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Abstract: In this study, the harbor aquaculture area tested is Zhanjiang coast, and for the remote
sensing data, we use images from the GaoFen-1 satellite. In order to achieve a superior extraction
performance, we propose the use of an integration-enhanced gradient descent (IEGD) algorithm. The
key idea of this algorithm is to add an integration gradient term on the basis of the gradient descent
(GD) algorithm to obtain high-precision extraction of the harbor aquaculture area. To evaluate the
extraction performance of the proposed IEGD algorithm, comparative experiments were performed
using three supervised classification methods: the neural network method, the support vector
machine method, and the maximum likelihood method. From the results extracted, we found that
the overall accuracy and F-score of the proposed IEGD algorithm for the overall performance were
0.9538 and 0.9541, meaning that the IEGD algorithm outperformed the three comparison algorithms.
Both the visualized and quantitative results demonstrate the high precision of the proposed IEGD
algorithm aided with the CEM scheme for the harbor aquaculture area extraction. These results
confirm the effectiveness and practicality of the proposed IEGD algorithm in harbor aquaculture area
extraction from GF-1 satellite data. Added to that, the proposed IEGD algorithm can improve the
extraction accuracy of large-scale images and be employed for the extraction of various aquaculture
areas. Given that the IEGD algorithm is a type of supervised classification algorithm, it relies heavily
on the spectral feature information of the aquaculture object. For this reason, if the spectral feature
information of the region of interest is not selected properly, the extraction performance of the overall
aquaculture area will be extremely reduced.

Keywords: integration-enhanced gradient descent algorithm; harbor aquaculture area extraction;
GaoFen-1

1. Introduction

Given that the scientific planning of harbor aquaculture areas is an effective and
sustainable way to develop fishery resources, the scientific determination of the area’s
spatial distribution and the real-time monitoring of it are necessary and of critical im-
portance. Moreover, the use of remote sensing techniques allows one to observe objects
on the surface of the water through satellite images and overcome the shortcomings of
traditional monitoring technology. These techniques have become an important means of
dynamic monitoring in harbor aquaculture areas [1]. In recent years, some scholars have
achieved excellent extraction results and application prospects in harbor aquaculture area
extraction experiments, greatly promoting the development of remote sensing technol-
ogy [2,3]. The state-of-the-art extraction methods used for harbor aquaculture areas can be
divided into three main categories: visual interpretation methods, object-oriented methods,
pixel-oriented methods, and neural network methods.
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The visual interpretation method is the most commonly used extraction method [4,5].
For example, Zeng et al. used medium-resolution multispectral images for aquaculture
pond extraction [6], with the results indicating that the visual interpretation method makes
extraction of the target site more difficult. Furthermore, Luo et al. presented a dynamic
monitoring method [7] that has important implications for future upgrades to improve
aquaculture and other issues. By using Landsat images and through visual interpretation,
Duan et al. identified the dynamic nature of the growth of aquaculture pond areas in
coastal areas of China [8].

In general, the area provided to aquaculture ponds in most provinces initially increases
rapidly and then stabilizes or begins to decline. Therefore, monitoring the extent of
aquaculture areas is a matter of great urgency. Zhang et al. used GF-2 satellite images to
achieve a superior extraction of aquaculture areas in turbid waters, providing technical
support to the aquaculture industry [9]. However, the existence of visual interpretation
relies on the visual interpreter’s own experience, which is not conducive to the monitoring
needs of aquaculture areas because of the large and time-consuming workload involved.

Next, the object-oriented extraction method comprehensively considers the space,
spectrum, texture, and shape features of classified objects in remote sensing images [10–12].
To demonstrate the advantages of this method, Peng et al. used the CBR (Case-Based
Reasoning) method [13] to successfully accomplish the segmentation of multi-scale images
to complete classification and extraction. The process of object-oriented pond culture infor-
mation extraction consists of image preprocessing, edge extraction, image segmentation,
feature analysis, and extraction, etc. [14]. Liu et al. [14] and Xu et al. [15] further optimized
the object-oriented extraction technique to improve the classification accuracy [15] while
quantitatively describing the change in sea area usage in the study area.

In addition, Wei integrated visual interpretation with the object-oriented approach to
optimize the classification and extraction accuracy, thus, optimizing the object-oriented
extraction [16]. However, the object-oriented approach also possesses non-negligible
drawbacks, such as different types of features presenting the same spectral characteristics
in a certain spectral interval, leading to their incorrect classification.

Additionally, the pixel-oriented extraction method can make good use of the spectral
reflection characteristics of the aquaculture area and use the threshold to extract the aqua-
culture area automatically [17]. This was confirmed in the research of Hussain et al. [18]
and Zheng el al. [19]. Affected by different water quality factors in the same culture area,
the reflection characteristics of aquaculture areas differ, making the pixel-oriented extrac-
tion method more difficult to perform. In addition, the setting of the extraction threshold
in the pixel-oriented extraction method also needs to be specified manually. When the
aquaculture extraction range becomes large, it is difficult to select the threshold that will
produce the best extraction results. All these factors make it difficult for the pixel-oriented
extraction method to extract aquaculture areas independently and accurately.

With the development of deep learning, more neural networks are being applied
for the monitoring of aquaculture areas. The reason for this is that neural networks have
shown excellent capabilities in the areas of automated processing, self-learning, and parsing
in complex environments. Therefore, in order to achieve the monitoring and extraction
of aquaculture areas using neural networks, Cui et al. identified the shortcomings of
visual interpretation and proposed a method based on the automatic extraction of floating
raft culture areas using a fully convolutional neural network (CNN) model [20], which
effectively improved the accuracy of floating raft culture area identification.

Moreover, Jiang et al. upgraded the CNN model to a 3D-CNN model [21], which is an
extraction model with a high extraction accuracy and strong spatial migration ability in
complex water backgrounds. Therefore, the presented model is suitable for extracting large-
scale, multi-temporal offshore rafting areas from remote sensing images. Further, Liu et al.
used GF-2 satellite images to construct a deep learning richer convolutional feature network
model for the water and soil separation of areas [3], thus achieving effective extraction in
areas with more sediment and waves.
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On top of that, Cheng et al. provided a hybrid dilated convolution U-Net model [22],
indicating that their method possesses excellent distinguishability. In addition, Fu et al.
constructed a hierarchical cascaded homogeneous neural network for marine aquaculture
extraction. This network showed a superior classification performance to that of other
existing methods [23]. However, in the above neural network algorithms, it can be seen
that they all require a certain number of training samples and take a long time, making
them very unfavorable for large-scale image observation.

After the above explanations and analyses, this paper aims to address the matter of
aquaculture extraction with a generalizable performance, simple operation, explicit imple-
mentation, and high accuracy. For this reason, an implementable and feasible constrained
energy minimization (CEM) scheme for aquaculture extraction is considered. Moreover,
combined with the actual application effect of remote sensing based on satellite images
and the actual demands of the Zhanjiang aquaculture area, this research selected GF-1
satellite PMS images as the data source. It is important to bear in mind that gradient-type
algorithms have been proven to possess an accessible implementation paradigm for use in
various optimization problems.

Therefore, in order to further improve the extraction accuracy of the CEM scheme in
aquaculture areas, this paper proposes the use of an integrated-enhanced gradient descent
(IEGD) algorithm derived from the gradient descent (GD) algorithm. The innovations
made by this work are as follows. The proposed IEGD algorithm is derived from a major
innovation in control theory, which adds an integration error summation term to improve
the computational precision. In other words, the integration error summation term can
effectively eliminate the deviation between the computed and theoretical solutions. In
general, the proposed IEGD algorithm demonstrates highly accurate extraction results in
aquaculture areas. The main contributions and highlights are summarized as follows:

1. Based on control theory, the proposed IEGD algorithm represents a major break-
through of the traditional gradient descent algorithm for solving extraction problems
and can be regarded as a novel algorithmic paradigm.

2. The proposed IEGD algorithm possesses relatively excellent robustness.
3. The proposed IEGD algorithm improves the shortcomings of the traditional CEM

algorithm with an insufficient accuracy.

2. Research Principles and Methods
2.1. Technical Route

In view of the complex and diverse spectra of remote sensing images of objects on the
ground in the research area, the method proposed in this paper is mainly divided into three
stages—namely, spectral feature selection, an IEGD solving algorithm, and ground object
extraction. First of all, this paper uses the feature index method and the Bhattacharyya
Distance (BD) method to screen the sensitive wavebands to form the spectral feature set.
Secondly, the CEM scheme aided by the proposed IEGD algorithm is used to enhance the
target ground object and weaken the background spectral information. Finally, Otsu’s
method is used to calculate the division threshold to achieve ground object extraction.
Figure 1 shows the technical route map.
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Figure 1. Technical route of harbor aquaculture area extraction.

2.2. Spectral Feature Selection

Due to the different reflection characteristics of ground objects in different wave bands,
the characteristic index method can be used to amplify the small brightness differences and
highlight the spectral characteristics of ground objects. For situations where there is a high
chlorophyll concentration and high suspended sediment content in Zhanjiang nearshore
waters, the NDWI (Normalized Difference Water Index) feature index,

NDWI =
bandgreen − bandnired

bandgreen + bandnired
,

is applied in this study [24] to reduce the influence of chlorophyll and suspended sediment
on aquaculture area information.

After the above band expansion method has been applied, the new bands (NDWI) are
obtained as well as the blue, green, red, and near-infrared bands of the GF-1 image for a
total of 17 wavebands. These wavebands contain not only the characteristic information of
the surface features in the culture area, but also the information of suspended sediment
and chlorophyll concentration in non-culture waters. However, not all bands are sensitive
to the target ground objects in the culture area.

In order to eliminate the band information that has a weak relation to the target
ground object, we analyze the spectral characteristics of ground objects and use the Bhat-
tacharyya Distance to screen the bands. Bhattacharyya Distance measurement determines
the similarity of two discrete or continuous probability distributions by comparing the
overlap between species in order to analyze the similarity between two statistical samples
or populations [25].

BD =
1
4
(µ1 − µ2)

2

σ2
1 + σ2

2
+

1
2

lg(
σ2

1 + σ2
2

2σ1σ2
),

where µ represents the mean value of the gray-level eigenvalues of two different ground
objects and σ is the standard deviation between ground objects. The larger the BD value
is, the greater the spectral difference between the ground objects is, and the easier it is to
distinguish. In this study, all the above seven bands were screened using the Bhattacharyya
Distance method, three bands with great differences from the ground objects were retained,
and a band feature set for the ground object was formed using band synthesis technology.
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Table 1 shows the BD ratios of each waveband, where bandblue, bandgreen, bandred,
and bandnired represent the gray-level values of GF-1 satellites from blue, green, red, and
near infra-red bands after atmospheric correction.

Combined with the spectral characteristics of the ground objects in the culture area,
we can see that the spectral difference between the cage and the sea water in the raft culture
area is the smallest. Thus, the BD value between the cage and the sea water is selected
as the selection standard of the spectral feature set in the raft culture area. Therefore,
the spectral feature set of the raft culture zone is mainly composed of bandgreen/bandnired,
bandred/bandnired, and the near-infrared band.

Table 1. The BD ratio of each waveband.

BD Value (µm) BD Value (µm)

BDblue 1.133 BDbandgreen/bandred
0.179

BDgreen 0.632 BDbandgreen/bandnired
5.850

BDred 0.556 BDbandred/bandblue
0.039

BDnired 2.766 BDbandred/bandgreen 0.173
BDNDWI 0.289 BDbandred/bandnired

2.696
BDbandblue/bandgreen 0.800 BDbandnired/bandblue

0.512
BDbandblue/bandred

0.044 BDbandnired/bandgreen 1.815
BDbandblue/bandnired

1.928 BDbandnired/bandred
1.143

BDbandgreen/bandblue
0.419

2.3. IEGD Solving Algorithm

The Constrained Energy Minimization (CEM) scheme [26] is a classical hyperspectral
image target detection algorithm that is widely used in the field of remote sensing image
ground object extraction [27–29]. The traditional CEM scheme regards the input remote
sensing image as a limited observation signal set and supposes that a hyperspectral image
can be arranged as a matrix S = [r1, r2, · · · , rN ] ∈ Rl×N , where each column of S is a
spectral vector and ri ∈ Rl×1 is a spectral vector representing the spectrum of targets of
interest. In this, N is the number of pixels and l is the number of wavebands. The CEM
scheme designs a finite impulse response (FIR) linear filter under the assumption that
the prior information d of the target pixel spectrum is known and minimizes the average
output “energy” of the image under the constraint of the following formula:

ωTd =
l

∑
i=1

ωidi = 1, (1)

where ω = [ω1, ω2, · · · , ωN ] ∈ Rl is the filter coefficient, which is a l-dimensional vector.
Suppose the output of the filter to input ri is yi:

yi = ωTri. (2)

Then, the average output “energy” corresponding to S = [r1, r2, · · · , rN ] ∈ Rl×N can
be written as:

y =
1
N

N

∑
i=1

y2
i

=
1
N

N

∑
i=1

ωTrirT
i ω

= ωTRω,

(3)

where R = (1/N)∑N
i=1 rirT

i ∈ Rl×l is the autocorrelation matrix of the remote sensing
image and y = [y1, y2, · · · , yN ] ∈ R represents the output “energy” of each pixel in the
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image after passing through the filer. Therefore, the CEM scheme can be described as a
linearly constrained optimization mathematical model as follows:

min
ω∈Rl
{ωTRω}

s.t.ωTd = 1.
(4)

By using the Lagrange multiplier method, the linearly constrained optimization
mathematical model (4) of the filter output can be transformed into an unconstrained
optimization mathematical model as follows:

F(ω) = ωTRω + λ(dTω− 1), (5)

where λ is the Lagrangian multiplier. The mathematical model of unconstrained optimiza-
tion (5) is transformed into a mathematical model of linear equality equation as follows:

Gs(t) = b, (6)

where the autocorrelation coefficient matrix G = [2R, dT; d, 0] ∈ R(l+1)×(l+1), the coef-
ficient vector b = [0, 1]T ∈ Rl+1, s(t) = [ω(t), λ(t)]T ∈ Rl+1 is the unsolved vector,
ω(t) = [ω1(t), ω2(t), · · · , ωl(t)]T is the l-dimensional vector composed of filter coefficients,
and λ(t) ∈ R is the Lagrangian function multiplier. Then, the error function that defines
Equation (6) is as follows:

e(t) = Gs(t)− b. (7)

In order to better solve s(t) for the CEM scheme (3), we must define a scalar-valued
norm-based error function,

ε =
‖e(t)‖2

F
2

, (8)

where ‖G‖F =
√

tr(GTG) represents the Frobenius norm of matrix G. Moreover, tr(·)
denotes the trace operator of a matrix. Additionally, a lemma that we must know [30] is:

∂ε

∂s(t)
= GTe(t).

Finally, the formula follows the form shown above:

ṡ(t) = −α
∂ε

∂s(t)
.

Combined with the algorithm mentioned above, the gradient descent algorithm can
be obtained as:

ṡ(t) = −αGTe(t). (9)

According to automatic control theory, adding an integration error summation term
to Formula (9) can increase the robustness of this formula:

ṡ(t) = −GT
(

αe(t) + β
∫ t

0
e(τ)dτ

)
. (10)

Finally, the discrete form of the integration-enhanced gradient descent (IEGD) algo-
rithm is constructed as follows:

sk+1 = sk − αGTek − βGT
k

∑
0

ek, (11)

where k denotes the iteration number. Through recursive calculation, the filter output
coefficient obtained is inverted, and thus the aquaculture area target enhancement process
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is completed. Furthermore, the pseudo-algorithm of the proposed IEGD algorithm (10) is
provided as Algorithm 1:

Algorithm 1: IEGD algorithm solving procedure.

1. Initial set maxstep, α, β, ω, λ, b, R, and d
2. Circular iteration

for (k =; k <= maxstep; k ++) do
calculate GT = [2R, d; dT, 0]
calculate s = [ω; λ]
calculate e = Gs− b
calculate ∑k

0 ek = e1 + e2 + · · ·+ ek
calculate sk+1 = sk − GT(αek + β ∑k

0 ek)
end for

3. Output sk+1

2.4. Theoretical Analyses

In this section, the convergence performance of the proposed model will be discussed
at zero noise.

2.4.1. Conversion

In order to prove the convergence performance more conveniently, Equation (11)
should be transformed. First, multiply matrix G on both sides:

Gṡ(t) = −αGGTe(t)− βGGT
∫ t

0
e(τ)dτ. (12)

Based on the matrix theory, the real symmetric matrix GGT can then be generated:

GGT '


γ1 0 · · · 0
0 γ2 · · · 0
...

...
. . .

...
0 0 · · · γlN

 ∈ Rl×N ,

where γi (i = 1, 2, · · · , lN) is the eigenvalue of the positive definite matrix GGT and
the symbol ' denotes the similarity of the two matrices. In line with above derivation,
Equation (11) can be transformed:

Gṡ(t) = −αΛie(t)− βΛi

∫ t

0
e(τ)dτ, (13)

where Λ = GGT ∈ Rl×N . Based on Equation (7), Equation (13) can be simplified to:

ė(t) = −εie(t)− ζi

∫ t

0
e(τ)dτ, (14)

where (·)i denotes the ith member of a vector, εi = αΛi, and ζi = βΛi.

2.4.2. Stability Analyses

Theorem 1. For a randomly generated initial state of the proposed IEGD algorithm (10), the resid-
ual error e(t) converges to zero globally.

Proof of Theorem 1. Take the ith element arbitrarily from Equation (14) as a subsystem
where:

ėi(t) = −εiei(t)− ζi

∫ t

0
ei(τ)dτ, ∀i ∈ 1, · · · , lN. (15)
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Define a Lyapunov for Equation (15). This can be:

v̇i(t) = −εie2
i (t)− ζi

( ∫ t

0
ei(τ)dτ

)2

. (16)

Then, begin the derivation of the constructed Lyapunov function (16):

dv̇i(t)
dt

= 2ei(t)ėi(t) + 2ζiei(t)
∫ t

0
ei(τ)dτ

= −2εie2(t)

6 0.

(17)

Therefore, based on the Lyapunov theory, it can be concluded that e(t) converges to
zero globally. In summary, the theorem has been proven.

2.4.3. Convergence Analyses

Theorem 2. For the solution of the CEM model (3), the residual error of the proposed IEGD
algorithm (10) converges exponentially.

Proof. Let θ(t) =
∫ t

0 e(τ)dτ. Combining this with Equation (15), Equation (15) can be
rewritten as:

θ̈i(t) = −εi θ̇i(t)− ζiθi(t).

We arrange the above equation as:

ζiθi(t) + εi
dθi(t)

dt
+

d2θi(t)
dt2 = 0. (18)

According to the solution of the differential equation, two feature roots can be ob-
tained as:

θ1 =
−εi +

√
ε2

i − 4ζ

2
,

θ2 =
−εi −

√
ε2

i − 4ζ

2
.

After that, in order to solve this differential Equation (18), initial values of θi(0) = 0
and ėi(0) = ei(0) are given. There are three situations in Equation (18), which are discussed
as follows:

• θ1 6= θ2, where θ1, θ2 ∈ R, i.e., ε2
i > 4ζi.

For the solution of εi(t), ei(t) can be written as:

εi(t) =
ei(0)(eθ1t − eθ2t)√

ε2
i − 4ζi

,

ei(t) =
ei(0)(θ1eθ1t − θ2eθ2t)√

ε2
i − 4ζi

.

Combining the above formulas, e(t) can be obtained:

e(t) =
e(0)(θ1eθ1t − θ2eθ2t)√

ε2
i − 4ζi

.

• θ1 6= θ2, where θ1 = φ + iψ ∈ C, θ2 = φ− iψ ∈ C—i.e., ε2
i < 4ζi.
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For the solution of εi(t), ei(t) can be written as:

εi(t) = ei(0) sin(ψt)e
φt
ψ ,

ei(t) = ei(0)e
φt( φ sin(ψt)+cos(ψt)

ψ ).

Combining the above formulas, e(t) can be obtained:

e(t) = e(0)eφt( φ sin(ψt)+cos(ψt)
ψ ).

• θ1 = θ2, where θ1, θ2 ∈ R , i.e., ε2
i = 4ζi.

The solution of the εi(t), ei(t) can be written as:

εi(t) = ei(0)eθ1t,

ei(t) = ei(0)eθ1t(1 + θ1).

Combining the above formulas, e(t) can be obtained

e(t) = e(0)eθ1t(1 + θ1).

Based on the above three situations and according to the conclusion of Theorem 1, it
can be concluded that the convergence speed converges exponentially to the conclusion
from Theorem 1. In summary, the proof of this theorem is completed.

2.5. Ground Object Extraction

Otsu’s method mainly divides the image into a target and background according to
the gray-level difference of the image and determines the optimal threshold by obtaining
the inter-class variance σ2

B between the ground objects. The algorithm is efficient and fast,
and the execution efficiency is high [31,32]. The calculation formula is as shown in (19),
where P1 and P2 are the probability that the image pixels are divided into the target pixels
and the background pixels and m1 and m2 are the average gray-level values of the image
pixels divided into target pixels and the background pixels.

σ2
B = P1P2(m1 −m2)

2. (19)

The enhanced remote sensing image is used to calculate the division threshold using
Otsu’s method. In this process, because the overall gray level of some sea water pixels is
similar to that of aquaculture objects, it is mistakenly categorized as the area of aquaculture
features to improve the false detection rate of aquaculture areas. Therefore, aiming at the
sea water retention phenomenon, this study used the characteristic that the gray-level
value of sea water in a single band is smaller than that of cultured objects and carried out
single-band threshold segmentation.

In view of the fact that the gray value of the sea water pixels in the raft culture area
in the blue waveband is smaller than that in the cage, after many experiments, the blue
waveband gray threshold T1 > 2000 and the near-red waveband gray threshold T2 > 1300
are used as the single-band threshold values in the raft culture area to segment the sea
water and the raft. The preliminary extraction effect of the raft culture area is better, as the
raft culture area separates most of the sea water from the raft, leaving only a small part of
the high-turbidity water at the edge of the coast.

It is difficult to remove this water because the suspended sediment is too high. Finally,
we use the object-oriented area attributes to remove the sea water. In this process, sea water
with an area smaller than 43 pixels or larger than 700 pixels is removed to obtain the final
extraction result.
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3. Materials
3.1. Research Area

As shown in Figure 2, Zhanjiang is located on Leizhou Peninsula—the third largest
peninsula in China, at the southernmost tip of the Chinese mainland. It is also an important
aquaculture base for Guangdong Province and even for China [33]. The research object
of this paper is mainly the raft culture area, which is divided into aquaculture rafts for
oyster culture and cages for captive fish culture. Aquaculture rafts are mainly composed
of bamboo or wood, and there is often a rope hanging down from the aquaculture raft to
cultivate shellfish, such as oysters.

In the process of culturing, the rafts are closely arranged, the oysters cling onto the
rope and are immersed in the water, and only the aquaculture raft floats on the water
surface, showing a bright white rectangular object on the remote sensing image, as shown
in Figure 2. The cage is usually composed of wooden boards and plastic buckets, and there
are small fish ponds inside, which are shown as a rectangular grid similar to the color of
the water in remote sensing images, as shown in Figure 2.

Figure 2. The research area in true color with image examples are raft and cage aquaculture areas on
the satellite (a1 and b1, respectively) and ground (a2 and b2, respectively).

3.2. Data Sources

The GF-1 satellite is the first high-resolution and wide-width Earth observation satellite
developed by China Aerospace Science and Technology Corp. The highest spatial resolution
of the satellite is 2 meters (m), and the maximum imaging width is more than 800 kilometers
(km), meaning that it can meet the needs of remote sensing data with various spatial and
spectral resolutions [34,35]. The GF-1 PMS level 1 data are made up of five wavebands—
namely, one panchromatic band and four multispectral wavebands [35]. The specific
parameters are shown in Appendix A Table A1.

The ENVI (Environment for Visualizing Images) 5.3 software is used to preprocess
the remote sensing images, performing radiometric calibration, atmospheric correction,
orthophoto correction, and so on. At the same time, in order to identify the culture area in
the image more clearly, the GS (Gram–Schmidt) method is used to fuse the multi-spectral
and panchromatic images, thus improving the spatial resolution of the multi-spectral image
to 2 meters (m).
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3.3. Accuracy Evaluation

In order to evaluate the accuracy of the detection results, the overall accuracy (OA),
precision, recall, and F-score are used. The OA, precision, recall, and F-score are computed
as follows [36]: 

OA =
TP + TN

TP + TN + FP + FN
;

Precision =
TP

TP + FP
;

Recall =
TP

TP + FN
;

F-score = (1 + β2) · Precision · Recall
β2 · Precision + Recall

,

(20)

where TP denotes, if the true category of the sample is a positive case and the model
predicts it to be a positive case; TN denotes, if the true category of the sample is a negative
case and the model predicts it to be a negative case; FP denotes, if the true category of the
sample is a negative case but the model predicts it to be a positive case; FN denotes, if the
true category of the sample is a positive case but the model predicts it to be a negative
case [37], and β represents the weight. When β = 1, this indicates that both precision and
recall are important.

4. Result

In this section, we apply five extraction methods in the study region to compare
their performance and judge the accuracy of their extraction rafts against the accuracy
mentioned above. The five methods are the integration-enhanced gradient descent (IEGD)
algorithm (10), the constrained energy minimization (CEM) scheme (3), neural network
(NN) [38], support vector machine (SVM) [39], and maximum likelihood estimation
(MLE) [40], which are presented in this paper. In addition, Figure 3 represents the original
image of the study area.

4.1. Results of the Extraction Process

Not counting the time spent on image preprocessing in the ENVI software, the time
taken to run the Algorithm 1 of the IEGD algorithm (10) in Matlab 2017A was 1.4863 s.
This time was less than two seconds for a large-scale image with 7575× 8740 pixels and
2-meter spatial resolution. It is worth noting that all the experiments were performed using
MATLAB 2017A and ENVI 5.3 on a computer with Windows 10, the AMD Ryzen 5 3600
6-Core Processor @3.60 GHz and 32 GB RAM. In addition, certain results of the extraction
process are shown below: 

d = [0.662; 0.709; 0.804];

ω = [−9.1553; 9.9557; 0.0027];

κ = 0.2863;

R =

0.1717 0.1701 0.0419
0.1701 0.1703 0.0419
0.0419 0.0419 0.0224

,

where d is the prior information, ω is the filter coefficient, κ is the optimal threshold, and R
is the autocorrelation matrix of the remote sensing image.

4.2. Overall Performance

First, Figure 3 shows the original image of the whole raft breeding area, where the
white color represents the aquaculture rafts. Figure 4 shows the graph of the results
after extraction has been carried out using the IEGD algorithm (10). Table 2 represents
the comparison of the accuracy evaluation of various methods in the whole raft culture.
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From the overall view, the extraction effect is very satisfactory, basically extracting all
the aquaculture rafts. This is demonstrated by the F-scores given in Table 2, which are
above 0.96. Furthermore, it is necessary to explore the extraction accuracy of various
methods locally.

Figure 3. The research area, where a, b, c denotes three regions of study areas and the white color
represents the aquaculture rafts.

Figure 4. The IEGD algorithm (10) is applied to extract rafts from the whole study area, where
white denotes rafts, black denotes sea water, gray denotes land, red denotes the missing extraction,
and green denotes greater extraction.
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Table 2. Comparison of the accuracy evaluation index of various methods in raft farming areas,
where OA denotes the ratio of the predicted correct result samples to the total samples, precision
denotes the ratio of the actual positive samples to the predicted positive samples, recall denotes the
ratio of the predicted positive samples to the actual positive samples, and the F-score is a combined
consideration of the precision and recall.

Accuracy Evaluation
Method

IEGD CEM NN SVM MLE

OA 0.9538 0.9180 0.9070 0.9046 0.8290
Precision 0.9817 0.9839 0.8521 0.8461 0.7486

Recall 0.9279 0.8556 0.9847 0.9890 0.9940
F-score 0.9541 0.9153 0.9136 0.9120 0.8540

4.3. Local Performance

In this subsection, we will apply five extraction methods in three different regions, of
which this region is the region mentioned in the previous subsection. We will compare the
performance of these five extraction methods and judge the accuracy of their extraction
of rafts against the accuracy mentioned above. Table 3 indicates the different accuracies
of these five methods in different regions. In the following pictures of the comparison
of different regional methods, there will be three different colors, where green stands
for misclassified aquaculture areas, red stands for omitted aquaculture areas, and black
represents the background.

Table 3. The accuracy evaluation index of the use of various methods in different regions, where OA
denotes the ratio of the predicted correct result samples to the total samples, precision denotes the
ratio of actual positive samples to predicted positive samples, recall denotes the ratio of the predicted
positive samples to the actual positive samples, and the F-score is a combined consideration of the
precision and recall.

Method OA Precision Recall F-Score

Region a

IEGD 0.9908 0.9907 0.9767 0.9837
CEM 0.9317 0.9919 0.7647 0.8636
NN 0.9169 0.7742 0.9966 0.8714

SVM 0.9146 0.7693 0.9966 0.8683
MLE 0.8466 0.6484 0.9990 0.7864

Region b

IEGD 0.9982 0.9951 0.9980 0.9965
CEM 0.9681 0.9978 0.8821 0.9364
NN 0.9445 0.8275 1.0000 0.9056

SVM 0.9402 0.8167 1.0000 0.8991
MLE 0.8000 0.5711 1.0000 0.7270

Region c

IEGD 0.9565 0.8908 0.9516 0.9202
CEM 0.9565 0.8908 0.9516 0.9202
NN 0.8201 0.5944 0.9987 0.7453

SVM 0.8183 0.9995 0.7537 0.8594
MLE 0.6394 0.4222 0.9993 0.5937

4.3.1. Region a

In Region a, we can clearly observe that the proposed IEGD algorithm (10) possesses
superior performance in the extraction of Region a. It can be clearly seen in Figure 5 that
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only the proposed IEGD algorithm (10) neither misses aquaculture rafts nor misidentifies
other objects that are not aquaculture rafts as aquaculture rafts. In the accuracy for each
method in each region in Table 3, it is clear that the accuracy of the proposed IEGD
algorithm (10) is above 0.97, while the accuracies of the rest of the methods are worse to
different degrees.

In terms of details, although the overall extraction accuracy of the IEGD algorithm (10)
is the best, in terms of recall, MLE [40] performs better and exhibits no missed extraction.
However, because of the defects of this method, it results in the lowest precision rate among
the five methods, at 0.6484. In turn, it can be demonstrated in Table 3 that the precision
and recall rates of the proposed IEGD algorithm (10) are 0.9907 and 0.9767, respectively,
while the F-score value of 0.9837 demonstrates the excellence of this algorithm. Therefore,
in Region a, the proposed IEGD algorithm (10) performs the best out of the five algorithms.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 5. Details of the results of aquatic product extraction carried out by different methods in
Region a with a black color denoting background, white color denoting the aquaculture raft, red
color denoting the missing extraction, and green color denoting more extraction. (a) Original image.
(b) Ground truth image. (c) IEGD (10). (d) CEM (3). (e) NN [38]. (f) SVM [39]. (g) MLE [40].

4.3.2. Region b

Figure 6 shows the image information of Region b. Due to there being less interference
in the image information, the correct extraction accuracy of these five methods rebounded
compared to that obtained in region a. The extraction performance of the proposed IEGD



Remote Sens. 2021, 13, 4554 15 of 20

algorithm (10) is still excellent; it can perfectly extract the rafts in this region, and its
accuracy is above 0.99. Compared with Region a, its general accuracy OA is improved
except for MLE.

Compared with Region a, the range missed by the CEM scheme (3) was drastically
reduced, while, for NN [38], the SVM [39] misjudgment was also significantly reduced.
This is because the CEM scheme (3) still maintains a very high precision of 0.9978, while
that of the proposed IEGD algorithm (10) differs by only 0.0059. However, in terms of
recall, the CEM scheme (3) differs from the other methods by more than 0.1, which is a
large error. Nevertheless, the proposed IEGD algorithm (10) achieved a recall of 0.9980,
representing a difference of only 0.0020 from the remaining three methods. According to
the overall F-score, the proposed IEGD algorithm (10) still performs well.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6. The details of the results of aquatic product extraction by different methods in Region b,
with a black color denoting the background, white color denoting the aquaculture raft, red color
denoting the missing extraction, and green color denoting more extraction. (a) Original image.
(b) Ground truth image. (c) IEGD. (d) CEM. (e) NN. (f) SVM. (g) MLE.

4.3.3. Region c

The accuracy of Region c decreased compared to that of Regions a and b. This is
most likely due to the fact that the rafts in this region are too dense with cargo as well
as with interference from some objects. As shown in Table 3, the accuracy of all methods
decreased. Surprisingly, there is no difference between the accuracy of the proposed IEGD
algorithm (10) and that of the CEM scheme (3).
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However, in the raft extraction of region c, there is a missed extraction and a false
extraction. The accuracy of SVM [39] surpasses that of the CEM scheme (3) at 0.9995, but its
recall is the lowest among these five methods, at only 0.7537. In terms of recall, MLE [40] is
the best without exception, achieving a recall of 0.9993. In terms of combined precision and
recall, the proposed IEGD algorithm (10) and CEM scheme (3) perform the best in region
c extraction.

5. Discussion
5.1. Robustness Discussion

1. From the viewpoint of optimization theory, the proposed IEGD algorithm (10) and the
other four compared methods are supervised learning classification algorithms that
are considered as optimization models. Differing from the others, the proposed IEGD
algorithm (10) improves the model computing accuracy and enhances the model ro-
bustness by adding an integration error summation term, which can be supported by
the stability analysis and convergence analysis described in Sections 2.4.2 and 2.4.3.

2. Our proposed method should also be discussed from the viewpoint of experimental
results. The three representative Regions a, b, and c all show the phenomena of “same
object with different spectra” and “same spectrum with different objects”. These are
undoubtedly the best testing examples for evaluating the robustness performance
of the actual extraction effectiveness. According to the corresponding visual and
quantitative results shown in Figures 4–7 and Tables 2 and 3, the robustness of the
proposed IEGD algorithm (10) is the best.

5.2. Applicability Discussion

1. The proposed IEGD algorithm (10) makes full use of the spectral, textural, and spa-
tial geometric feature information of the Zhanjiang offshore aquaculture area and
increases the feature dimension of aquatic image elements in the aquaculture area
by constructing various feature indexes. Moreover, the proposed IEGD algorithm
(10) enhances the target feature information in the aquaculture area, making the
difference between the aquaculture objects and non-aquaculture objects more distinct.
The proposed IEGD algorithm (10) can better expand the feature information between
the target object and background object to improve the performance of supervised
learning classification, allowing it to effectively overcome the phenomena of “same
object with different spectra” and “same spectrum with different objects”.
This algorithm is relatively reliable in cases where there are rich spectral features and
a high extraction accuracy. It can be used as a self-selected algorithm for extracting
aquaculture areas from high-resolution remote sensing images. In cases where there
are fewer spectral features, it can also be combined with other existing methods to
achieve a satisfying extraction performance.

2. Differing from most existing extraction methods that only focus on local small areas,
the proposed IEGD algorithm (10) can be directly employed for large-scale remote
sensing images and can achieve an overall extraction of full-frame images.

3. The proposed IEGD algorithm (10) is an important breakthrough for supervised
learning classification algorithms, which is attributed to the integrated processing of
the Matlab and ENVI software. When processing large-scale remote sensing images,
the use of this algorithm can guarantee the accuracy of local feature extraction and
provide a fast extraction speed. This can be seen in the extraction results of the
experimental process. Not counting the time spent on image preprocessing in the
ENVI software, the time generally taken to run the Algorithm 1 of the proposed IEGD
algorithm (10) in Matlab 2017A is 1.4863 s.
This time is less than two seconds for a large-scale image with 7575× 8740 pixels
and a 2-meter spatial resolution. In addition, the overall accuracy and F-score of
the proposed IEGD algorithm (10) in terms of the overall performance are 0.9538
and 0.9541, meaning that it outperforms the other four comparison algorithms. This
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demonstrates the excellent extraction performance of the proposed algorithm in
aquaculture areas.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 7. The details of the results of aquatic product extraction by different methods in Region c,
with a black color denoting the background, white color denoting the aquaculture raft, red color
denoting the missing extraction, and green color denoting more extraction. (a) Original image.
(b) Ground truth image. (c) IEGD. (d) CEM. (e) NN. (f) SVM. (g) MLE.

5.3. Expansibility Discussion

1. The proposed IEGD algorithm (10) belongs to the category of optimization methods.
Specifically, it improves the traditional gradient descent method by introducing an
integration error summation term to help its optimal solution process and obtain a
higher-precision computational solution. In this way, the proposed algorithm can be
extended to other remote sensing-like algorithms that are applicable to the gradient
descent method to help improve their solution accuracy. It is well known that the
gradient descent method is a widely used algorithm in application scenarios; thus,
the proposed IEGD algorithm (10) possesses high expansibility, good implementabil-
ity, and acceptable feasibility.

2. The proposed IEGD algorithm (10) is currently used for single aquaculture objects
(i.e., rafts), but it can be extended to multiple aquaculture object extraction tasks by
adding the prior spectral information of multiple targets.
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3. The proposed IEGD algorithm (10) can not only be employed for GF-1 remote sensing
images but also for other multi-source remote sensing images, especially hyperspectral
remote sensing images.

4. The proposed IEGD algorithm (10) can be used not only for extraction from aqua-
culture objects but also for other areas, such as mining areas, surface water on land,
crops, etc.

5.4. Limitations

1. The proposed IEGD algorithm (10) relies heavily on the spectral features of the
aquaculture features as prior information and still lacks the ability to fully exploit and
utilize the local image element dependencies. As a result, some preprocessing of the
remote sensing images of the aquaculture features is needed in order to render the
spectra features sufficiently reliable.

2. Supervised learning classification requires the manual selection of regions of interest
(ROI), which can be easily influenced by manual subjectivity.

3. For supervised learning classification, our algorithm can only determine the ROI
in defined regions that have been manually selected. It relies on human subjective
selectivity and can easily miss some tiny regions, leading to a significant reduction in
the extraction performance for the overall aquaculture area.

6. Conclusions

In this study, taking the offshore raft culture area of Zhanjiang City, Guangdong
province, as the research object, we used domestic high-resolution GF-1 PMS images as the
data source; studied the extraction rules for raft farming areas in high-resolution remote
sensing images; and proposed an IEGD algorithm (10) that combines spectral features of
remote sensing image features, the threshold method, etc. The neural network method,
support vector machine method, and maximum likelihood estimation of traditional super-
vised classification methods were compared with the proposed IEGD algorithm (10) in this
paper.

The results show that, even in culture areas where the phenomenon of “foreign bodies
with the same spectrum” is obvious, this method can effectively overcome the interference
of background ground objects and obtain high-precision raft culture area extraction results.
Compared with supervised classification, the overall accuracy of this method is more than
0.98. At the same time, for the extraction of other ground objects (including different crops
and other types of culture areas), it is expected that this method will also provide a better
application effect.

In addition, through the research in this paper, the IEGD algorithm (10) can better help
others to observe the distribution of rafts in the farming area, which makes the layout of the
farming area reasonable. The limitation of this paper is that the IEGD algorithm (10) relies
on the spectral information of the farming features as a priori information to be extracted,
which happens to be a great drawback. Since the a priori information needs to be selected
manually, subjective human judgment is extremely important. Applying this method to
more areas and improving it will be subjects of our future work.
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Appendix A

Table A1. Parameters of GF-1 PMS multi-spectral satellite images.

Band Order Value (µm) Spatial Resolution (m)

Pan 1-Panchromatic 0.450–0.900 2
Band 1-Blue 0.450–0.520 8

Band 2-Green 0.520–0.590 8
Band 3-Red 0.630–0.690 8
Band 4-NIR 0.770–0.890 8
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