revised
state value at the final stage contains the estimated lower partition of the state vector when
nx > nz. Since the SVSF is also a predictor-correct estimator, its lower partition of the state
vector can help improve the forecast precision of the model and eventually improve the
estimation accuracy.

3.2. The Proposed ISVSF Derivation

The state error covariance matrix, which has many functions, is widely used in
Bayesian filters. It can indicate the differences between the actual and the estimated values,
and can also reflect the correlation among different state dimensions. The original SVSF is
based on sliding mode concepts, and it has no state error covariance matrix and no use of
the state error covariance matrix in the estimation process. Figure 4 shows the complete
calculation process and iterative calculation steps of the proposed method in detail. As
shown in Figure 4, the derivation of the SVSF covariance is added in the proposed method,
and then used in a new gain calculation. The estimated state value of the SVSF is corrected
by the new gain, and finally the new state and its error covariance can be obtained. Figure 4
is the ISVSF algorithm block diagram. A more sophisticated formula derivation in Figure 4
is as follows.

3.2.1. Step 1: The SVSF Estimation Process

Based on the linear system, the complete derivation process is shown as follows:

xk+1 = Fxk + wk (36)

where xk is the real value at time k, F is the model of the system, which may be variable
and unknown, and wk is the noise. For systems with uncertain models, the predictor of
SVSF can be described as follows:

x̂k+1|k = F̂x̂k|k (37)

where F̂ is the estimated model by using mathematical modeling, x̂k+1|k is the predicted
value, and the a priori state error x̃k+1|k is deduced by:

X̃k+1|k = Xk+1 − X̂k+1|k. (38)
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Substitution of (36) and (37) into (38) yields:

x̃k+1|k = Fxk + wk − F̂x̂k|k

=
(
F− F̂

)
xk + F̂

(
xk − x̂k|k

)
+ wk

. (39)

Simplifying (39) by (38) results in the a priori state error x̃k+1|k equation:

x̃k+1|k = F̃xk + F̂x̃k|k + wk. (40)

If there is no model mismatch here, or the system is linear (F̂ ≈ F), Equation (40) can
be expressed as:

x̃k+1|k = Fx̃k|k + wk (41)

By (41), the predicted state error covariance Pk+1|k is obtained:

Pk+1|k = E{[Fx̃k|k + wk][x̃
T

k|kFT + wT
k]}

= E{[Fx̃k|kx̃T
k|kFT + wkx̃T

k|kFT

+Fx̃k|kwT
k + wkwT

k]}

(42)
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where wk are process Gaussian noise sequences with zero means and covariance Qk is
independent of state: 

wk ∼ N(0, Qk)

E{wkwT
k
}
= Qk

E{wkx̃T
k|kFT

}
= E{Fx̃k|kwT

k

}
= 0

(43)

The posterior state error covariance at previous time is defined as:

Pk|k = E{x̃k|kx̃T
k|k}. (44)

Substitution of (43) and (44) into (42) yields:

Pk+1|k = FPk|kFT + Qk. (45)

Utilizing the predicted state estimate x̂k+1|k, the corresponding predicted measurement

errors esvsf
k+1 are calculated by:

esvsf
k+1|k = zk+1 −Hx̂k+1|k. (46)

Based on the SVSF, the gain Ksvsf
k+1 and the SVSF state estimate x̂svsf

k+1|k+1 are obtained
as follows:

Ksvsf
k+1 = H+diag[( |esvsf

k+1|k|+ γ|ek|k|)

•sat
(

ψ
−1esvsf

k+1|k

)
][diag(esvsf

k+1|k)]
−1

(47)

x̂svsf
k+1|k+1 = x̂k+1|k + Ksvsf

k+1esvsf
k+1|k (48)

The SVSF estimation error covariance matrix Psvsf
k+1|k+1 is updated as follows:

Psvsf
k+1|k+1 = E{x̃svsf

k+1|k+1(x̃
svsf
k+1|k+1)

T
|Z1:k+1}. (49)

The SVSF estimation error x̃svsf
k+1|k+1 is expressed as:

x̃svsf
k+1|k+1 = xk+1 − x̂svsf

k+1|k+1. (50)

Substitution of (48) and (46) into (50) yields:

x̃svsf
k+1|k+1 = xk+1 − x̂k+1|k −Ksvsf

k+1(zk+1 −Hx̂k+1|k). (51)

where the effect of measurement noise is not taken into consideration, but will be taken
below, so by (51), the SVSF estimation error is computed as follows:

x̃svsf
k+1|k+1 = xk+1 − x̂k+1|k −Ksvsf

k+1(Hxk+1 −Hx̂k+1|k)

= x̃k+1|k −Ksvsf
k+1Hx̃k+1|k

= (I−Ksvsf
k+1H)x̃k+1|k

(52)
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The SVSF estimation error covariance Psvsf
k+1|k+1 is deduced by:

Psvsf
k+1|k+1 = E{x̃svsf

k+1|k+1(x̃
svsf
k+1|k+1)

T
}

= E{[( I−Ksvsf
k+1H)x̃svsf

k+1|k+1]

[( x̃svsf
k+1|k+1)

T(I− Ksvsf
k+1H)

T
]}}

= (I− Ksvsf
k+1H)Pk+1|k(I− Ksvsf

k+1H)
T

(53)

3.2.2. Step 2: Revised by Bayesian Estimation Method

The measurements contain Gaussian noise vk+1 with zero means and covariance Rk,
so the measurement error covariance can be computed by:

z̃svsf
k+1|k+1 = zk+1 − ẑsvsf

k+1|k+1 = Hx̃svsf
k+1|k+1 + vk+1 (54)

Pzz = E{[ z̃svsf
k+1|k+1(z̃

svsf
k+1|k+1)

T
]|Z1:k+1} (55)

Substituting (54) into (55), measurement error covariance can be obtained as follows:

Pzz = E{[Hx̃svsf
k+1|k+1 + vk+1][Hx̃svsf

k+1|k+1 + vk+1]
T
}

= E{Hx̃svsf
k+1|k+1(x̃

svsf
k+1|k+1)

T
HT + Hx̃svsf

k+1|k+1vT
k+1

+vk+1(x̃
svsf
k+1|k+1)

THT + vk+1vT
k+1}

(56)

where measurement noise vk+1 and state errors are independent of each other,

vk+1 ∼ N(0, Rk+1)

E{vk+1}= E{vT
k+1

}
= 0

E{vk+1vT
k+1

}
= Rk+1

E{x̃svsf
k+1|k+1vT

k+1} = E{vk+1

(
x̃svsf

k+1|k+1

)T
} = 0

. (57)

Substituting (57) into (56), the Pzz can be simplified as:

Pzz = HPsvsf
k+1|k+1HT + Rk+1 (58)

The cross-covariance between the measurement and the state value is as follows:

Pxz = E{[ x̃svsf
k+1|k+1][z̃k+1|k+1]

T}

= E{[ x̃svsf
k+1|k+1][Hx̃svsf

k+1|k+1 + vk+1]
T}

= Psvsf
k+1|k+1HT

(59)

According to Bayes’ principle (34), the prediction gain Kk+1 is computed as:

Kk+1 = Psvsf
k+1|k+1HTP−1

zz . (60)
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The measurement error of the SVSF process can be expressed as:

esvsf
k+1|k+1 = zk+1 − zsvsf

k+1|k

= zk+1 −Hx̂svsf
k+1|k+1

(61)

The revised state value x̂k+1|k+1 can be computed as:

x̂k+1|k+1 = x̂svsf
k+1|k+1 + Kk+1esvsf

k+1|k+1 (62)

Through (61) and (62), the new state error x̃k+1|k+1 can be derived as follows:

x̃k+1|k+1 = xk+1|k+1 − x̂svsf
k+1|k+1 + Kk+1(H(xk+1|k+1 − x̂svsf

k+1|k+1) + vk+1)

= x̃svsf
k+1|k+1 −Kk+1(Hx̃svsf

k+1|k+1 + vk+1)

= (I−KH)x̃svsf
k+1|k+1 −Kk+1vk+1

. (63)

The posterior covariance Pk+1|k+1 can be written as:

Pk+1|k+1 = E[x̃k+1|k+1x̃T
k+1|k+1]

= E{[( I− KH)x̃svsf
k+1|k+1 −Kk+1vk+1]

[(I−KH)x̃svsf
k+1|k+1 −Kk+1vk+1]

T
}

= E{[( I−KH)x̃svsf
k+1|k+1(I−KH)T − (I−KH)x̃svsf

k+1|k+1vT
k+1KT

k+1

−Kk+1vk+1x̃svsf
k+1|k+1I−KH)T ]T + Kk+1vk+1vT

k+1KT
k+1

}

. (64)

Because measurement noise vk and state errors are independent of each other. Substi-
tuting (57) into (64), Pk+1|k+1 can be simplified to:

Pk+1|k+1 = (I−Kk+1H)Psvsf
k+1|k+1(I−Kk+1H)T + Kk+1Rk+1KT

k+1. (65)

The posterior measurement error can be expressed as:

ek+1|k+1 = zk+1 −Hx̂k+1|k+1 (66)

The ISVSF algorithm mentioned in this paper is summarized in equations from (36) to
(66). The pseudo-code of Algorithm 1 is patched as follows:
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Algorithm 1: The ISVSF algorithm

Input {x0, P0, ψ, F, Q, R, H, e0|0} and the sequence measurement {z1, z2 · · · zN}
For k = 1:N
Step 1 SVSF estimation
propagate the nominal state
x̂k+1 = Fx̂k
Propagate the error covariance
Pk+1|k = FPk|kF + Qk

esvsf
k+1|k = zk+1 −Hx̂k+1|k

Compute the SVSF gain

Ksvsf
k+1 = H+diag(|esvsf

k+1|k|+ γ|ek|k|) •sat(ψ−1esvsf
k+1|k)[diag(esvsf

k+1|k)]
−1

Update the state
x̂svsf

k+1|k+1 = x̂k+1|k + Ksvsf
k+1esvsf

k+1|k

Psvsf
k+1|k+1 = (I−Ksvsf

k+1H)Pk+1|k(I−Ksvsf
k+1H)

T

Step 2 revised by Bayesian estimation:
Compute the measurement error covariance
Pzz = HPsvsf

k+1|k+1HT + Rk+1

Compute the Bayesian gain
Kk+1 = Psvsf

k+1|k+1HTP−1
zz

esvsf
k+1|k+1 = zk+1 −Hx̂svsf

k+1|k+1
Update the a posteriori error state
x̂k+1|k+1 = x̂svsf

k+1|k+1 + Kk+1esvsf
k+1|k+1

Compute the posteriori error covariance
Pk+1|k+1 = (I−Kk+1H)Psvsf

k+1|k+1(I−Kk+1H)T + Kk+1Rk+1KT
k+1

ek+1|k+1 = zk+1 −Hx̂k+1|k+1
Output {x̂k+1|k+1, Pk+1|k+1, ek+1|k+1}
End for

4. Simulation
4.1. A Classic Target Tracking Scenario

To verify the effectiveness of the proposed algorithm in a linear system, simulations
are carried out in a two-dimensional space. The target position is provided by a radar
system. The aircraft moves from the initial position of [−25, 000 m, −10, 000 m] , with an
initial velocity of 300 m/s in the x-axis direction and 280 m/s in the y-axis direction. Due
to the existence of airflow disturbance, velocity adjustment and other factors, the target
has random acceleration interference, which obeys a Gaussian distribution with standard
deviation of 10 m/s2. The target flies for 500 s.

In two-dimensional space target tracking, the aircraft motion model can be modeled
as a uniform motion (UM):

xk+1 =


1 T 0 0
0 1 0 0
0 0 0 T
0 0 0 1

xk +


1
2 T2 0
0 T

1
2 T2 0
0 T

wk (67)

where T refers to the sampling interval and is set as T = 1 s, and wk indicates the system
noise, which is always unknown in most systems. The state vector xk is deduced by:

xk =
[
ηk,

.
ηk, ξk,

.
ξk

]T
, wk =

[ ..
ηk,

..
ξk

]
(68)

where the ηk and ξk indicate positions in the x-axis and y-axis, respectively.
.
ηk and

.
ξk

express the velocity along the x-axis and y-axis, respectively. Generally, radar only pro-
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vides position information, which contains the real position and noise of the target. The
measurement model of the system can be expressed as:

zk =

[
1 0 0 0
0 0 1 0

]
xk + vk (69)

In the simulation, some parameters of the filters need to be initialized. The measure-
ment noise covariance R of the radar can be calculated by statistics. State covariance P0|0
and process noise covariance Q can be expressed as follows:

R = 2002
[

1 0
0 1

]
(70)

P =0|0 diag([10000, 1000, 10000, 1000]) (71)

Q = L ∗


T3

3
T2

2 0 0
T2

2 T 0 0
0 0 T3

3
T2

2
0 0 T2

2 T

 (72)

where L is the power spectral densities [17]. Additionally, the SVSF, UK-SVSF and ISVSF
“memory” (convergence rate) γ is set to 0.1 [17], which is tuned based on uncertain knowl-
edge of the system such as the noise.

To compare the performances of different filters, the root mean square error (RMSE)
and the averaged root mean square error (ARMSE) are chosen as performance metrics,
such as in position; they are defined as follows:

RMSEpos,k =

√
1
M∑M

s=1 ((η
s
k − η̂s

k)
2 + (ξs

k − ξ̂s
k)

2
) (73)

ARMSEpos,k =

√
1

MT ∑T
k=1 ∑n

s=1 ((η
s
k − η̂s

k)
2 + (ξs

k − ξ̂s
k)

2
) (74)

where
(
ηs

k, ξs
k
)

and
(
η̂s

k, ξ̂s
k
)

are the true position and estimated position at the sth Monte
Carlo run, and M is the total number of Monte Carlo runs, which are performed in
simulation. The RMSE and ARMSE of velocity are similar in position.

4.1.1. Simulation under Unknown Noise

In some engineering applications, measurement noise may not obey Gaussian dis-
tribution and may be unknown due to the inference of external factors [8,9], such as the
agile target observed in clutter, and sensors are unreliable. In the simulation, the actual
measurement noise of the radar is expressed as follows:

vk =

{
N
(
0, 2002) w.p. 0.90

N
(
0, 9× 2002) w.p. 0.10

(75)

where “w.p.” is short for “with probability”, the Kalman filter is the optimal filter when
the system and measurement noise are white, and the initial state conditions have known
means and variances [45]. However, for agile targets, the process noise is difficult to
model in advance, which means that the random acceleration of the target is unknown.
The simulation of the random acceleration follows a Gaussian distribution with 10 m/s2

standard deviation. The real trajectory is shown in Figure 5. Additionally, in the simulation,
all filters use the uniform motion model, and the parameter L of Q is set to 1 in the ISVSF,
UK-SVSF and KF. The smooth boundary layer widths of the SVSF, UK-SVSF and ISVSF are
set to ψ = [2000, 2000] m. The κ of the UK-SVSF is set to κ = 3− nx, and ψ f ixed = 3200 m.
Under the same measurement noise distributions, 400 Monte Carlo runs are performed.
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Figure 5 shows the trajectory of one simulation result, including the real trajectory, the
points of measurement and the trajectory processed by the filters. Additionally, the small
diagram contained in Figure 5 is a partially enlarged one. It can be seen from Figure 5
that the trajectory obtained by the ISVSF is more approximate to the real trajectory. From
Figure 6 and Table 3, the ARMSE of the ISVSF is the least compared with the KF, SVSF
and UK-SVSF. For use of the KF, knowledge of an accurate mathematical model and the
statistical characteristics of system noise and measurement noise is required to obtain the
desired filtering effect. Compared with the SVSF, UK-SVSF and ISVSF, the performance of
the KF is more unstable when the acceleration noise disturbance is underestimated and
the measurement noise is unknown. The SVSF has a stable filtering effect, but its ability to
eliminate noise should be improved. The ISVSF has a better filtering effect than the SVSF, as
shown in Table 3, and the position ARMSE of the ISVSF is reduced by above 60% compared
with the SVSF. The ISVSF not only has higher tracking accuracy compared with the SVSF
but also has higher robustness than the KF under unknown noises. Although the UK-SVSF
improves the robustness and accuracy under unknown noises, the velocity estimation is
affected due to competition between the UKF and SVSF. Compared with the SVSF, the
accuracy of the ISVSF is improved because of its highly accurate velocity estimation.

Table 3. The position ARMSE on the x-axis and y-axis (m).

Different Methods KF SVSF UK-SVSF ISVSF

Position ARMSE on x-axis (m) 200 298 145 133
Position ARMSE on y-axis (m) 256 225 232 172
Velocity ARMSE on x-axis (m) 26 133 36 31
Velocity ARMSE on y-axis (m) 31 63 69 42
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4.1.2. Results under the Condition of Different Smooth Boundary Layer Widths

Smooth boundary layer width is an important parameter in systems based on the
SVSF, and its value setting will affect the stability and accuracy of the system. To verify this
influence, the range of smooth boundary layer width is set from 200 m to 3500 m at intervals
of 100 m. From Figure 7, the results show that when the smooth boundary layer width is
less than the existence subspace layer, the precision of the ISVSF and SVSF will be affected
because of the existing chattering. With the smooth boundary layer width increasing, SVSF
ARMSE decreases slightly first, and then increases sharply as shown in Figure 7. The reason
is that the SVSF lacks estimation of the velocity dimension of the state, which causes the
SVSF to commit a large error in model extrapolation. The fact that the accuracy of ISVSF is
less susceptible to the smooth boundary layer width than SVSF can be attributed to the
Bayesian filtering estimation, which can estimate velocity so that the predicted trajectory
of ISVSF is closer to the real trajectory than that of SVSF on the prediction stage, which
decrease prediction errors, ensuring the accuracy and thus maintaining the stability. How
to effectively use the ISVSF to modify the velocity information will be described in the
following passage. The combination with the Bayesian filtering process can eliminate the
impact of the smooth boundary layer width and deliver more stable filtering results.
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4.2. Simulation Results in Modeling Error

Given the high accuracy requirements of most filters for mathematical models, a
system divergence will occur once the modeling of the filter is wrong. When tracking the
maneuvering target, the system model is uncertain and often inconsistent with the actual
model. F is state space model of the system matrix and Fc is the changing model; they are
defined as follows:

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1



Fc =


1 sin(wT)/w 0 (cos(wT)− 1)/w
0 cos(wT) 0 −sin(wT)
0 (1− cos(wT))/w 1 sin(wT)/w
0 sin(wT) 0 cos(wT)


(76)

In the target tracking, F represents uniform motion and Fc represents a uniform turning mo-
tion with an angular velocity of w. The initial position of the target is [−25, 000 m, −10, 000 m],
and the target moves in a straight line at a uniform velocity of [320 m/s, 20 m/s] for 100 s.
Then, the maneuvering target turns at a rate of −3

◦
/s for 60 s. Next, the target moves in a

straight line at a uniform velocity for 90 s, and maneuvers at a rate of−2
◦
/s for 90 s. Finally

the target flies straight for 160 s until the end. No matter whether they are on the x-axis
and y-axis, noises of measurements obey a Gaussian distribution with standard deviation
of 200 m. In order to assess its performance, a total of 300 Monte Carlo runs are carried out.
The simulation is conducted to test the robustness of three strategies in modeling errors.

In the simulation, the smooth boundary layer widths of the ISVSF, UK-SVSF and SVSF are
set to ψ = [1200 m, 1200 m], the L of the KF and UK-SVSF are set to 1, the κ of UK-SVSF is set to
κ = 3−nx, ψ f ixed is set to ψ f ixed = 3200 and x0 = [−25, 000 m, 220 m/s,−10, 000 m, 60 m/s] ,
the L of the ISVSF is set to 1000, and other parameters are similar to the above simulation.
The simulation results are as follows: Figure 8 shows the trajectory of one simulation result,
including the real trajectory, and the points of measurement and the trajectory are processed
by three filters. Figures 8 and 9a,b show that, when the model is unchanged, the KF would
achieve the best performance in velocity and position estimation; when the modeling of
the filter is different from the motion model of the target, the position RMSE of the ISVSF,
UK-SVSF and SVSF would increase slightly, while the position RMSE of the KF would
increase greatly. As shown in Figure 9b, the original SVSF does not estimate the velocity,
and the velocity error of SVSF is induced by the difference between the initial velocity of
the SVSF and the actual velocity of the target, but the KF and ISVSF can eliminate this
error through iterative calculation. Compared with the SVSF, the ISVSF adds the Bayesian
solution process and can thereby estimate velocity more accurately. It can be seen from
the Table 4 that the velocity ARMSE of the ISVSF is 3.6 times less than that of the SVSF.
The result also shows that the UK-SVSF has improved estimation accuracy and stability.
When the modeling has an error under the maneuvering condition, the UK-SVSF method
mainly uses the SVSF to estimate state, and the error in estimated velocity is large because
the SVSF is deficient in estimating velocity, and a certain competition and interference also
exist between the UKF and SVSF. Compared with the ISVSF, the UK-SVSF performs better
under normal conditions, while the ISVSF is better if modeling uncertainty exists. To sum
up, the ISVSF, UK-SVSF and SVSF all have good robustness. However, compared with the
UK-SVSF and SVSF, the ISVSF has better filtering performance.
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4.3. A Comprehensive Simulation

Some uncertain factors could influence systems and change system parameters or
states. For example, if the target is impacted by external factors such as strong external
impact, disturbance or occlusions, its state will change greatly when it is detected again.
In the fault diagnosis system, the parameters and state of the characterization system will
change dramatically once a fault occurs [8]. That is, in some particular case, one may
expect a substantial deviation of the assumed system description from the true one [7]. An
application example is shown in Appendix A. The comprehensive simulation is presented
as follows. It contains different kinds of maneuvering and sudden changes caused by
interference. The purpose is to test the robustness and accuracy of the proposed ISVSF.
Additionally, a comparison has been made between the ISVSF and other methods to
estimate states without measurement in the case where the measurement vector is less than
the state vector.

In the simulation, the actual measurement noise is expressed as follows:

vk =

{
N
(
0, 2002) w.p. 0.90

N
(
0, 9× 2002) w.p. 0.10

(77)

The movement parameters for a maneuvering target in this simulation are listed in
Table 5, and the real trajectory is shown in Figure 10.

Table 5. Simulation scenario for maneuvering target.

Maneuver Duration Maneuver Duration

initial state [−15,000 m,320 m/s,−10,000 m,20 m/s] 0 s constant velocity 190–250 s
constant velocity 1–49 s coordinated turn motion with ω = 3◦/s 251–299 s

a sudden change on the y-axis z = z-4000 m 50 s constant velocity 300–380 s
constant velocity 50–80 s acceleration with x-axis a = −20 m/s2, y-axis a = 10 m/s2 381–384 s

coordinated turn motion with ω = −5◦/s 81–119 s constant velocity 385–399 s
a sudden change on the y-axis z = z-3000 m 120 s a sudden change, x-axis z = z-1000 m, y-axis z = z-5000 m, 400 s
coordinated turn motion with ω = −5◦/s 121–134 s constant velocity 401–420 s

constant velocity 135–170 s coordinated turn motion with ω = 4◦/s 421–460 s
acceleration with x-axis a = −10 m/s2 171–189 constant velocity 461–500 s
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In the simulation, the SVSF with Luenberger’s strategy (SVSF-L) [24,26] and the SVSF
with “artificial” velocity measurements (SVSF-V) [17,21] are applied to estimate velocity.
The SVSF and UK-SVSF have large estimation errors when the target maneuvers, so they
are not shown in the simulations. The position smooth boundary layer width of the ISVSF,
SVSF-L and SVSF-V are set to [3000, 3000], the velocity smooth boundary layer width of
SVSF-L and SVSF-V are set to [5400, 5400], and other parameters are similar to those in
above simulation 4.2. In order to assess its performance, 1000 Monte Carlo simulations
were carried out.

Figure 10 shows the trajectories of one simulation, including the real trajectory, mea-
surements and the trajectories obtained by different methods. All filters use the uniform
motion model. It can be seen from Figures 10 and 11 that those methods based on the SVSF
have good robustness in systems with modeling errors. Compared with the ISVSF and
SVSF-L, the SVSF-V is more vulnerable to noise and maneuvering because its “artificial”
velocity measurement is obtained by dividing the position differences in one cycle by the
sampling time, so that the “artificial” velocity is easily affected by noise and thus produce a
larger errors. From Figure 11, when sudden position changes occur at 50 s, 120 s and 400 s,
both the SVSF-L and SVSF-V have large velocity estimation errors, especially the SVSF-L.
All of the position estimation errors of the SVSF-L, SVSF-V and ISVSF are smaller than the
change in position values. However, the proposed ISVSF is more stable and can quickly
converge to a steady state. That can be attributed to the fact that in the first step, the ISVSF
can adapt to a sudden change in position state without affecting the covariance of the
velocity dimension, which ensures that in the second step, the estimation performance of
the ISVSF obtains a more accurate velocity. In the case of weak maneuvering, the ISVSF and
SVSF-L have minor estimation errors compared with the SVSF-V. The three methods based
on the SVSF all have their own advantages when estimating states without measurement in
the case where the measurement vector is less than the state vector, and the three methods
can be chosen according to different requirements, Besides that, the ISVSF has another
advantage in that there is no need to set smoothing layer width for unmeasured states. It
can be concluded from Table 6 that the ISVSF has a smaller ARMSE than the other methods
under 1000 simulations. To sum up, the ISVSF has good robustness and accuracy.
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Table 6. The position and velocity ARMSE (1000 simulations).

Different Methods KF SVSF-V SVSF-L ISVSF

Position ARMSE (m) 1041 389 245 206
Velocity ARMSE (m/s) 113 135 102 59

5. Conclusions

This paper proposes an improved SVSF (ISVSF) that combines Bayesian theory and
the SVSF. The ISVSF uses the SVSF theory to make preliminary estimations, then, using
the derived covariance and Bayesian theory, makes further estimations. It is capable not
only of maintaining the robustness of the SVSF but also of retaining the advantages of the
Bayesian filtering system. Moreover, it can estimate the lower dimension states that have
no corresponding measurement value. A performance comparison of the ISVSF, UK-SVSF,
KF and SVSF indicates that the ISVSF achieves improved performance under the conditions
of modeling error and unknown noise. Even if state undergoes a sudden change in the
presence of external factors, the ISVSF still shows satisfactory performance. We hope that
further research can be conducted to unleash the great potential of the ISVSF and SVSF in
applications involving more complex and changeable systems.
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Appendix A. The Application of ISVSF in a System with State Undergoing a
Sudden Change

A real-time monitoring system of liquid level uses a frequency modulated con-
tinuous wave radar to obtain the liquid height and filling velocity, such as shown in
Figures A1 and A2. The tank is filled by the top pump with the reaction solution at an
unknown velocity. The reaction liquid is discharged through the bottom valve, so that the
liquid level drops rapidly. The radar system can only detect the height measurement of the
liquid, but in most circumstances, the real-time liquid filling velocity is also required. The
initial distance between the radar and the liquid level is 500 cm at t= 0 min. As the reaction
solution fills the tank, the liquid level rise at the velocity of 20 cm/min. At t= 19 min
and t =39 min, the valve opens and the liquid level drops rapidly at 400 cm. The radar
sampling period is T= 1 min, and the measurement error obeys the Gauss distribution
with the standard deviation of 10 cm.

The behavior of a monitoring system can be modeled as follows:

xk+1 =

[
1 T
0 1

]
xk +

[ 1
2 T2

T

]
wk + gk (A1)
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The state vector may be defined as follows:

xk =
[
ηk,

.
ηk
]T, wk = [

..
ηk] (A2)

where ηk is the distance between liquid level and radar, and
.
ηk is the rising velocity of the

liquid level.

gk =

{
[400, 0]T k = 19, 39
[0, 0]T k = else

(A3)

Because the radar only provides height measurements, the measurement equation can
be defined as follows:

zk = [1 0]xk + vk (A4)

The process and measurement noise (wk, vk) are considered as Gaussian with zero
mean and variances, which can be represented by Q and R. The system initial x0, P0, R and
Q are defined as follows:

X0 = [520, 0]T , P0 = diag([100, 400]),R = 102 (A5)

Q = 1 ∗
[

T3

3
T2

2
T2

2 T

]
(A6)

The original SVSF cannot estimate velocity directly, and the inflow velocity of the
reaction liquid is required in real cases. To tackle this issue, one approach is to add an
‘artificial’ velocity measurement in the SVSF. The ‘artificial’ velocity measurement can be
calculated through height measurements. For example, where yk represents the height
measurement, artificial velocity measurements can be expressed as follows [17]:

yk = [zk, (zk − zk−1)/T] T (A7)

It is also necessary to transform the measurement matrix of (A4) into a square matrix
(i.e., identity). In this paper, artificial velocity measurements are added to the SVSF, and
the method is labelled as SVSF-V.
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The smooth boundary layer widths of SVSF, UK-SVSF and ISVSF are set to ψ= [50],
and of SVSF-V to ψ = [50, 250], and the SVSF, SVSF-V, UK-SVSF and ISVSF convergence
rates are set to γ = 0.1. The κ of the ISVSF is set to κ = 3− nx and the ψ f ixed is set to
ψ f ixed = 50. The estimations of the KF, SVSF, SVSF-V and ISVSF were conducted by using
the UM model in a total of 200 runs.
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Figure A2. Height trajectory of one experiment.

The results of different estimation methods are shown in Figures A2 and A3 and
Table A1. From Figure A2, it can be seen that the height trajectory estimated by the UK-
SVSF and ISVSF are closer to the real value than other methods. From Figure A3a,b, it
can be seen that the KF has the best performance when the parameter matches the system
(0–19 min), but when the value of the height state in the system changes suddenly at 20 min,
the performance of the KF estimation decreases significantly. The original SVSF has a stable
estimation of height, but the estimation is inaccurate because it cannot estimate the velocity,
which can be reflected by the fixed velocity error shown in Figure A3b. After the SVSF adds
artificial velocity measurements (SVSF-V), the performance of the SVSF-V is improved
compared with that of the SVSF. However, when the value of the height state suddenly
increases by 400 cm, a more serious velocity error will occur, and the estimation results will
be affected. Compared with other methods, the ISVSF and UK-SVSF have better estimation
results. For the ISVSF, the reason can be attributed to the fact that in the first step, the
ISVSF can adapt to a sudden change in height state without affecting the covariance of the
velocity dimension, which ensures that in the second step, the estimation performance of
the ISVSF can obtain a more accurate liquid filling velocity. From Table 5, compared with
the SVSF and SVSF-V, the velocity of ISVSF ARMSE is reduced by more than 8 times. The
UK-SVSF and ISVSF excel because they can handle unknown state value changes and show
fair robustness as well as accuracy, but the ISVSF yields more accurate velocity estimations
than does the UK-SVSF.

Table A1. The ARMSE of estimation states.

Different Methods KF SVSF SVSF-V UK-SVSF ISVSF

Height ARMSE (cm) 35.0 14.0 9.8 6.9 7.1
Velocity ARMSE (cm/min) 15.5 20 19.7 2.5 2.2
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