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Abstract: Spaceborne synthetic aperture radar (SAR) represents a powerful source of data for
enhancing maritime domain awareness (MDA). Wakes generated by traveling vessels hold a crucial
role in MDA since they can be exploited both for ship route and velocity estimation and as a marker
of ship presence. Even if deep learning (DL) has led to an impressive performance boost on a variety
of computer vision tasks, its usage for automatic target recognition (ATR) in SAR images to support
MDA is still limited to the detection of ships rather than ship wakes. A dataset is presented in this
paper and several state-of-the-art object detectors based on convolutional neural networks (CNNs)
are tested with different backbones. The dataset, including more than 250 wake chips, is realized by
visually inspecting Sentinel-1 images over highly trafficked maritime sites. Extensive experiments
are shown to characterize CNNs for the wake detection task. For the first time, a deep-learning
approach is implemented to specifically detect ship wakes without any a-priori knowledge or cuing
about the location of the vessel that generated the wake. No annotated dataset was available to
train deep-learning detectors on this task, which is instead presented in this paper. Moreover,
the benchmarks achieved for different detectors point out promising features and weak points of
the relevant approaches. Thus, the work also aims at stimulating more research in this promising,
but still under-investigated, field.

Keywords: automatic target recognition; deep learning; ship wake detection; synthetic aperture radar

1. Introduction

In recent years, the improvement of maritime domain awareness (MDA) is assuming
a crucial role in achieving effective maritime security, border control, environmental protec-
tion of marine protected areas (MPA) and the control of illegal, unreported and unregulated
(IUU) fishing and law enforcement systems. However, the future enhancement of MDA
will demand collecting and merging terabytes (TB) of data coming from several different
sources (e.g., land, sea-based, airborne and spaceborne sensors). Currently, the most ex-
ploited system for maritime monitoring is the automatic identification system (AIS), whose
requirements have been regulated by the international maritime organization (IMO) [1]:
medium and large ships (>300 tons) have to carry the AIS transmitter to communicate
data regarding its identification and route information. However, the AIS transmitter can
be deliberately turned off. In such a case, the ship becomes a “dark vessel”, i.e., ship
operating without an AIS transponder or even with this device switched off [2]. With this
regard, both ongoing projects [3] and data providers [4] are focusing resources towards
the detection of dark vessels by integrating AIS data and information acquired by synthetic
aperture radar (SAR) images [5–8]. Results confirm the satellite technologies as a key
solution providing support and improving the current capabilities of existing maritime
monitoring systems, thanks to the large amount of available data. For instance, more than
12 TB are produced each day by Sentinel missions [9]. Recent studies [10] have shown that
the detection, recognition and reconstruction of the ship wake can strongly contribute to
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the improvement of MDA, since the wake (a) provides additional information about the
route, i.e., ship velocity and heading, and (b) enables the detection of ships not imaged
in SAR images due to their motion, materials and sizes. The traditional approaches for
wake detection in SAR images assume a wake structure basically composed by linear
features, i.e., the turbulent wake, two narrow-V wakes and the Kelvin pattern, appearing
as bright and dark lines [11]: the detection problem is thus typically challenged with do-
main transforms such as Radon [5] or Hough. However, wakes can assume very different
appearances depending on the ship speed, hull shape, orientation (range and azimuth), sea
condition and wind speed, radar signal wavelength and observation geometry, but also
their appearance can be very similar to that resulting from different phenomena, like sea
surface films and oil spills [12].

With its ability to automatically glean patterns from data, deep learning (DL) has
generated an international hype in the space sector in general, and for remote sensing in
particular. Concerning SAR applications, DL architectures have been applied for numerous
tasks including despeckling [13], SAR-optical image fusion [14] and automatic target
recognition (ATR) [15]. More in depth, the research activities about ATR for maritime
surveillance have been mainly focused on the ship detection problem by convolutional
neural networks (CNNs), proving better accuracy at less test cost [16,17]. Furthermore, in
the wake-detection field, the DL-based methods can arguably be a promising choice, since
they well address the problem of generalization and benefit of HPC (high-performance
computing) architectures with clusters of GPUs. The various wake appearances can be
properly addressed in various environments and maritime weather conditions thanks
to the capability of “supervised learning”. To the knowledge of the authors, no deep
learning architecture dedicated to wake detection in SAR images has been developed
yet. The only results published in the literature [18] adopt a CNN classifier to detect ship
wakes from TerraSAR-X images for route estimation purposes. Hence, it is applied only for
wakes close to a well distinguishable ship in X-band imagery. Besides, their approach to
achieve object detection constrains to use a significant number of region proposals and,
thus, is computationally inefficient. The problem can be bypassed by state-of-the-art object
detectors, which utilize anchor boxes for the automatic search of instances [19].

The contribution of the paper to DL-based wake detection is thus two-fold: (i) dis-
cussing the main properties of existing DL-based object detectors, and (ii) showing the first
application of DL-based wake detection conceived to recognize ship wakes in SAR im-
ages. To achieve the former, an SAR Ship Wake Dataset (SSWD) has been properly built
and detailed, representing an additional original contribution of this work and paving
the way to open discussions in the scientific community. The paper is organized as follows:
Section 2 shows an overview of the most mature DL-based detectors, Section 3 introduces
the complexity of wake visibility and detectability, Section 4 details the dataset, Section 5
described the setup and the metrics used in Section 6 to assess the performance of the DL
architectures both on the SSWD and on C- and X-band products.

2. Selected Object Detectors

Convolutional neural network (CNN, or ConvNet) is a deep neural network well-
suited for visual tasks. They are a type of feed-forward artificial neural network (ANN)
with variations of multilayer perceptrons designed to use minimal amounts of prepro-
cessing. CNNs have been successfully applied to numerous computer vision tasks, such
as classification, semantic segmentation, and object detection. In 2012, AlexNet [20] won
the ImageNet competition on the classification task. Since then, CNN architectures have
drawn huge interest due to their capability of gleaning low-, mid- and high-level features
stacking together convolutional and pooling layers (Figure 1).
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Figure 1. Convolution (kernel size 3 × 3 and stride 1) and Pooling (kernel size 2 × 2 and stride 1)
layer illustration.

After AlexNet, more complex and sophisticated networks followed, such as ZF-
Net [21], VGG-Net [22], GoogLeNet (Inception v1) [23], and ResNet [24]. However, the en-
coder architecture only allows one to perform the classification task: to achieve object
detection the CNN architecture must be broadened. Object detection is the visual task that
aims at recognizing instances of a predefined set of classes (e.g., ship, wake, oil spill) and
accurately locates them in the image with bounding boxes. A naive approach to achieve
object detection is to tile different Regions of Interest (RoIs) from the starting image and
use of a CNN to classify the presence of the object within that region. In this way, the object
detection problem is rearranged as a classification problem. Notably, the detectors using
this approach are referred to as two-stage detectors, since the detection process is devised
in two steps. Anyway, since objects might have different spatial locations and aspect
ratios, this solution forces selection of a huge number of RoIs at the expense of a high
computational burden. Girshick and Ross put their strengths into the object detection
task, introducing the region-based convolutional neural network (R-CNN or regions with
CNN) [25]. Compared to traditional methods, R-CNN greatly improved the results on
the Pascal VOC dataset [26]. The advantage of R-CNN is using only 2000 RoIs (or region
proposals), generated using a greedy algorithm called “selective search”. After region
proposal generation, RoIs are warped into a square, fed into the CNN and then an SVM
(support-vector machine) classifies the extracted features to locate the presence of the object
within the candidate RoI. Still, this algorithm requires a significant amount of time for train-
ing and testing, making it hard to apply in the industry. To solve this problem, numerous
improvements of R-CNN followed, enabling better performance at a less computational
cost. The most recent ones are semi-supervised object detectors (SS-ODs) [27,28], which
exploit both labeled and unlabeled data. These make use of pseudo-labels to perform
a feature distillation with guided contrastive learning in a mutual teacher-student fashion.
Since these approaches extend the default detection frameworks, the latter are described in
the next sub-sections, and applied to the proposed dataset.

Concluding this section it is important to point out that the recent literature has shown
completely different schemes which are anchor-free [29–31] or transform-based [32–34].
However, these will not be analyzed in this first assessment.

2.1. Two-Stage Detectors

The evolution of R-CNN detectors is referred to in the literature as an R-CNN family.
Hereinafter, the developments from Faster R-CNN to Mask R-CNN and Cascade Mask
R-CNN are detailed.

2.1.1. Faster R-CNN

The same authors of R-CNN lately proposed Faster R-CNN [19]. The bottleneck of
the region proposal computation is tackled by a region proposal network (RPN), i.e., a
fully convolutional network trained to generate region proposals. RPN indeed predicts
RoIs from the feature map generated by the backbone using anchor boxes. These are a set
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of bounding boxes having predefined width and height. Anchors are defined to capture
the scale and aspect ratio of specific objects. Then, the proposed RoI pooling layer takes
every RoI and linearly downscales them to the size of the feature map. Finally, that feature
map section is converted into a fixed dimension map. It is worth noting that the size of
the feature map is reduced after the convolutional and pooling layers. This solves the major
hurdle of object detection: fully connected (FC) layers set a fixed input size requirement
to the network. As a result, the same feature map is used for all the proposals, thus
allowing one to pass the entire image to the CNN instead of each proposal individually.
This architecture classification is not more executed by an SVM for each class but through
a single softmax layer [35]. Indeed, the architecture holds two different outputs. The first
one being a discrete probabilistic distribution pi = (p0

i , ..., pk
i ) of i-th anchor belonging

to k + 1 classes. As mentioned, pi is obtained through a softmax function prompted on
the k + 1 outputs of the FC layer. The other outputs are the bounding box coordinates
ti = (tx

i , ty
i , tw

i , th
i ) fitted by the bounding box regressor [19].

As the learning process in DL is cast as an optimization problem, a loss function must
be defined for calculating the error of the model during the supervised learning process.
The loss function resembles the model performance in one scalar number, which allows
candidate solutions to be ranked. The loss function associated with each extracted RoI, is
set as in [19]:

L(pi, ti) = LCls + LBox =
1

Ncls
∑

i
Lcls(pi, p∗i ) +

λ

Nbox
∑

i
Lbox(ti, t∗i ) (1)

where Ncls is the normalization term set to the mini-batch size (i.e., the number of samples
from the dataset used for training one epoch), Nbox is the normalization term set number
of anchors while λ is a coefficient setting the relative importance between Lcls and Lbox in
the determination of the loss function.

The loss function associated with the classifier is:

Lcls(pi, p∗i ) = −p∗i logpi − (1− p∗i )log(1− pi) (2)

with p∗i denoting the ground truth (binary) of whether the i− th anchor is an instance or
not. Instead, the loss function relative to the regressor is equal to:

Lbox(ti, t∗i ) = ∑
i

p∗i Lsmooth
1 (ti − t∗i ) (3)

in which Lsmooth
1 is the smooth L1 loss defined as:

Lsmooth
1 (x) =

{
0.5x2 |x| < 1
|x| − 0.5 |x| > 1

. (4)

It is worth noting that Equation (1) defines a multi-task loss function, which considers
both the classification and the bounding box regression results. This implementation
brushed up detection speed and accuracy [19] and has shown impressive results on a variety
of computer vision tasks, providing a network foundation with high detection accuracy.

2.1.2. Mask R-CNN

Two years later, Mask R-CNN [36] was developed by Facebook AI Research (FAIR).
Mask R-CNN was based on Faster R-CNN and outperformed all existing single-model
entries (at that moment) on every task, including the COCO 2016 challenge winners [36].
Mask R-CNN further extends the capabilities of Faster R-CNN, adding a branch for gener-
ating a high-quality segmentation mask for each RoI. The mask branch (Figure 2) operates
in tandem with the classifier and bounding box regressor.
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Figure 2. Mask R-CNN architecture illustration.

This FC network processes each RoI, outputting a segmentation mask in a pixel-to-
pixel manner. Besides, adding only a small computational overhead, the fast detection
speed is preserved.

The most evident advantage of Mask R-CNN was its usage of the RoI align layer in
substitution of the RoI pooling layer for RoI extraction from the feature map. This solves
the coarse spatial quantization problem for feature extraction overcoming the round-off
errors due to floating point division. This is done with the proper alignment of the extracted
features with the input. Indeed, the RoI align layer utilizes bilinear interpolation to prompt
the input feature values at four locations sampled in a regular way for each RoI bin. Then,
the result is combined, utilizing average or max operators [36]. For the definition of multi-
task loss of Mask R-CNN, the authors of [36] added to the loss function of Faster R-CNN
and the loss of a segmentation mask. The loss is therefore formulated as:

L = LCls + LBox + LMask. (5)

The mask branch generates a mask of dimension m×m for each RoI and for each of k
classes. Thus, the total output is of size k×m2. As stated in [36], there is no competition
among classes in mask generation because the model learns masks for each class separately.
The Lmask is defined by [37], as a binary cross-entropy loss of the average per-pixel sigmoid
output over the k dimensions:

LMask = − 1
m2 ∑

1≤i,j≤m
[yi,j log ŷk

ij + (1− yij log(1− ŷk
ij)] (6)

where yi,j is the label of a pixel, (i, j) is the ground-truth mask and ŷk
ij is the predicted value

of the same pixel for the class k [36].

2.1.3. Cascade Mask R-CNN

As a further aspect, there is always a trade-off involved in object detection between
detector quality and performance. In this context, quality denotes accuracy of the predicted
bounding boxes with reference to the ground truth, while performances are evaluated
trough object detection metrics. See Section 5.2 for more details. This trade-off is defined
by the intersection over union (IoU) (detailed in Section 5.2). As reported by [38], this
issue has two causes. The first one is related to the object proposal mechanism which
tends “to produce hypotheses distributions heavily imbalanced towards low quality” [38].
Consequently, large values of IoU thresholds determine a reduction of positive training
samples during training. The second one regards the mismatch between detector quality
and assumptions available at the inference time [38]. Cascade R-CNN [38] addresses this
problem with an architecture built with a sequence of detectors (e.g., Faster R-CNN or
Mask R-CNN) trained with increasing IoU thresholds, e.g., {0.5, 0.6, 0.7}. Therefore, this
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strategy progressively improves the quality of hypotheses, thus acting as a preventive
measure against overfitting [38]. In the present paper, the Cascade approach will be tested
using Mask R-CNN as detector.

2.2. One-Stage Detectors

In addition to the above-discussed two-stage detectors, one-stage detectors exist,
which achieved sufficient quality and performance. Lacking a region proposal step, they
are arguably referred as region-free models (RF-models). The lack of a prior task to generate
proposals leads to simpler and faster model architectures. In this ambit, RetinaNet [39]
is worthy of being mentioned. It is a one-stage object detector, which prevents positive-
negative RoI imbalance with a huge number of RoIs and a custom loss function, i.e., focal
loss. Focal loss was formally formulated as [39]:

FL(pt) = −αt(1− pt)
γlog(pt) (7)

where the cross entropy loss log(pt) is modulated by the factor (1− pt)γ with the tunable
focusing parameter γ ≥ 0. The balancing parameter αt was lately introduced to guarantee
slightly improved accuracy [39]. For notation convenience, pt is defined as:

pt =

{
p if y = 1,
1− p otherwise

(8)

RetinaNet attaches to the backbone of two subnetworks, “one for classifying anchor
boxes and one for regressing from anchor boxes to ground-truth object boxes” [39]. The
architecture is very similar for the two aforementioned networks but the parameters are
not shared. The network design results are very simple, enabling the focal loss function
to eliminate the accuracy gap between RetinaNet and state-of-the-art two-stage detectors
while running at faster speeds. Figure 3 illustrates RetinaNet subnetworks, in which
W, H, and C = 256 represent the width, height and number of channels of the feature
map, respectively. Instead, K denotes the number of object classes, and A the number of
anchors [39].

Figure 3. RetinaNet FCN subnetwork illustration: (top) classification subnet and (bottom) bounding
box regression subnet.

2.3. Backbone Network

The baseline detectors used in this work all utilize deep residual network (ResNets)
backbones. This is a common choice for dense object detectors and it is done in purpose for
comparing the performance of the detectors on the same dataset under the same conditions.
ResNet backbones are selected as the main feature extractor, since they are deep but
stable. Thanks to their residual building blocks, they represent an effective way to solve
the vanishing gradient problem [24]. Their combination with feature pyramid networks
(FPN) [40] is another common choice used to construct the “top-down feature pyramid



Remote Sens. 2021, 13, 4573 7 of 20

structure fusing the inherent multi-scale feature map” [40]. The composite structure of
ResNet and FPN makes the detectors adaptable to detect either small and large objects.

3. Wake Imaging Mechanism

As mentioned in the Introduction, the wake generated by a moving ship shows several
components, namely the turbulent wake, narrow-V wake and Kelvin pattern. They are
arranged in two fans, the first one composed by the turbulent wake and the narrow-V wake
within an aperture of 4°, and second one including the Kelvin features, i.e., transverse,
divergent and cusp waves, within an aperture of about 19° [41]. However, the above-
described wake structure is not always realized [42], i.e., the V-shape of the wake depends
on the Froude number (Fr):

Fr =
u√
gL

(9)

where u is the vessel velocity, g the acceleration of gravity, and L the vessel length at
the waterline. In detail, increasing the Froude number, the narrow-V wakes become nar-
rower [43] and the Kelvin pattern modifies so that (i) for Fr < 0.7, i.e., sub-critical conditions,
the well-known pattern is shown; (ii) for 0.7 < Fr < 1, i.e., trans-critical conditions, the an-
gle of the divergent waves angle increases; (iii) for Fr > 1, i.e., super-critical conditions,
no transverse or cusp waves are present.

Moreover, when the wake is imaged by an SAR, its appearance is dependent on
the imaging mechanisms and the detectability of its components are influenced by both
radar-related and environmental-related parameters [44]. Indeed, since the turbulent wake
is smoother than its surroundings, reflecting less energy back to the radar, it appears as
a dark strip in the image. On the contrary, the narrow-V wakes are shown as two bright
lines, resulting from Bragg scattering of radar pulses from waves generated by the hull
moving through the water. Similarly, the features of the Kelvin pattern are shown as
bright features. Regarding the detectability, the turbulent wake is widely recognized as
the most distinguishable component with a larger contrast at lower frequencies under
moderate wind speeds [45]. Instead, narrow-V wakes are seen only at low-wind speeds
(<3 m/s) in deep and shallow water. Concerning the Kelvin pattern, the visibility of
all components, that are extremely rare [46], depends on several factors, (i) polarization,
with the fan more distinguishable at the horizontal (HH), than at the vertical (VV)-polarized
images, (ii) incidence angle, with more pronounced components at steeper angles [47]
and (iii) direction of propagation of the waves, which leads to a more visible wake when
it is parallel to the radar look direction [46]. Indeed, when waves propagate parallel to
the azimuth direction, the velocity bunching [46] effect makes them smeared, thus notably
limiting their visibility in the image. Moreover, the Kelvin transverse or cusp wakes can
be distinguishable when the image resolution is better than half of their wavelength [48].
As a result, assuming the typical resolution of Sentinel-1 Interferometric Wave mode of
about 20 m, the cusps cannot be resolved as an individual wavefront, appearing as a bright
border of the Kelvin fan, for ships moving slower than 15 knots.

4. Dataset Description

The developed SAR Ship Wake Dataset (SSWD) includes 261 wake chips (512 × 512
pixels) extracted from Interferometric Wide (IW) swath Sentinel-1 SAR images gathered in
vertical transmit-vertical receive (VV) polarization.

The images were obtained from Copernicus Open Access Hub and correspond to
Level-1 ground range detected (GRD) products with a pixel spacing of about 10 m × 10 m
(ground range × azimuth). Sites cover highly trafficked maritime sites, like the Strait of
Gibraltar, Egadi Islands (Italy), the Gulfs of Genoa and Naples (Italy), the English Channel,
and the Liaodong Bay (China). They have been selected for maximizing chip diversity,
so to include different ship classes, heading, speed and orientations, that is the moving
direction of the ship in the image. Figure 4 (left) summarizes the number of chips acquired
in each procurement site of SSWD. The total number of wakes labeled was 291, it is greater
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than the number of chips since the 12% of chips include more than one wake. Figure 4
(right) also shows the statistical distribution of the wake orientation. The relevant angle is
computed counter-clockwise with respect to the ground range direction.

Figure 4. Statistical distribution of chip wakes across procurement sites (left) and orientation
distribution along the four quadrants (right).

It is evident that the dataset shows a balanced behavior: orientations between 0–90°
and 180–270° are almost equally represented as the ones between 90–180° and 270–360°.
After subsetting, data conversion to 8-bit depth was performed by clipping the histogram
(95%) with the SNAP (ESA) toolboxes. To save VRAM (video random access memory) and
allow faster training, a size of ∼512 × 512 pixels was chosen for each chip. Significant at-
tention was given to the annotations since a wrong labeling could damage the data veracity.
Data labeling was performed with the VIA image annotator tool [49] using polygons rather
than the rectangular bounding boxes, as shown in Figure 5. When the wakes were not tilted
vertically or horizontally, the narrow shape leaks big parts of the sea into the bounding
box. Polygon annotations overcome the problems of the narrow shape during the random
rotations of the data augmentation strategy allowing a better bounding box refinement.
Besides, polygons make the annotations suitable for training segmentation methods.

Concluding this section, it is important to point out that ships have been excluded
from labeled polygonal masks. This is crucial to avoid the feature association between
wakes and bright ships, which is not always true in practice, i.e., in the case of go-fast
vessels [43] or large azimuth offsets [50].

Figure 5. Polygonal mask annotations of ship wakes labeled using VIA tool.

5. Setup and Metrics

In this section, the setup used for implementing architectures introduced in Section 2
is reported, and the evaluation metrics are explained.
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5.1. Setup

All the experiments on SSWD are supported by a local machine with the 64-bit Ubuntu
18.04 operating system. The software configuration consisted of a python environment,
Detectron2 [51] build on top of PyTorch 1.9.0 framework, CUDA 10.2, cuDNN 8.1.0. The
hardware used includes NVIDIA GTX-1060 GPU (6 GB memory) and Intelr i5-8600K CPU
@3.60 GHz and 16 GB RAM.

All the hyperparameters were kept the same to compare the performance of the de-
tectors. The latter were trained with GPU and finished in 5000 epochs. In the standard
way, the weight decay and momentum were set to 0.0001 and 0.9, respectively. The IoU
threshold was set to 0.5 when training and validating, while the IoU thresholds for Cascade
R-CNN are set to {0.5, 0.6, 0.7}. The optimizer selected was SGD (stochastic gradient de-
scent) with a learning rate of 0.0005. Due to the high dimension of the objects in the dataset,
anchor sizes have been raised to {32, 64, 128, 256, 512}, while the anchor scales were left as
defaults {0.5, 1, 2}. The parameters related to RPN were left as default for all detectors and
are reported in Table 1.

Table 1. RPN training parameters.

Parameter Value

BATCH_SIZE_PER_IMAGE 256
BBOX_REG_LOSS_TYPE smooth_l1

BBOX_REG_LOSS_WEIGHT 1.0
BBOX_REG_WEIGHTS (1.0, 1.0, 1.0, 1.0)
BOUNDARY_THRESH −1

HEAD_NAME StandardRPNHead
IN_FEATURES [‘res4’]
IOU_LABELS [0, −1, 1]

IOU_THRESHOLDS [0.3, 0.7]
LOSS_WEIGHT 1.0
NMS_THRESH 0.7

POSITIVE_FRACTION 0.5
POST_NMS_TOPK_TEST 1000

POST_NMS_TOPK_TRAIN 2000
PRE_NMS_TOPK_TEST 6000

PRE_NMS_TOPK_TRAIN 12,000
SMOOTH_L1_BETA 0.0

In the end, the details of RetinaNet implementation related to its focal loss are set
according to [52], which applied the method for ship detection in SAR images. Relevant
parameters are reported in Table 2.

Table 2. RetinaNet training parameters.

Parameter Value

BBOX_REG_LOSS_TYPE smooth_L1
BBOX_REG_WEIGHTS (1.0, 1.0, 1.0, 1.0)
FOCAL_LOSS_ALPHA 0.25

FOCAL_LOSS_GAMMA 2.0
IN_FEATURES [‘p3’, ‘p4’, ‘p5’, ‘p6’, ‘p7’]
IOU_LABELS [0, −1, 1]

IOU_THRESHOLDS [0.4, 0.5]
NMS_THRESH_TEST 0.5

The rest of the hyperparameters were set according to the default values of the base-
line implementations.
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5.2. Evaluation Metrics

The performance evaluation of object detectors was commonly carried out by norma-
tive metrics such as IoU (intersection over union), precision, recall and mAP. In supervised
learning, the labeled data was used to estimate the overlap rate, i.e., the correlation between
prediction and ground truth. This is measured by IoU, defined as:

IoUbbox =
bboxpred ∩ bboxgt

bboxpred ∪ bboxgt
(10)

where bboxpred and bboxgt denote the predicted and ground truth bounding box, respec-
tively. Depending on the threshold set for IoU, a classifier may misjudge background and
instances. Thus, it is possible to divide the classification results into four categories: True
Positives (TP), True Negatives (TN), False Negatives (FN) and False Positives (FP). TP and
TN denote the amount of correctly classified positive and negative samples, respectively.
FP and FN denote the number of false alarms and missed positive samples, respectively.
Precision and recall are defined as:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

In the Cartesian coordinate system, placing the horizontal coordinate on the recall
and the vertical precision, the precision-recall curve was obtained. The precision-recall
curve shows the trade-off between precision and recall for different IoU thresholds. The AP
(average precision) can be defined as the area under this curve, as shown in Equation (13):

AP =
∫ 1

0
P(r) dr (13)

in which P represents precision and r represents recall. When multiple categories are
present, the average prompted on all categories is defined as the mean AP or mAP.

Common dataset evaluation formats are pascal visual object classes (Pascal VOC) [53]
and Microsoft Common Objects in Context (MS COCO) [54]. Since MS COCO metrics are
abundant and comprehensive, MS COCO evaluation metrics were applied for the eval-
uation of the proposed dataset. MS COCO has the strict metric of IoU thresholds, such
as AP50, AP75 and AP, which is the primary challenge metric. The subscript denotes
the AP calculation under the specified IoU threshold. The AP calculation was instead an
average of ten IoU thresholds distributed from 0.5 to 0.95 with a constant step of 0.05. In
terms of the capabilities in multi-scale object detection, MS COCO scale division for object
detection [54] groups the instances into three categories, i.e., APS, APM and APL. The small
objects (APS) are characterized by bounding box areas below 32× 32 pixels, while the large
objects (APL) have an area above 96 × 96 pixels. The latter metrics are more specific for
camera images.

AP, AP50, AP75 have been taken to benchmark the performance of the detectors
on SSWD.

6. Results

In this section, the architectures introduced in Section 2 were implemented for the DL-
based wake detection in order to gain further insight into the evaluation metrics of each
architecture. Then, the detection performance of the best-trained model was evaluated
on a test scenario in the Gulf of La Spezia, Italy, where ground truth (AIS) was available.
A detailed workflow of the proposed methodology is reported in Figure 6. Finally, a further
application on X-band products in different polarizations is shown.
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Figure 6. Workflow of the proposed methodology: (top) model training and (bottom) model performance evaluation on
a test scenario in the Gulf of La Spezia.

6.1. Results on SSWD

Since there is only one class, problems of class imbalance were not faced. However,
the wake detection problem was still intrinsically tricky to solve due to the coherent
speckle-noise always present both in the clutter and the wake. As stated above, Faster
R-CNN, RetinaNet, Mask R-CNN and Cascade Mask R-CNN have been benchmarked
with different backbone combinations. The utilized baselines include both ResNet-50 and
ResNet-101 coupled with (a) FPN: use ResNet + FPN (feature pyramid network) with
standard conv and FC heads for mask and bounding box predictions; (b) ResNet+C4:
use ResNet conv4 backbone with conv5 head; (c) DC5 (Dilated-C5): use a ResNet conv5
backbone with dilations in conv5, and standard conv and FC heads for mask and box
prediction, respectively [51].

A transfer-learning procedure is carried out for all the models on SSWD. Both the pre-
trained weights of ImageNet and Coco datasets have been tested but, since ImageNet
weights have achieved lower results, they have not been reported. As stated above, the fine-
tuning has been performed training 5000 epochs with SGD and a learning rate of 0.0005.
Our training strategy involves early-stopping of the models with the best mAP (mean
average precision) for taking into account both precision and recall. For this purpose, a hook
function has been implemented to evaluate the models on the test set every 50 epochs. It is
worth noting that since there is only one class, AP and mAP coincide. A data augmentation
strategy (i.e., resizing, shifting, flipping and rotating) is also involved to prevent overfitting.
The performance of heavily under-trained weights (∼12 coco epochs) have been evaluated.
Table 3 compares model scores on AP, AP50 and AP75. The APL is equal to mAP in this
case because it was not possible to estimate APS and APM. This indicates that SSWD are
not present as a significant number of small and medium wake instances. Deeper networks
involving ResNet-101 have achieved better performance (by mean +2 ÷ 5% mAP) on
SSWD. The best backbone combination is ResNet + FPN, followed by slight improvements
of ResNet + DC5 against ResNet + C4. In all cases, the under-trained weights have shown
lower performance. The best model so far is Cascade Mask R-CNN, which achieved a mAP
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of 67.63. In Figure 7, the training and validation losses are reported over 5000 iterations of
the model.

As highlighted in the graph, the validation loss function stabilizes after 1000 iterations,
while the training loss continues to decrease.

Table 3. Coco evaluation of the state-of-art object detection models of SSWD.

Model B1 B2 UT mAP AP50 AP75

Faster R-CNN

ResNet50

C4 # 61.21 95.01 64.26

DC5 # 60.92 96.92 69.80

DC5 ! 59.97 96.19 71.01

FPN # 61.50 98.62 63.44

ResNet101

C4 # 62.39 98.51 64.88

DC5 # 61.50 94.28 66.30

FPN # 63.91 95.07 75.75

RetinaNet
ResNet50

FPN ! 60.54 94.98 69.59

FPN # 62.24 96.59 69.48

ResNet101 FPN # 65.27 97.99 71.41

Mask R-CNN

ResNet50

C4 ! 61.17 94.09 61.26

C4 # 60.88 94.59 71.35

DC5 ! 61.10 96.64 63.29

DC5 # 61.89 96.90 66.49

FPN ! 60.51 94.98 69.59

FPN # 60.95 94.42 65.03

ResNet101

C4 # 65.91 96.24 78.34

DC5 # 65.68 96.66 64.60

FPN # 65.49 99.06 81.18

Cascade
ResNet50

FPN ! 64.07 95.94 70.26

Mask R-CNN FPN # 67.63 95.99 73.15

As is possible to notice, the graph shows the mAP that started climbing steadily,
peaking at ∼1500 iterations. The trends of the mAP and validation loss demonstrate
that, despite the small dataset, overfitting has been properly handled. Our preliminary
results on SSWD regarding SS-ODs show no significant improvements against the Cascade
approach. Nonetheless, additional tests are demanded in the future, even combining
the two methodologies.

6.2. Results on a Sentinel-1 Product

Wake detection is herein discussed for a VV-polarized IW-GRD Sentinel-1 image
(Figure 7) gathered over the Gulf of La Spezia, Italy.
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Figure 7. Sentinel-1 GRD (IW) image gathered in VV polarization over La Spezia on 18/07/2020 at 17:14 UTC (latitude-
longitude coordinates). Product ID: S1A_IW_GRDH_1SDV_20200718T171436_20200718T171501_033512_03_E220_DEFC.

The satellite image is completed by AIS data, acquired by the AIS ground station of La
Spezia-Castellana (Station #890) at latitude and longitude of 44.07° North and 9.82° East,
respectively, and from an altitude above sea level of about 200 m. Figure 7 shows three
scenarios selected in different environments and sea-state conditions, Scenario A illustrates
the detection over a condition of the rough sea with surface natural films (Figure 8), Scenario
B includes an area of quiet sea condition (Figure 9), and Scenario C is characterized by
areas of wind-speed change (Figure 10). It is worth detailing that with the nomenclature,
surface films including eddies or other surface currents, as used in [12]. In order to analyze
the detection performance of the best-trained model, i.e., Cascade Mask R-CNN (ResNet-50
+ FPN backbone), it is worth noting that there is a significant difference between a tile
and entire Sentinel-1 imagery. Indeed, a raster-tiling and a non-max suppression (NMS)
algorithm are required as pre-processing and post-processing steps, respectively, to not
lose the receptive field.
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Figure 8. Detections over Scenario A (Azimuth-Ground Range coordinates). Dark vessel in middle
indicated in red.

Figure 9. Detections over Scenario B (Azimuth-Ground Range coordinates).

Figure 10. Detections over Scenario C (Azimuth-Ground Range coordinates).

A land-masking and common byte-scaling have been performed using the SNAP
(ESA) processing toolbox, using the SRTM 3 sec DEM with an extended shoreline of 10 px.
Then, a sliding window of 1000 × 1000 pixels moves with a stride of 500 pixels; despite
the usage of a modest hardware, the 4264 tiles obtained are processed in less than 800 s. As
seen from Figure 8, in scenario A, two collaborative ships and a dark vessel in the middle
are present.

The blue rectangles in Figures 8–10 represent the bounding boxes output of Cascade
Mask R-CNN after the non-maximum suppression algorithm. As stated above, NMS and
raster-tiling are demanded due to the impossibility of performing an end-to-end training
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with a single GPU. These detections are filtered with a global confidence score threshold
of 0.55.

The narrow natural surface films have been imaged as an almost straight feature and,
hence, have been interpreted by the algorithm as ship wakes. However, all the wakes have
been detected with the commonly assumed confidence score threshold of 0.55. More in
detail, the trace of the ship wake on the left has shown an interesting behaviour since it
extends for several kilometers: in the section where the contrast is poor, the detector was
not able to find the wake, but in a close section the contrast boost led the detection again
to be feasible. In a quiet sea condition (scenario B), the detector has shown a remarkable
performance able to capture all the wakes with no false alarms. For the sake of highlighting
the capability of the algorithm, the binary mask obtained by the segmentation branch
of Cascade Mask R-CNN and the confidence score of one of the two detected wakes
is also reported. In Scenario C, the wind-speed change has generated a variation of
the backscattered energy from the sea, thus, a particular pattern is visible. Still, the detector
has been able to handle this situation with no false alarm generated in a bright/dark border
and the unique ship wake in the scene is correctly detected.

From a statistical point of view, an error analysis of the detector has been conducted
on whole SAR images covering the Gulf of Genoa, Italy. They are Interferometric Wide
(IW) swath mode Sentinel-1 C-band images gathered in VV polarization, and correspond to
Level-1 Ground Range Detected (GRD) products. All the images are acquired in ascending
phase with a ground range and an azimuth spacing of 10 m. The following Table 4,
lists the image IDs completed by wind and maritime traffic data, provided by in situ
measurements at Genoa and La Spezia stations, respectively. The images are not present in
the paper for brevity but are reported in the Supplementary Materials.

Table 4. List of products under inspection for error analysis.
Date 6 July 2020

Image ID S1A_IW_GRDH_1SDV_20200706T171436_20200706T171501_033337_03DCC6_1122

Image ID S1A_IW_GRDH_1SDV_20200706T171411_20200706T171436_033337_03DCC6_3302

Wind@Genoa Speed: 2 m/s Direction: 204°N

Wind@LaSpezia Speed: 5 m/s Direction: 134°N

Date 18 July 2020

Image ID S1A_IW_GRDH_1SDV_20200718T171436_20200718T171501_033512_03E220_DEFC

Image ID S1A_IW_GRDH_1SDV_20200718T171411_20200718T171436_033512_03E220_1765

Wind@Genoa Speed: 2.2 m/s Direction: 259°N

Wind@LaSpezia Speed: 2.9 m/s Direction: 149°N

Date 23 August 2020

Image ID S1A_IW_GRDH_1SDV_20200823T171414_20200823T171439_034037_03F36B_5DA2

Image ID S1A_IW_GRDH_1SDV_20200823T171439_20200823T171504_034037_03F36B_447E

Wind@Genoa Speed: 2 m/s Direction: 188°N

Wind@LaSpezia Speed: 2.5 m/s Direction: 150°N

Date 29 August 2020

Image ID S1B_IW_GRDH_1SDV_20200829T171409_20200829T171434_023141_02BF02_2FD4

Image ID S1B_IW_GRDH_1SDV_20200829T171344_20200829T171409_023141_02BF02_36A0

Wind@Genoa Speed: 1.1 m/s Direction: 194°N

Wind@LaSpezia Speed: 9.4 m/s Direction: 210°N

We denote TP as the true positives, TN, the true negative, and FP, the false negatives.
The available data allow us to affirm that when the turbulent wake is clearly focused by
SAR, the trained detector provides almost 100% of TP, i.e., all the wakes are detected by
the model, 0% of TN, i.e., no wake imaged in the scene is lost, but is very difficult to
quantify the FP. This is due to the impossibility of the identification of a ground truth, even
with a visual inspection of the SAR image. In some cases, false positives clearly derived
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from other features over sea, such as natural surface films, but in other cases, mainly when
the ship is not imaged, it is not possible to discriminate about the nature of the feature.

6.3. Results on X-Band Products

As domain shifting and transfer learning are a common practice in deep learning,
in this section the generalizability reached by the developed and trained detector is as-
sessed. Thus, the detection performances are hereby evaluated on the German TerraSAR-X
(TSX) and Italian Cosmo-Skymed (CSK) X-band products. Main characteristics are re-
ported in Table 5, where it is possible to notice that the products are in Azimuth-Slant
Range coordinates.

Table 5. Main characteristics of TerraSAR-X (TSX) and Cosmo-Skymed (CSK) X-band products.

Parameter CSK Image TSX Image

Acquisition Date 30 June 2008 9 June 2011
Acquisition Mode Stripmap Stripmap

Product Type SLC SLC
Incidence Angle (local) ∼24° ∼28°

Polarization HH VV
Resolution (slant range-azimuth) 3 m × 3 m 1.2 m × 6.6 m

It is worth noting that the algorithm has been trained on C-band images, which,
in terms of complexity, offer relatively fewer features compared to X-band SAR imagery.
The application of the proposed methodology is motivated showing the robustness of
the results against multi-domain unseen data.

Firstly, the results over TSX data are evaluated. These images hold characteristics
similar to sentinel-1 IW products, i.e., the same polarization and same wake characteristics
present, but the resolution and wavelength of the signal are different. A subset of the TSX
product is reported in (Figure 11a). The product gathered over the Gulf of Naples, Italy, on
9 June 2011 shows two wakes in opposite azimuth directions. The sea state is in a quiet
condition and the two turbulent wakes are sharply distinguishable from the sea clutter. The
results shown in Figure 11b demonstrate that the detector is able to recognize the presence
of two different ship wakes; this is very interesting since the two wakes barely cross in
the bottom, which could be prone to lead to a false interpretation as a unique V-shape
wake. The confidence scores are still high enough and the contour of the ship wakes are
well defined.

(a) (b)

Figure 11. Subset (2000 × 2000 pixels) of the TSX product (TSX1_SAR_SSC_BTX1_SM_D_SRA_
20110609T164931_20110609T164939) gathered in VV polarization over the Gulf of Naples, Italy on
9 June 2011 (Azimuth-Slant Range coordinates). (a) Reference image, (b) Segmentation results.
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Finally, results are evaluated on CSK data, which are completely different in terms of
sensor, resolution, polarization and different wake characteristics. In Figure 12a, a subset
of CSK SLC images in Azimuth-Slant Range coordinates is reported. The image is gathered
in HH polarization over the Gulf of Naples, Italy, on 30 June 2008. It contains a ship wake
in which the Kelvin wakes generated by the vessel motion are clearly visible. Results
shown in Figure 12b confirm the generalization of the proposed methodology. As expected,
the segmentation mask well contours the turbulent and narrow-V wakes but does not
recognize the kelvin cusps. However, this is quite understandable, since the detector has
not been trained to recognize such features, which are not imaged in medium resolution
C-band imagery, like Sentinel-1 IW products. It is worth noting that the confidence score is
high enough to discriminate the wake from the surrounding surface films, which have not
been misjudged by the algorithm.

(a) (b)

Figure 12. Subset (1825 × 1563 pixels) of the CSK product (CSKS1_SCS_B_HI_0B_HH_RA_SF_
20080630045711_20080630045718) gathered in HH polarization over the Gulf of Naples, Italy, on
30 June 2008 (Azimuth-Slant Range coordinates). (a) Reference image, (b) Segmentation results.

7. Conclusions

Leveraging the generalization capabilities of DL-based methods, this paper assessed
the effectiveness of object detectors for the sake of wake detection in SAR images. With
different incident angles of the radar signal, environmental factors, polarization methods,
orientations, frequency, ship velocity, ship type, etc., the ship wake greatly changes its
appearance. Due to the lack of large datasets in the SAR community, an original dataset
of ship wakes (SSWD) has been built, by exploiting the C-band SAR images gathered by
Sentinel-1 satellites. Since an assessment about the best DL model for wake detection is
not available from the literature, an analysis of metrics has been discussed as limited to
the most mature architectures, i.e., the R-CNN family network and RetinaNet. The results
provide the first overview of the main properties of DL-based object detectors for wake
detection in SAR images. Moreover, the analysis paves the way towards future application
of more advanced detectors. In fact, in the last year, Vision Transformer (ViT)-based ODs
and SS-ODs are gaining huge attention; since most of these extend the most mature ones,
the latter have been assumed as model baselines for these first analyses. The best-trained
model, i.e., Cascade Mask R-CNN, is then applied to process a complete Sentinel-1 product.
Finally, paving the idea of a domain-agnostic wake detector, the domain generalization
performance reached is tested against X-band images coming from TerraSAR-X and Cosmo-
Skymed in VV and HH polarization, respectively. The results confirm the performance
in terms of detection rate and processing cost of the proposed methodology. Having
confirmed that DL can support the achievement of a ship wake detector, future activities
will pay attention to the most recent architectures released. Despite the small number of
chips contained in SSWD, this study has shown that convergence has occurred. In future,
SSWD will be enriched with X-band data, given the importance of the data variety and
veracity in the characterization of the ship wake. Another step is the implementation of
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rotating bounding boxes that may tackle the clutter leakage due to the elongated wake
shape. Finally, an ablation study is also required to build a lightweight custom back-
bone for wake detection purposes, enhancing the object detection performance at a lower
computational cost.

The experimental results confirm that the trained and tested detectors cannot be
considered enough mature for practical and operational applications. One of the limitations
of current development is certainly represented by the limited number of chips of SSWD.
However, recollecting ship wake chips by visual inspection requires a significant deal
of manpower. Ongoing and future activities are planned to produce a wider database.
Another, probably more important, limitation regarding the false alarm rate, especially
in rough sea conditions for low-resolution SAR data, the few imaged features could
make ship wakes similar to surface films. As a result, this makes it difficult to establish
a confidence score threshold to filter out false alarms. To overcome these situations, there
is a need for a discrimination step implementing deterministic approaches, e.g., including
hydrodynamic laws or multi-polarization measures. One last limitation concerns the way
in which detectors were trained and the labeled dataset developed. The results presented
in this paper demonstrate that the wake detection problem is very different from the ship
detection one. Hence, working with larger chips may represent of valuable approach to
catch the spatial variability of the wake features and to enhance the subtle differences
distinguishing them from other phenomena affecting SAR imaging over sea and oceans.

Supplementary Materials: Data of the reported results are publicly available on Zenodo at https:
//zenodo.org/record/5694213#.YY_ksbrSIj4.
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