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Abstract: Rapid population growth is the main driver of the accelerating urban sprawl into agricul-
tural lands in Egypt. This is particularly obvious in governorates where there is no desert backyard
(e.g., Gharbia) for urban expansion. This work presents an overview of machine learning-based
and state-of-the-art remote sensing products and methodologies to address the issue of random
urban expansion, which negatively impacts environmental sustainability. The study aims (1) to
investigate the land-use/land-cover (LULC) changes over the past 27 years, and to simulate the
future LULC dynamics over Gharbia; and (2) to produce an Urbanization Risk Map in order for the
decision-makers to be informed of the districts with priority for sustainable planning. Time-series
Landsat images were utilized to analyze the historical LULC change between 1991 and 2018, and to
predict the LULC change by 2033 and 2048 based on a logistic regression–Markov chain model. The
results show that there is a rapid urbanization trend corresponding to a diminution of the agricultural
land. The agricultural sector represented 91.2% of the total land area in 1991, which was reduced
to 83.7% in 2018. The built-up area exhibited a similar (but reversed) pattern. The results further
reveal that the observed LULC dynamics will continue in a like manner in the future, confirming a
remarkable urban sprawl over the agricultural land from 2018 to 2048. The cultivated land changes
have a strong negative correlation with the built-up cover changes (the R2 were 0.73 in 1991–2003,
and 0.99 in 2003–2018, respectively). Based on the Fuzzy TOPSIS technique, Mahalla Kubra and Tanta
are the districts which were most susceptible to the undesirable environmental and socioeconomic
impacts of the persistent urbanization. Such an unplanned loss of the fertile agricultural lands of
the Nile Delta could negatively influence the production of premium agricultural crops for the local
market and export. This study is substantial for the understanding of future trends of LULC changes,
and for the proposal of alternative policies to reduce urban sprawl on fertile agricultural lands.

Keywords: Time-series Landsat images; urban sprawl; Gharbia governorate; Remote Sensing (RS);
Support Vector Machines (SVM); logistic regression; Markov Chain (MC); Fuzzy TOPSIS

1. Introduction

The world is urbanizing rapidly; the urban covering is extending at twice the rate of
population increase worldwide [1]. The superpower of urban convergence helps boost
scientific and technological progress, and cultural exchanges. However, with the emer-
gence of inequality in the division of wealth, this accelerated development is causing
many sustainability challenges in terms of securing environmental sustainability, resource
management, and the wellbeing of urban residents [2], e.g., biodiversity loss, increasing
emissions of greenhouse gas, water scarcity, and environmental pollution [1,3]. Further-
more, many systems—such as transportation, housing, employment, privacy, and public
morals—face enormous pressures and challenges, thus further negatively affecting human
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life [4,5]. The consequences of urban growth are most critical in developing countries,
where urbanization is prominent and frequently random [6]. Therefore, the focus on urban
studies and the development of research plans has become an urgent issue.

The regular and timely monitoring and mapping of human settlements at multiple
spatial scales, from the local to the global, is critical to the realization of the spatial and tem-
poral variability of population distribution and fresh urbanization trends, and to support
global scopes such as the 2030 Agenda for Sustainable Development [7,8]. Many previous
studies addressed the issue of urban sprawl by adopting different methodologies, e.g.,
Ranagalage et al. [9] examined and forecasted land-use changes in the rapidly urbanizing
hill station of Nuwara Eliya, Sri Lanka, based on a neural network–Markov model. The
findings show that the changes in cultivated land indicate a strong negative relationship
with the changes in built-up cover along the urban expansion. Furthermore, Rimal et al. [10]
addressed the study area of Nepal’s Terai region; a densely populated area that witnessed
land-use changes owing to urban development. They utilized Landsat satellite images to
examine past land-use change, highlighting urban growth and predicting its future trends
using ANN and MC spatial models based on historical trends. Urban cover quadrupled
over a 27-year period, and this expansion was roughly totally at the expense of agricultural
diminution. The urban sprawl is predicted to continue according to the same trend over
that study area.

Otherwise, our study focused on the areas suffering from accelerating urban sprawl
on agricultural lands, resulting in food security challenges. In Egypt, the rapid population
growth and growing demand for urban lands are the main drivers of the accelerating
urban sprawl [11] into agricultural and arable lands. This is particularly obvious in the
governorates that do not have a desert backyard. Gharbia governorate is a vivid example
of a densely populated area (which experienced rapid urban growth over recent decades)
where there is no desert backyard that could allow urbanization [12]. The main reason for
the amplification of the problem of urban expansion in Egypt is that about 96% of the entire
land area is unpopulated desert [13]. As such, the population is intensified completely in
the Nile valley and the Delta. This unbalanced allocation and the massive rise in population
led to critical socio-economic problems [2,14]. On the other hand, agriculture is a basic
economic resource for Egypt [15], such that the diminution of agricultural land is one of
the most important challenges facing agricultural development to achieve food security
and agricultural rural stability. Even the reclamation of desert lands (new lands) cannot
compensate for the deduction from the old lands in the short term due to the lower fertility
of the new lands and the cost of the reclamation process. Therefore, the lack of agricultural
production is a major problem for society in terms not only of the consumption of large
amounts of foreign currency to fill the food gap resulting from the deduction of these areas
but also the loss of products destined for export and the local markets for which the study
area is famous, e.g., Egyptian cotton. Accordingly, understanding the dynamics of urban
expansion and the motives behind the transgressions in such governorates, like Gharbia, is
pivotal to promote sustainable land-use planning. This paper affords a survey of machine
learning-based and state-of-the-art remote sensing-based products and methodologies that
address the urban expansion over the agricultural and arable lands, and mapping of the
transitional zones.

Furthermore, in order to make this study more productive, we employed Fuzzy TOPSIS to
determine the level of susceptibility, for each district in the study area, to the urbanization risk
in order for the decision-makers to be given the districts with priority for sustainable planning.
As clarified, all of the previously mentioned studies focused on monitoring and forecasting
the urban expansion over the different study areas, adopting different methodologies and
achieving highly accurate and trustworthy results. However, what about the data-gap regions?
If the area of interest is not covered by the satellite images, Fuzzy TOPSIS can be employed to
evaluate the districts’ susceptibility to the urbanization risk.

Geodata science and spatial analysis are powerful for studying and monitoring land-
use/land-cover change (LULCC), and for creating models for potential scenarios, being a
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substantial tool for management and decision-making to guarantee optimal land use [16].
These techniques have made major advances thanks to the availability of Remote Sensing
(RS) images, sensors and Internet of Things (IoT) data; multi-source geospatial data; and
new methods that have emerged, such as artificial intelligence (AI), particularly in its
application to Earth observation (EO) [17]. RS imagery can efficiently capture the updated
LULC allocation spatially and temporally [18], from which trends of LULC dynamics can
be derived, analysed, and predicted [19]. Moreover, machine learning algorithms are a
common subset of AI. Using machine learning algorithms can train data for predictive
analysis, which leads to greater accuracy in the results [17–20]. Machine learning can be
highly successful in image analysis tasks, involving land-use classification, simulation, and
predictive analysis [21].

For land-use classification, a Support Vector Machine (SVM) is one of the most com-
mon machine learning image classifiers [22–25]. An SVM was considered in this study to
extract LULC from Landsat images because it can handle overlapping classifications [24,25].
It outperforms other algorithms when there are large features and fewer training data.
Moreover, it presents a notably higher classification accuracy and classification speed than
other algorithms [26], as confirmed by Yousefi et al. [27].

For simulation, there are diverse modeling methods capable of simulating and pre-
dicting LULC, including SLEUTH [28], and the Conversion of Land Use and its Effect
(CLUE) [29]. The SLEUTH model, for example, simulates LULC variation in the fu-
ture based on land-use behavioral change [30], whereas CLUE simulates spatio-temporal
LULCC as a result of human and biophysical drivers. The Markov chain (MC) algorithm
completes such spatial models of LULCC by a stochastic estimate of land-change transition
potential without determining the spatial extent of such transitions [31,32]. Consequently,
because spatial models such as cellular automata (CA) concentrate specifically on the
land-change transitions spatially, usually based on past trends, a hybrid model that in-
cludes MC can estimate the location and quantification of conversions relying on historical
LULC trends [33]. The logistic regression–Markov chain model is one of the superior
hybrid models for the estimation of future land change transitions [33–35]. A substantial
advantage is clear when compared with different models such as CA, which requires
transfer rules to manage change procedures, or the SLEUTH model, which requires the
parameter values to be known in advance. The logistic regression–Markov chain model
was utilized to simulate LULC changes in Aswan, Egypt [34]; Tehran, Iran [33]; and Giao
Thuy District, Vietnam [35]. The integration of MC (with superior potential for transition
estimation) [36] and logistic regression as a spatial model (which focuses on the location
of land-change transitions, usually based on archival trends) assists in the generation of
transition probability maps [37].

The identification of spatiotemporal patterns of LULCC and regarding driving forces
is necessary to promote perfect urban strategies and policies which can guarantee economic,
social, and environmental sustainability [15]. Therefore, this study includes three principal
objectives: (1) to investigate the LULC dynamics over the past 27 years, (2) to simulate
the future LULCC for 2033 and 2048 in the Gharbia governorate, and (3) to produce an
Urbanization Risk Map illustrating the susceptibility level to the urbanization risk. The
study focuses on promoting the capability and understanding of policymakers and the
local government to reduce the potential undesirable effects of rapid urban growth inside
the study area.

2. Materials and Methods
2.1. Study Area

Gharbia governorate is located in the heart of the Nile Delta of Egypt, at 30.87◦ N
latitude and 31.03◦ E longitude. It is bordered to the north by Kafr El-Sheikh governorate,
to the south by Monufia governorate, and to the east and west, respectively, by the Damietta
and Rosetta branches of the Nile. The Nile Delta is one of the most ancient agricultural areas
worldwide. It has been ceaselessly cultivated for more than 5000 years [2,38]. The Nile River
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provided the Delta soil with natural fertilizers and therefore high agricultural production,
creating an obvious green triangular region within a wide desert. The agricultural land
as a LULC category is dominant in the governorate, which is famous for the cultivation
of traditional crops, e.g., potatoes for the local market and export, in addition to the rice,
grains, and cotton which is famous for its superior quality. Moreover, this governorate
produces 86% of the flax crop in Egypt. Gharbia consists of eight districts, as shown in
Figure 1. According to the population estimate of 2018, there are about 5,066,000 people
residing in a total land area of 1999 km2. Otherwise, the population was only 4,011,320 and
3,790,670 in 2006 and 2001, respectively.
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2.2. Data Collection and Processing

This study employed time-series Landsat imageries gained from the United States
Geological Survey (USGS) website. They were relied upon because of their rich and free
archive that allows long-term study. The Landsat 5 Thematic Mapper (TM) and Landsat
8 OLI/TIRS were used to obtain LULC maps [39] for 1991, 2003, and 2018, and to extract
the land-cover changes over the years [40]. The obtained images were pure, with no cloud
shades thanks to the dry summer season. The three images were atmospherically corrected.
Before the image analysis, all of the scenes were stacked and put into subsets by the region
of interest. The study area is located in two successive scenes, so a mosaic was employed.
This paper has a further research area concerning the impact of LULCC on the land surface
temperature over this study area. Therefore, it was preferred to select the images in the
same season for a more realistic comparison over the years. However, if we only address
the LULCC, there is no need to consider the capture date of the images for the different
years. The road network gained from the open street map (OSM) was used as auxiliary data
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to extract the layer of “distance to the nearest road”, which will be used later. Moreover,
the training samples used for the supervised classification process and its validation were
also acquired based on Google Earth Pro as mentioned in Table 1.

Table 1. Description of the data used.

Data Type Capture Date Resolution Source Output

Landsat 1991TM 27 June 1991 30 m USGS LULC map
Landsat 2003TM 28 June 2003 30 m USGS LULC map

Landsat 2018OLI-TIRS 21 June 2018 30 m USGS LULC map
Training Samples Google Earth Pro Training/Validation

Road Network layer OSM Distance to nearest
road

Figure 2 illustrates the conceptual flowchart of the applied methodology to fulfill
the aforementioned objectives with five fundamental steps: (1) the extraction of LULC
maps from multi-temporal Landsat images [41] using a machine learning algorithm for
classification [42], followed by post-classification to limit the misclassification errors or salt
and pepper noises caused by spectral confusion [43], and the evaluation of the accuracy of
the classification process so that the change detection can be relied upon [44]; (2) choosing
the most appropriate modeling variables which are the driving forces of the LULCC (rep-
resenting the urban sprawl parameters) [45] and obtaining transition potential maps [34]
illustrating the transition between the land-use types; (3) LULCC simulation/validation
and future projection based on the Land Change Modeler (LCM) [46,47], adopting a logis-
tic regression algorithm and the Markov chain model, followed by the validation of the
simulation process to test the model’s capability of prediction; (4) linear regression analysis
is employed to investigate the correlation between the changes in different land-use types;
and (5) applying a multi-criteria decision-making (MCDM) technique (Fuzzy TOPSIS) to
determine the level of the susceptibility of the districts to the urbanization risk in the form
of an Urbanization Risk Map [48], especially in the absence of satellite images.

2.3. LULC Classification

As visually interpreted through the used data images, the study area has only 3 LULC
classes: built-up, water, and agricultural land. We relied on a pixel-based supervised
classification method which is appropriate to the primary data used, which are themselves
labeled as medium-resolution data (i.e., Landsat images). We depended on two classifica-
tion techniques: Maximum Likelihood Classification (MLC) as a parametric pixel-based
method, and SVM classification as a non-parametric pixel-based approach. However, even
visually, the SVM-based classified image simulated the actual categories much better than
the MLC technique. This is because SVM is a kernel-based algorithm that starts working
with data in a relatively low dimension and then moves them into a relatively high di-
mensional space, finding a relatively high dimensional support vector classifier that can
effectively classify the observations [49,50]. Subsequently, SVM was considered to extract
LULC from Landsat images.

There was some misclassification in the first results of the classification process. This
is why the majority filter was adopted in the post-classification to limit the misclassification
errors or salt and pepper noises caused by spectral confusion [43,51]. In other words, the
post-classification improvement is a successful technique to considerably upgrade the
results’ accuracy.
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2.4. Accuracy Assessment

So as to verify whether the classification results are accurate for change detection, a
quantitative accuracy evaluation was performed. The most common technique to assess the
accuracy of land cover maps is the confusion matrix [52,53]. The confusion matrix contrasts
a classified image with its corresponding reference image on a category-by-category basis.
The samples required for the training of all of the classes, in addition to those for validation,
were obtained based on Google Earth historical images. We used a random sampling
method [54,55] to generate 1000 checkpoints for each image, which covered all of the
LULC classes and were well distributed, in order to obtain more realistic classification
accuracy [54]. Based on the error matrix, the Overall Accuracy (OA%) was used to express
the classification accuracy assessment. However, OA doesn’t detect whether the error was
evenly distributed between the classes, or if some classes were really bad and others were
really good. Therefore, three indices of accuracy were also computed: User’s Accuracy (%),
Producer’s Accuracy (%), and the Kappa coefficient [56,57].

2.5. LULC Change Modeling

The land change modeling process involves three main steps: (1) model calibration, (2)
model simulation and validation, and (3) model projection. Before the model calibration,
the preparation of the data is required; the land cover images must have the same extent,
projection, background areas and values, and legends. These steps were performed via
LCM [58,59]. The LCM is integrated into the TerrSet Geospatial Monitoring and Modeling
System software (Clarke Labs 2019 [60]), which is efficient at LULCC analysis, simulation
and validation, and future projection [46]. The land change analysis is the exploration of
the land change dynamics between two points of time. LCM provides a superior perception
of LULCC patterns to support urban planning and sustainable development [46].
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2.5.1. Model Calibration (1991–2003)

The model was calibrated for pixels that changed from each LULC class to other
classes between 1991 and 2003. The “transition potentials” for each modeled transition
were determined using an MC stochastic model [61], whereas a sub-model representing the
transition potentials to the built-up area was specified using the logistic regression. Com-
bining the MC approach—which has been popularly adopted to predict LULC distribution
with spatial models, involving MLP-ANN, CA, and logistic regression models [62,63]—was
recommended. A hybrid model of MC and logistic regression can gather the advantages
of both the quantification and determination of the spatial extent of the conversion states
among the different LULC types [31].

The selection of the most appropriate modeling variables for the sub-model is one of
the significant steps in LULC modeling. These variables are the driving forces of the LULC
dynamics when conducting spatiotemporal prediction [64,65]. For instance, in order to
monitor urban growth, urban sprawl parameters have to be taken into account. According
to previous studies related to the modeling of land change and urbanization [9,66], as
well as the available data, some common driving forces of the LULCC—particularly when
predicting the anthropogenic activities —include:

a. The distance from roads: Roads can provide access to previously remote areas pro-
moting urbanization near roadways.

b. The distance from urban centers: Urban centers tend to grow and expand as the
human population increases, such that the areas surrounding current urban centers
are frequently susceptible to land change.

c. The distance from persistent built-up areas: Areas that have already been disturbed
by humans often have the infrastructure in place to promote further urbanization
along current persistent built-up edges.

d. The distance from railway stations: This is the same effect of the driver of “distance
from roads”.

e. Digital Elevation Model (DEM): Because of the environmental gradient, characteristics
such as temperature and rainfall alter with elevation; elevation is a proper indicator
of areas that are appropriate for cultivation (and thus are prone to transition to
agricultural land) and for subsequent development (for instance, the lowland area is
more disposed to evolution).

f. Slope: The slope is the principal of determining whether the land is advantageous to
humans. For example, agriculture and building require fairly gentle slopes, such that
areas with these slopes may be more likely to experience land cover change.

Previous studies have confirmed that the fittest way to choose the variables depends
on the properties of the study area, the detected LULCC overtime, and the expert familiarity
with the different study areas [67,68]. Therefore, based on our knowledge of the study area,
considering the development pattern of the area, we adopted four modeling variables (the
aforementioned a, b, c and d, as shown in Figure 3) as driving forces of the LULCC in the
study area. The DEM and slope can be neglected, as the study area is almost level. All of the
distance-based variables were generated by the Euclidean distance method. After the variable
extraction, a standardization technique was applied for the rescaling of the four variables
between 0 and 1 (as the logistic regression, as a machine learning algorithm, always adopts),
for the minimization of the self-impact of the variables having diverse ranges. Then, the
logistic regression algorithm was applied to produce transition potential maps depicting the
probability of each conversion at a specified location in the whole study area.
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2.5.2. LULC Simulation and Model Validation (2003–2018)

After the calibration of the model, we simulated the LULC of 2018 based on the
trends noticed during the calibration period (1991–2003). Then, the simulated 2018 LULC
map was compared with the observed 2018 LULC map produced earlier based on the
SVM supervised classification of the Landsat image, in order to validate the model. The
model validation was used to evaluate how effective the LCM is in simulating and then
extrapolating the future LULC maps [69,70]. The model outputs the Cohen’s Kappa
coefficient [71] as an indicator of the degree of the matching between the simulated and
observed 2018 LULC maps. The values of Kappa of 0 to 0.2 point out the slight relationship
between the two maps, while the values of 0.81 to 1 are a nearly ideal agreement [72,73].
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As the Kappa index may not be enough to assess the simulation potential properly [74],
the Jaccard similarity coefficient was used to cross-check the results [75]. The Jaccard
coefficient is used to characterize the performance of a model for the proper simulation
of LULCC. It is defined as the ratio of properly simulated change area versus the entire
area of properly and improperly simulated LULCC or constancy [76]. In other words, it is
defined as the area of intersection between the two layers (simulated and actual) divided
by their union area, as shown in Equation (1). It ranges from 0% to 100%, indicating
the degree of agreement between the actual and simulated change, where 0% means no
intersection between the two layers and 100% means perfect intersection. Because the
remarkably observed transition was represented in the urban sprawl over the agricultural
land, the observed and simulated built-up layer for 2018 was extracted, and then the
Jaccard coefficient was derived.

Jc(simulated, observed)2018 =
simulated urbanization ∩ observed urbanization

simulated urbanization ∪ observed urbanization
(1)

2.5.3. Projecting Future LULC Changes (2018–2033/2048)

Subsequent to the model calibration and validation, the final step is the projection of
the LULCC forward to 2033 and then to 2048 using the MC, producing two LULC maps
for these future dates. The projected rates of LULC were extrapolated from the simulation
period (2003–2018). Furthermore, the modeling variables (the driving forces of LULCC)
were first updated to 2018 before running the prediction. For instance, the “Distance from
persistent built-up areas” would be updated for the period 2003–2018. Furthermore, the
observed LULC of 2018 (not the simulated one) would be used in the new session of LCM
to project the future LULC in 2033 and 2048.

2.6. Fuzzy TOPSIS Analysis

The Fuzzy TOPSIS (Technique for Order Preference by Similarities to Ideal Solution)
is an MCDM technique, which was originally stated by Hwang and Yoon in 1981, with
additional developments by Yoon in 1987, and Hwang, Lai and Liu in 1993 [77]. TOPSIS
relies on the concept that the preferred alternative should have the shortest geometric
distance from the positive ideal solution (PIS) and the longest geometric distance from the
negative ideal solution (NIS) [48]. In order to avoid uncertainty in the data and analysis, a
fuzzy technique was employed. Utilizing fuzzy numbers in TOPSIS for criteria analysis
makes it easy to evaluate. The used fuzzy numbers were extracted based on the triangular
membership function [78,79]. Gharbia governorate has eight urban centers, and we need
to monitor the trend of urban growth through these centers to assist in producing an
Urbanization Risk Map. We have applied Fuzzy TOPSIS for the determination of the
district which is the most susceptible to urbanization risk, and thus has the priority to
be considered by the decision-makers. The following are the steps of applying the Fuzzy
TOPSIS method [48] (A spreadsheet of the numerical matrices has been inserted in the
Supplementary Materials):

Step 1: Alternatives rating by decision-makers and applying for fuzzy numbers.

Here, we have eight alternatives (representing the eight districts of the study area)
for the decision, based on five criteria by which the regions could be judged in terms of
the level of risk, including population growth, employment, local development, area, and
socio-economic conditions. The criteria data for each alternative were obtained based on
the government reports released on social media. Conversion metrics were applied to
convert the linguistic terms into fuzzy numbers. Typically, a scale of 1 to 9 is applied to rank
the criteria and alternatives. The intervals are selected to have a uniform representation
from 1 to 9 for the fuzzy triangular numbers utilized for the five linguistic evaluations.
Table 2 illustrates the fuzzy rating for the linguistic terms. The Combined Fuzzy Decision
Matrix of the criteria and alternatives (shown in Table 3) was obtained from two fuzzy
decision matrices, as we considered two decision-makers.
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Table 2. Fuzzy rating for linguistic terms.

Linguistic Term Fuzzy Number

Very high 7, 9, 9
High 5, 7, 9

Moderate 3, 5, 7
Low 1, 3, 5

Very low 1, 1, 3

Table 3. The Combined Fuzzy Decision Matrix of the criteria and alternatives.

Weightage 7, 9, 9 7, 9, 9 5, 7, 9 5, 7, 9 3, 5, 7

Criteria
Alternatives

Population
Growth Employment Local Devel-

opment Area
Socio-

Economic
Conditions

Mahalla
Kubra 7, 9, 9 7, 9, 9 5, 7, 9 7, 9, 9 5, 7, 9

Tanta 7, 9, 9 7, 9, 9 5, 7, 9 7, 9, 9 5, 7, 9
Basyun 1, 4, 7 1, 3, 5 1, 4, 7 3, 5, 7 1, 4, 7
Zefta 3, 6, 9 1, 4, 7 1, 4, 7 3, 5, 7 1, 3, 5

Santah 1, 4, 7 1, 4, 7 1, 4, 7 3, 5, 7 1, 4, 7
Kafr Elzayat 5, 7, 9 5, 7, 9 3, 5, 7 5, 7, 9 1, 4, 7

Samanod 1, 4, 7 1, 3, 5 3, 5, 7 3, 5, 7 1, 3, 5
Qotur 5, 7, 9 3, 5, 7 3, 5, 7 5, 7, 9 1, 4, 7

Step 2: Normalizing the fuzzy decision matrix using Equation (2).

The fuzzy decision matrix has the ith alternative on the jth criterion, and the triangular
fuzzy number is represented by (aij, bij, cij)

“R =
[
“rij
]

m∗n i = 1, 2, ..., m; j = 1, 2, ..., n

where, “R is the normalized fuzzy decision matrix:

“rij =

[
aij

c∗j
,

bij

c∗j
,

cij

c∗j

]
and c∗j = max

i

{
cij
}
(benefit criteria) (2)

Note that each criterion is a benefit criterion. Furthermore, the normalized triangular
fuzzy numbers range from 0 to 1.

Step 3: Computing the weighted normalized fuzzy decision matrix using Equation (3).

Õij = “rij ×Wj (3)

where Wj is the weight of each criterion (3).

Step 4: Computing the Fuzzy Positive Ideal Solution (FPIS) using Equation (4) and the
Fuzzy Negative Ideal Solution (FNIS) using Equation (5).

A∗ =
(

Õ∗1 , Õ∗2 , ...., Õ∗n
)

where Õ∗j = max
i

(
Oij3

)
i = 1, 2, ..., m; j = 1, 2, ..., n (4)

A− =
(

Õ−1 , Õ−2 , ...., Õ−n
)

where Õ−j = min
i

(
Oij1

)
i = 1, 2, ..., m; j = 1, 2, ..., n (5)

Select the maximum value from each row as Õ+, and select the minimum value from
each row as Õ−.
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Step 5: Computing the distance from each alternative to the FPIS and to the FNIS using
Equation (6).

d∗
(
Õij, A∗ j

)
=

√
1
3
[(∆a)2 + (∆b)2 + (∆c)2] (6)

Do the same for d−
(
Õij, A− j

)
, then compute the sum of the distances using

Equations (7) and (8):

d∗ i =
n

∑
j=1

d
(
Õij, A∗ j

)
(7)

d−i =
n

∑
j=1

d
(
Õij, A− j

)
(8)

Step 6: Compute the Closeness Coefficient (CCi) for each alternative using Equation (9).

CCi =
d−i

d−i + d∗i
(9)

3. Results
3.1. Accuracy of the LULC Maps

The classification result revealed three classes throughout the study area: built-up,
water, and agricultural land. The built-up class involved buildings, roads, and all other
impervious surfaces. The previously mentioned four indices of accuracy are summarized
in Table 4 for the three images of 1991, 2003, and 2018: the Overall Accuracy (%); the Kappa
Coefficient for each classified image, in addition to User’s Accuracy (%); and the Producer’s
Accuracy (%) for each land cover type. The error matrices upon which the accuracy indices
were computed have been inserted in the Supplementary Materials (Tables S1–S3). As is
visible in Table 4, each of the three classification dates attained satisfying overall accuracies
of 93.9 %, 94.3% and 94.3%, and corresponding desired kappa coefficients of 0.82, 0.79 and
0.73 for 1991, 2003 and 2018, respectively. SVM confirmed high classification potential.
However, there is some mutual misclassification in the water and irrigated agricultural
land owing to the close spectral similarity between these two classes in a single temporal
image. Therefore, the seasonal behavior of crops is an essential component of successful
image interpretation.

Table 4. Classification accuracy assessment of the LULC types.

Accuracy LULC Class 1991 2003 2018

User’s Accuracy (%)
Built-up 85.7 90.7 91.8

Water 88.9 76.2 92.3
Agricultural land 94.8 95.3 94.8

Producer’s Accuracy (%)
Built-up 67.8 78.5 83.1

Water 64.0 66.7 54.5
Agricultural land 98.3 97.9 98.1

Overall Accuracy (%) 93.9 94.3 94.3

Kappa Coefficient 0.73 0.79 0.82

3.2. Spatiotemporal Analysis of LULCC

The classification and quantification of the images of the study area (illustrated in
Figure 4 and summarized in Table 5) are vital for LULCC detection within the study
area and over the study period. LULC maps for 1991, 2003, and 2018 are illustrated in
Figure 4a–c, respectively. Table 5 elaborates the area of each class over the different years
in both squared kilometers and percentages. It was shown that the agricultural land was
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dominant, occupying 91.2% (representing 1832 km2) of the total land area in 1991; however,
it was reduced to 83.7% (representing 1674 km2) in 2018. The water bodies filled the
smallest area of about 1%, and stayed almost the same over the years. Statistical analysis of
2003 study year showed that there is was an increase in the built-up area at the expense
of the agricultural land; however, this augment (around 2%) is not alarming. On the
other hand, over the period of 2003–2018, the urban growth continued, looking forward
to urbanization, and experienced considerable augmentation (around 5.5% of the total
area), where the built-up area represented 9.7% and 15.2% in 2003 and 2018, respectively.
The urban growth over the agricultural land which represented the LULCC over the time
periods of 1991–2003 and 2003–2018 is demonstrated in Figure 5a,b, respectively.
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Table 5. Details of the LULCC in Gharbia governorate in 1991, 2003 and 2018.

LULC
1991 2003 2018

Area (km2) % Area (km2) % Area (km2) %

Built-up 156.75 7.8 193.37 9.7 303.75 15.2
Water 19.57 1.0 24.48 1.2 21.56 1.1

Agricultural
land 1832.01 91.2 1781.48 89.1 1674.02 83.7

Total 1999.33 100 1999.33 100 1999.33 100
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LULCC analysis can also be performed in another way, by computing the Relative
Deviation (RD) of different land-use categories from the year 1991 to 2003, 2003 to 2018,
and 1991 to 2018 (as mentioned in Table 6) using Equation (10).

%RD =
A− B

B
× 100 (10)

where A is the area under a specified land-use class for the second (new) year, B is the area
under the same land-use class for the first (old) year, and % RD is the relative deviation in
each class over a period of time: it may be positive, which confirms class area expansion,
or negative, representing class area shrinkage.

Table 6. Relative Deviation (RD %) for each class through the three time periods (1991–2003,
2003–2018, and 1991–2018).

RD % 1991–2003 2003–2018 1991–2018

Built-up +23.4 +57.1 +93.8
Water +25.1 −11.9 +10.2

Agricultural land −2.8 −6.0 −8.6
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LULCC analysis reveals a growing trend of urban cover in the study area. For instance,
built-up land increased by 36.62 km2 with an RD of +23.4% and 110.38 km2 with an RD
of +57.1% within the 1991–2003 and 2003–2018 time periods, respectively. The RD of the
total study period (27 years) from 1991 to 2008 is +93.8%. This means that the built-up
land almost doubled. The agricultural land exhibits a similar (but reverse) pattern from
1991 to 2018, because the urban expansion was at the expense of the reduction or loss of
agricultural land.

3.3. LULC Change Modeling, Simulation, and Projection

Before the prediction of the future LULC, the transition probability and transition area
matrices were retrieved depending on the MC stochastic model using 1991 and 2003 LULC
maps to simulate the 2018 LULC map (Figure 6a) for the model validation. These matrices
and the transition probability maps have been inserted in the Supplementary Materials
(Tables S4–S6 and Figures S1–S3 respectively). The model directly outputs the Kappa
coefficient and the details have been inserted in the Supplementary Materials (Figure S4).
Jaccard similarity coefficient were 88% and 52%, respectively. The Kappa coefficient directly
output The Jaccard coefficient statistic better estimates the fit between the observed and
simulated LULC maps. The results were considered adequately acceptable, and the model
could be adopted for future simulation. The model was employed to extrapolate future
LULC maps for 2033 and 2048, as clarified in Figure 6b,c, respectively.

For the future prediction step, the spatial modeling variables were updated from the
first time period to the second time period before running the projection. Subsequently,
the model predicted the potential changes in the following 30 years based on the 2018
LULC, assuming that there is no emergency, such as policy changes. The logistic regression
algorithm was sufficient in the evaluation of the spatial relationships between the observed
LULCC and predictor variables, generating the transition probability maps. According to
our LULC predictions, the water bodies almost remain without changes. Therefore, this
class is discarded. Thus, when we address the 2018–2048 period, we consider the change of
built-up and agricultural land. It is predicted that built-up lands will cover 29% and 33%
of the total land area by 2033 and 2048, respectively.

As clarified in Table 7, the results showed that the trend of urban growth on the
agricultural land is persistent. For instance, the built-up area will increase by about 14%
(285 km2) and 18% (359 km2) by 2033 and 2048, respectively. In other words, the size
of the urban cover will more than double through the 2018–2033 period. On the other
hand, the agricultural land will decrease by the same percentage within the same study
periods. The probable urban growth over the agricultural land (LULCC) within the time
periods—2018–2033 and 2018–2048—is demonstrated in Figure 7a,b respectively. Moreover,
as Figure 7 shows, the built-up area will be persistent around the centers of the governorate
and the infrastructure, e.g., roads and railway stations.

Table 7. Details of LULCC in Gharbia governorate in 2018 (simulated), 2033, and 2048.

LULC
2018 2033 2048 RD%

2018–2033
RD%

2018–2048Area (km2) % Area (km2) % Area (km2) %

Built-up 279.48 14.0 588.24 29.4 663.68 33.2 +110.5 +137.5
Water 48.59 2.4 20.65 1.1 19.11 1.0 −57.5 −60.7

Agricultural
land 1671.26 83.6 1390.44 69.5 1316.54 65.8 −16.8 −21.2

Total 1999.33 100 1999.33 100 1999.33 100
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Based on the results of the prediction, Figure 8 represents the size of the urban cover over
the eight districts in 2018, 2033, and 2048. It reveals that Mahalla Kubra and Tanta are the
districts suffering the most from urban growth dynamics, while Samanod suffers the least.
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3.4. Linear Regression Analysis

A regression analysis was used to quantitatively estimate the relationship of the
agricultural land change with the built-up area change [64] for the eight districts, as shown
in Figure 9. The scatterplot illustrates the negative strong relationship, where the correlation
coefficient (R2) equals 0.73 and 0.99 for the study periods of 1991–2003 and 2003–2018,
respectively (Figure 9a,b). Furthermore, the predicted LULC demonstrates the same trend
of correlation that the linear regression confirmed; the totally negative relationships where
R2 = 1 for the future study periods of 2018–2033 and 2018–2048 (Figure 9c,d).
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3.5. Analysis of Fuzzy TOPSIS

Based on the Fuzzy TOPSIS analysis and the criteria selected to evaluate the suscep-
tibility of the districts to the urbanization risk, the closeness coefficient CCi, computed
for each alternative, is shown in Table 8. The results showed that the Mahalla Kubra and
Tanta districts are the most susceptible to the urbanization risk, while Samanod is the least
susceptible. These results fit the results of the logistic regression–Markov prediction model.
To clarify, the districts predicted to have bigger urban expansion are themselves certain to
be highly susceptible to urbanization risk based on Fuzzy TOPSIS analysis.

It means that the results of the Fuzzy TOPSIS analysis can be adopted. On the
other hand, if the area is not covered by the satellite images, Fuzzy TOPSIS can be em-
ployed to evaluate the districts’ susceptibility to the urbanization risk, in order for the
decision-makers to be informed of the districts having the priority for sustainable planning,
depending on the criteria analysis. Thus, producing the Urbanization Risk Map without
satellite data is possible. Figure 10 shows a visual representation of the districts with their
corresponding susceptibility level to urbanization risk. This confirms that Fuzzy TOPSIS
analysis is superior for the production of an Urbanization Risk Map.

Table 8. Closeness coefficient, CCi, for each alternative.

Criteria CCi Rank Risk Level

Mahalla Kubra 1 1 V. High
Tanta 1 2 V. High

Basyun 0.055 7 Moderate
Zefta 0.19 5 Moderate

Santah 0.132 6 Moderate
Kafr Elzayat 0.577 3 High

Samanod 0.049 8 Low
Qotur 0.472 4 High
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4. Discussion

Based on the quantification of the LULC changes throughout the study area over the
study period (27 years), from 1991 to 2018, the agricultural land was dominant. However,
rapid and ongoing urbanization has occurred. The mounting population necessitates
the construction of facilities and the development of transportation systems to meet the
increasing social and economic requirements. This is why policymakers and planners
are particularly concerned with urbanization patterns, as they are crucial for effective
decision-making.

The LULC maps for the years 1991, 2003, and 2018 emphasize a persistent trend of
urban growth in the study area. The built-up land almost doubled, while the agricultural
land exhibited an inverse pattern over the study period, where the urban expansion
corresponded to loss of agricultural land. The decreasing trend of agricultural land was
more significant during the second time period (2003–2018) compared to the first time
period (1991–2003). This mentions that there is increased demand or pressure on land by the
sprawling population due to increased rural–urban migration, and Gharbia governorate
especially does not have a desert yard that permits urban expansion. Many previous
studies have suffered from encroachment on arable and already-cultivated lands [13,34].
Therefore, the government seeks to deal with the crisis.

According to this study, the change in water bodies would be negligible. Therefore, the
transition potential from agricultural land to built-up land, expressing the phenomenon of
urban sprawl, was focused. We selected four spatial modeling variables as possible driving
forces of LULCC, which have been specifically defined as urban sprawl parameters. In the
model validation, the Kappa and Jaccard coefficients reached 88% and 52%, respectively.
The Jaccard coefficient statistic was preferred to cross-check the results [71], as it considers
how much correspondence—spatially and with quantitatively—there is between the two
layers. In other words, it is a statistic which is used to gauge the similarity and diversity of
sample sets. Therefore, the Jaccard coefficient is more realistic and reliable, as it considers
the location of the LULCC, not only its quantity. The Jaccard value is affected by LULC
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classes, the annual rate of change, and transition steps [69]. The usually acceptable values
are >60%. However, the model can be adopted for simulation and prediction. The urban
sprawl on the agricultural land through the first period (1991–2003) was much lower
than the urban growth experienced through the second time period (2003–2018) due to
the lawlessness that happened in the country during the 2011 revolution. Therefore, the
quantity of the actual urban area in 2018 was higher than the simulated one. Subsequently,
the Jaccard coefficient of 52% in this study can be accepted, and the model can be used for
further simulation and future projection. It is worthwhile to mention that if the acquired
satellite images were chosen at close and equal intervals, and there is no sudden boom
in a certain period (as in our case), the logistic regression–Markov model would give
more satisfying results, and the validated outputs would match the actual land-use image
spatially and quantitatively.

We adopted the logistic regression owing to its demonstrated accuracy when modeling
LULC transitions, and the unique advantage of its unneeded prior knowledge compared
to other different models. The previous studies’ results showed that the logistic regres-
sion model was qualified for the production of realistic results in the respective study
areas [33–35]. For instance, Hamdy et al. [34] applied a hybrid approach of the Markov
chain and logistic regression models to define future urban spread in 2037 in Abouelreesh,
Aswan, Egypt. The consequences of their paper highlight the growing risks of urban
expansion and the obstacles which object to the sustainable urban growth strategies recom-
mended for this area. Furthermore, Arsanjani et al. [33] adopted a hybrid model including
logistic regression, MC, and CA, which was prepared to upgrade the performance of the
basic logistic regression model. The simulated map fitted the actual one by 89%, which
was satisfactory for the adoption of the calibration process. The simulated maps show a
fresh wave of suburban evolution in the proximity of Tehran over the coming decades.
Nguyen et al. [35] also used the same hybrid model of the logistic regression, MC, and CA
models for the prediction of the future land-use change in Nam Dinh Province, Vietnam.
The hybrid model was sufficient, and the outcomes of the analysis present worthy knowl-
edge for local planners and policymakers, supporting their efforts in organizing other
sustainable urban planning schemas and environmental management policies. Therefore,
this approach could be adopted for the identification of patterns of LULC changes in the
Gharbia governorate.

The predicted maps show that the same trend of agricultural land loss due to urban
growth can be expected for 2033 and 2048. A similar pattern of agricultural land diminution
could be evident in the preceding studies. Our study did not only focus on monitoring
and forecasting the urban expansion like all of the previous studies; it also adopted Fuzzy
TOPSIS analysis based on criteria selected to evaluate the susceptibility of the districts to
the urbanization risk, which is effective for the data-gap regions. In other words, if the
satellite data are scarce for the area of interest, Fuzzy TOPSIS can evaluate the districts’
susceptibility to the urbanization risk, in order for the decision-makers to be informed of
the districts with the priority for sustainable planning. Thus, producing the Urbanization
Risk Map without satellite data is possible. Otherwise, if the area of interest is covered
by satellite images, our methodology outperforms other methodologies due to the further
validation performed for the prediction results from the logistic regression–Markov model
based on Fuzzy TOPSIS; the predicted size of the urban extent in a district corresponds to
the level of urbanization risk for that district.

According to our prediction results, if the current condition of urban sprawl continues
at the pace of 2018, about 285 km2 of agricultural land will change into built-up land by
2033, and a further 73 km2 by 2048, which could cause a considerable change to the social
and economic conditions in the area. The built-up lands will cover 29% and 33% of the
total land area by 2033 and 2048, respectively. This is a negative indication of the loss of
agricultural land, hence the food security issue, especially with the population growing in
a random way that is not proportional to the land area and the loss of agricultural land. If
the government does not address urban encroachment on agricultural land, built-up land
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will represent more than a quarter of the total area by 2033, and a third by 2048. This rate
of urban sprawl is a cause for concern.

The continuous and rapid urbanization over the cultivated land has serious conse-
quences for agricultural productivity and the sustainability of the country’s economic
development [14]. The Egyptian government has lately initiated a number of projects to
reclaim new desert lands to meet the rising demand for food due to the country’s rapid
population increase. These attempts can be regarded as a possible solution to the existing
issue. However, it is not the best solution, as we mentioned before that the newly reclaimed
lands do not compensate for the corresponding deduction of the old ones, because the soil is
less fertile and has much lower nutrient levels than the old soil [2]. Moreover, the reclaimed
desert land costs a lot to provide the required resources like power, water, and chemical
fertilizers to increase the soil fertility, as well as the required labor and safe transportation
to remote markets [2,38]. This means creates a need for considerable funding to upgrade
the soil fertility. Therefore, most newly reclaimed desert lands are planted with products
for export to achieve a profit that compensates for the cost of reclamation, and thus this
policy does not participate in solving the problem of food and self-sufficiency for the
country [2]. Accordingly, the government has to adopt other strategies to address massive
population growth and rapid urbanization. For instance, as suggestions, (1) urbanization
could expand vertically in the defined urban area, in addition to conservation of existing
fertile soil areas and the maximization of the agricultural productivity of existing cultivated
areas; (2) structure sustainable cities outside the borders of the delta, to accommodate the
population increase, associated with the required infrastructure for a convenient life. The
reconstruction of the desert is the best proposal to relieve the pressure on the delta region,
and to stop more urban expansion inside this green zone of the Nile Delta. Accordingly,
the expected changes in LULC may provide the proper planning for the practical and
sustainable use of resources.

There are three prime sources of uncertainty in machine learning: noise in the data, the
incomplete coverage of the domain, and imperfect models [80]. All of the measurements have
an amount of uncertainty regardless of the precision and accuracy. Uncertainty is a common
phenomenon in many application areas, such as medicine, image processing, and linguistics,
etc. [81]. For example (for medicine), frequently, medical diagnosis is not improper, but there
are different degrees of disease. Consequently, uncertainty occurs almost automatically in
any machine learning application [81]. Therefore, we recommend further research to consider
the uncertainty in machine learning methods, particularly in critical domains such as clinical
diagnosis, and in safety-critical areas which need output decisions accompanied by a measure
that allows the judgement of the certainty of the output.

In addition, another limitation in this study, which is considered as the most evident
limitation in machine learning, is the data [82]. Several machine learning algorithms need
considerable quantities of data before they can start giving beneficial results [83,84]. A good
illustration of this is the neural network. Neural networks are data-consuming machines
that demand extensive volumes of training data. Algorithms trained on insufficient datasets
have uncertain performance when applied to further unseen data sets [85], and therefore
the model will overfit. The overfitting model works very well on the data used to train it
but works poorly on new data (test data) [86,87]. So, it’s the user’s responsibility to regulate
the learning process. There are diverse methods to avoid overfitting [88], e.g., (1) training
with more data [89], the model will not be capable of overfitting all of the samples and
will have to generalize to get the results; (2) data augmentation [90], which makes sample
data look rather various each time it is processed by the model. This prevents the model
from learning the properties of the datasets; and (3) the data simplification method [86] is
utilized to minimize overfitting by reducing the complexity of the model in order to make
it adequately simple, such that it does not overfit. The performance of an algorithm relies
not only on the data quantity but also on the data quality; hence, algorithms are as good
as the data they are trained on [85]. Training algorithms the same way we learn ourselves
comes with limitations. Unfortunately, the usage of unrepresentative or insufficient data



Remote Sens. 2021, 13, 4498 21 of 25

has an adverse influence on performance. In the same way that a lack of good features
can lead to poor algorithm performance, a lack of good ground truth data can also reduce
the potential of the model [91]. Accordingly, we recommend depending on algorithms
which need less data for training, like SVM, or providing the required data and taking into
account the uncertainty.

5. Conclusions

This study focused on persistent urban growth at the expense of agricultural land
in the eight districts of Gharbia governorate. This will cause gross problems later if the
current land-use policy is ongoing. Therefore, the government has to find an alternative
trend of land-use, e.g., desert development, to stop more urban expansion inside the green
zone of the Nile Delta. This is frequently successful in preserving fertile cultivated lands.

In this study, the LULC dynamics in the Gharbia governorate were monitored and
assessed over a 27-year study period from 1991 to 2018, and the future trends to 2033
and 2048 were investigated using a hybrid model of MC and logistic regression. Markov
chain–logistic regression was sufficient in the modeling of the LULC transitions, where the
MC model is very superior in quantifying the transitions and detecting the conversion rates
between various LULC types, and logistic regression is capable of providing transition
potential maps. There was a trend of rapid urbanization over the agricultural land. In the
prediction of the future dynamics of LULC the same trend continues, indicating negative
aspects such as the issue of food security. The agricultural land is declining at a worrisome
rate; it occupied 91.2% of the total land area in 1991, and will decline to 65.8% in 2048. This
persistent urbanization will affect the climate of the region (increasing the temperature
and affecting residents’ life) and cause the imbalance of ecosystem services. Furthermore,
the loss of agricultural land may put the agricultural activity of the governorate at risk.
Therefore, the government has to change policy and address such problems, especially in
the areas without desert backyards.

Defining the pattern of LULC changes (in terms of quantity and direction) is sub-
stantial for the decision-makers and planners for sustainable urban planning and the
confrontation of the challenges created by rapid unplanned urban growth. The innovation
of this work is as follows: (1) this article presents machine learning-based and state-of-the-
art remote sensing-based products and methodologies for the continuous monitoring of
LULC for sustainable land-use policies, and (2) the current paper highlights the vital role
of the Fuzzy TOPSIS method, which eliminates uncertainties in the data and analysis for
the production of the Urbanization Risk Map, in order to determine the susceptibility of
the districts to the urbanization risk, especially in the case of unavailable satellite images,
in order for the decision-maker to be given the districts with the priority for sustainable
land-use planning.

The medium spatial resolution of Landsat images is considered a shortcoming. Usually,
the free data have a lower spatial resolution which cannot allow the perfect quantification
of the LULC dynamics, especially given that the LULCC affects the climate. Therefore, an
archive of images is in demand. However, SVM is superior in the classification process.
Furthermore, uncertainty is a common phenomenon in machine learning. All of the
measurements have an amount of uncertainty regardless of their precision and accuracy.
Therefore, we recommend further research to consider the uncertainty in machine learning
methods, particularly in critical domains such as clinical diagnosis. We suggest that
future studies persist with new data and models to evolve the simulations that address
uncertainties in future LULC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13224498/s1. Table S1: Error matrix for the classified LULC map of 2018. Table S2: Error
matrix for the classified LULC map of 2003. Table S3: Error matrix for the classified LULC map of
1991. Table S4: Transition probability matrix of 2018 based on past LULC of 1991–2003. Table S5:
Transition area matrix of 2018 based on past LULC of 1991–2003. Table S6: Transition probability
matrix of 2033 based on past LULC of 2003–2018. Table S7: Transition area matrix of 2033 based
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on past LULC of 2003–2018. Table S8: Transition probability matrix of 2048 based on past LULC of
2003–2018. Table S9: Transition area matrix of 2048 based on past LULC of 2003–2018. Figure S1: LCM
1991-2003_map of transition potential from vegetation to built-up. Figure S2: LCM 2003-2018_map
of transition potential from vegetation to built-up. Figure S3: LCM 1991-2018_map of transition
potential from vegetation to built-up. Figure S4: LCM 1991-2018_map of transition potential from
vegetation to built-up. A spreadsheet illustrating the steps of applying Fuzzy TOPSIS method.
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