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Abstract: Understanding the spatio-temporal pattern of natural vegetation helps decoding the
responses to climate change and interpretation on forest resilience. Satellite remote sensing based
data products, by virtue of their synoptic and repetitive coverage, offer to study the correlation and
lag effects of rainfall on forest growth in a relatively longer time scale. We selected central India as the
study site. It accommodates tropical natural vegetation of varied forest types such as moist and dry
deciduous and evergreen and semi-evergreen forests that largely depend on the southwest monsoon.
We used the MODIS derived NDVI and CHIRPS based rainfall datasets from 2001 to 2018 in order to
analyze NDVI and rainfall trend by using Sen’s slope and standard anomalies. The study observed a
decreasing rainfall trend over 41% of the forests, while the rest of the forest area (59%) demonstrated
an increase in rainfall. Furthermore, the study estimated drought conditions during 2002, 2004, 2009,
2014 and 2015 for 98.2%, 92.8%, 89.6%, 90.1% and 95.8% of the forest area, respectively; and surplus
rainfall during 2003, 2005, 2007, 2011, 2013 and 2016 for 69.5%, 63.9%, 71.97%, 70.35%, 94.79% and
69.86% of the forest area, respectively. Hence, in the extreme dry year (2002), 93% of the forest area
showed a negative anomaly, while in the extreme wet year (2013), 89% of forest cover demonstrated a
positive anomaly in central India. The long-term vegetation trend analysis revealed that most of the
forested area (>80%) has a greening trend in central India. When we considered annual mean NDVI,
the greening and browning trends were observed over at 88.65% and 11.35% of the forested area at
250 m resolution and over 93.01% and 6.99% of the area at 5 km resolution. When we considered the
peak-growth period mean NDVI, the greening and browning trends were as follows: 81.97% and
18.03% at 250 m and 88.90% and 11.10% at 5 km, respectively. The relative variability in rainfall and
vegetation growth at five yearly epochs revealed that the first epoch (2001–2005) was the driest, while
the third epoch (2011–2015) was the wettest, corresponding to the lowest vegetation vigour in the
first epoch and the highest in the third epoch during the past two decades. The study reaffirms that
rainfall is the key climate variable in the tropics regulating the growth of natural vegetation, and the
central Indian forests are dominantly resilient to rainfall variation.

Keywords: rainfall; anomalies; NDVI; vegetation; resilient; India; tropical forest

1. Introduction

Global warming continues as a consequence of the emission of greenhouse gases
(GHG) [1]. Global warming has changed global climatic circulation and has adversely
affected the distribution and functioning of natural vegetation [2,3]. In the past few decades,
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recurring natural threats such as drought, fire, landslides, floods and anthropogenic threats
such as illegal mining, deforestation and agricultural activities worldwide are potential
causes of disturbances and changes in the natural vegetation regime [4]. Hansen et al. [5]
revealed a forest cover loss of 230 Mha and gain of 80 Mha during 2000–2012 at a global
level. Other studies also revealed that global forest cover has decreased from 4128 to
3999 Mha during 1990–2015 [6], and 420 Mha of the global forest area has been lost due to
deforestation during 1990–2020 [7]. Such deforestations have a serious effect on rainfall
distribution and would alter the structure and functions of the forest [8,9]. Understanding
rainfall variation with respect to changes and fluctuations in the forested landscape is
important [10,11], as it can be a useful input to models of ecological and environmental
processes at local, regional and global scales. Hence, understanding the changing climatic
conditions and their association with forest growth patterns is vital for decision makers,
planners, the timber industry and ecologists for conservation practices [12,13].

Several studies have been conducted in order to characterize vegetation growth under
different climatic conditions. For example, vegetation growth in the higher latitudinal
regions or alpine regions is relatively more influenced by accumulated ground/soil tem-
perature than air temperature [14,15] and in the sub-tropical to tropical regions by both
solar radiation and water availability [16,17]. In the Amazon, Congo and Indonesia, dense
evergreen rainforest growth is driven by solar radiation [18–20]. Moreover, studies have
been conducted to characterize the behavior of vegetation growth at different latitudes and
its dependency on environmental and climatic factors and factors affecting plant functional
traits in tropical species (i.e., inter-annual water uptake, carbon and energy balance) [21,22].
Vegetation dynamics at different altitudes are influenced by moisture availability in the
soil and growing season length [23,24].

In the last few decades, remote sensing satellite-based continuous time-series data
have become the most reliable means for conducting long-term regional level studies.
Satellite data-based vegetation indices, including the Normalized Difference Vegetation
Index (NDVI), and climatic parameters have been used to reveal vegetation dynamics
and their responses on a monthly, inter-annual basis, capturing any heterogeneity and
shifts in biodiversity [25]. NDVI coupled with climatic data has also been used widely for
studying climate impacts on vegetation, forest dynamics and vegetation vigour [26–29],
as temperature and rainfall are important factors affecting photosynthesis in plants [30].
In recent years, an increase in the number of extreme events (warming and precipitation
with different intensity and magnitudes) has been experienced during both summer and
winter [31–33]. These have affected the process of vegetation growth, resulting in changes
in tropical forest survival strategies.

Chaturvedi et al. [34] modeled the impact of climate change over India and found
that the central Indian forests are vulnerable to climate change and need to be further
assessed. Nobre et al. [3] observed high evapotranspiration due to increased warming
over the central Indian tropical forested regions. Moreover, increased warming and high
evapotranspiration can result in changes in micro-climate and energy flux patterns at the
regional level [35], including changes in the global climatic pattern and its circulation [36].
However, some studies have reported a decline in rainfall over central India on an annual
basis [37,38]. At the same time, an increase in extreme rainfall events has been observed
in the last five decades [39–41]. Therefore, it is important to assess the dependence of
vegetation on rainfall in the central Indian landscape as changes in rainfall patterns and
distribution can alter ecosystem balance, biodiversity and forest productivity. Historically,
the vegetation response to changing climate in different years on an inter-annual basis
has been complex. The complexity further increases with differences in water and light
availability, forest species and local weather conditions prevailing in the region [42,43].
Various studies have analysed the spatio-temporal variability in rainfall to investigate its
relationship with different ecophysiological processes that stimulate and enhance plant
growth and interactions at a local, regional and global scale [44–47].
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The human and natural ecosystem in the central Indian region depends heavily on rain
water, and this region receives most of its rainfall during the southwest monsoon, which
makes it a climatically vulnerable region in India. The central Indian forest landscape is a
vast region and is characterized by an intricate ecosystem with spatially varying vegetation
productivity and heterogeneity distributed across different climatic extremes in different
seasons. The regional landscape response to gradual climate change has received minimal
attention. Hence, it is important to study and understand the spatial variability of rainfall
and its effect on vegetation vigour in central India.

Wang et al. [48] studied the response of dry tropical vegetation growth during dry
and wet years and found that it varies with temperature and rainfall. As the availability of
sunlight in central India is abundant, rainfall deficit does alter and impact the vegetative
response and growth patterns, but its spatial variability is still not studied. Therefore, it
would be interesting to understand the role of rainfall over the central Indian forested
landscape, which provides vital ecosystem services to this region. In this context, this
research aims to (i) quantify and understand the variability and trends in spatial rainfall
patterns and seasonal vegetation dynamics at annual, short-term and long-term intervals
and to (ii) analyze the response of forest to regional rainfall patterns and examine the
relationship during different phases.

2. Materials and Methods
2.1. Study Area

The central Indian landscape, a drought-prone region of India, was selected for this
study (Figure 1). The study area is extended in five states of India, such as Maharashtra
(MH), Madhya Pradesh (MP), Chhattisgarh (CH), Jharkhand (JH) and Odisha (OD). The
Bundelkhand, Marathwada and Vidarbha regions of this area have a long history of
droughts [49]. The region is rich in flora and fauna with all major forest types (tropical dry
and moist deciduous forest, thorn and scrub forest, tropical evergreen and semi-evergreen
forest). Sal, teak and bamboo are the main vegetation species [50]. The human population
of the area is largely dependent on the forests for its livelihood. The region has complex
ecosystems consisting of several hill ranges (Vindhyan Range, Satpura Range, Chhota
Nagpur Plateau, Deccan Plateau, Western Ghats and the Eastern Ghats), river systems
(Tapi, Narmada, Godavari, Krishna and Mahanadi) and forests.

The study area is adjacent to the alluvial plain of the Ganga river in the north, the Thar
desert in the north–west, the Bay of Bengal in the south–east, the Arabian Sea in the west
and the peninsular landscape in the south. The area’s geographical extent is approximately
9,86,580 km2 of which 2,61,120 km2 (26.46%) is under forest [51]. The climate of the region is
mostly warm, with very high temperatures during the summer. It experiences a minimum
temperature of 5 degrees Celsius during the winter season (November–February) and a
maximum temperature of 45 degrees Celsius during the summer (March–June). It receives
the majority of its rainfall from the southwest monsoon.
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Figure 1. Study area.

2.2. Data

This research used the precipitation data of the Climate Hazards Group Infra-Red
Precipitation with Station dataset (CHIRPS version 2.0), with CHIRPS being the longest
archived global precipitation dataset. The data are available from 1981 onwards for lati-
tudes 50◦S–50◦N and all longitudes at a spatial resolution of 0.05◦ (~5 km). These have
been used extensively for rainfall trend analysis and drought monitoring. For this re-
search, 18 years (2001 to 2018) of monthly precipitation data were downloaded from the
site (ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/monthly/, Accessed on 2
July 2018) [52]. Moreover, 18 years of NDVI time-series data from the Moderate Resolu-
tion Imaging Spectro-radiometer (MODIS), specifically MOD13Q1 V6 Terra composites of
16-day interval at 250 m spatial resolution, were downloaded from the Land Processing
Distributed Active Archive Center (LPDAAC) (https://lpdaac.usgs.gov/, Accessed on
11 January 2019). The MODIS standard VI products time-series data are atmospherically
corrected for bi-directional surface reflectance and are usually masked for water, clouds,
heavy aerosols and cloud shadows before archiving for end users [53,54]. Moreover, we
used the most recent comprehensive vegetation type map (http://bis.iirs.gov.in/, Accessed
on 20 January 2019) produced at 1:50,000 scale using the LISS III sensor (23.5 m) for the
Indian subcontinent by Roy et al. [55] to generate the forest mask at 5 km spatial resolution.

2.3. Methods

MODIS tiles (6 tiles, i.e., h24v06, h24v07, h25v06, h25v07, h26v06 and h26v07) consist-
ing of a total of 2,484 images (23 tiles per year for 18 years) were analyzed. Only pixels with
pixels reliability values of 0 (good data) and 1 (marginal data) were considered for further
analysis, while the rest of the pixels were discarded. Then, year-wise, tiles were mosaicked.
The NDVI data gaps due to clouds were filled with noise-free temporal neighborhood
values without compromising the annual growth profile of natural vegetation. Erroneous

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/monthly/
https://lpdaac.usgs.gov/
http://bis.iirs.gov.in/
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values in the derived annual stacked images at each pixel level were eliminated by applying
the statistical outlier removal technique. Finally, noise-free data were smoothed by using
Discrete Fourier Transform (DFT) [56–58]. The smoothed NDVI data were upscaled from
250 m to 0.05◦ (~5 km) by using mean aggregation to match the spatial resolution of the
rainfall data. To strengthen the analysis, we considered only the forested pixels based on a
forest mask at 5 km (see Singh et al. [29] for further details). A methodology representing
the entire procedure involved in this study is shown in Figure 2.
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2.3.1. Trend Analysis and Statistical Significance

In this research, a trend analysis of 18 years of rainfall and NDVI data was undertaken
to determine their variability over time. Such trend analysis is very common and helpful
in climate science, hydrology and vegetation dynamics [25]. Among the available methods,
the Mann–Kendall test and Sen’s slope are commonly used to estimate the upward or
downward trend of the time-series. However, Sen’s slope test is the most common method
for estimating the magnitude of and understanding the significance of any trend in the time-
series data [25,59–62]. While performing trend analysis, we observed noise in the resultant
map as vertical stripes and linear patches. In order to avoid such errors, we converted all
the input rainfall data into points and interpolated using Ordinary Kriging, which helped
to remove the outliers in the input rainfall data. The trend results from interpolated and
original rainfall data were compared for their reliability (see Supplementary Figure S1),
and Krigged results could remove the stripping noise and correctly preserved the spatial
and temporal variations. The results obtained from the long-term trend analysis were used
to characterize the increasing and decreasing trends in rainfall data and the NDVI data to
quantify any greening and browning pattern in the Central Indian forested landscape.
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2.3.2. Rainfall and NDVI Anomalies

The impact of rainfall variability on vegetation in the Central Indian landscape was
characterized based on analysis of time-series anomalies. The response of vegetation to
moisture availability was analysed specifically in dry, normal and wet years. The spatio-
temporal variability in rainfall anomalies was produced using the annual mean rainfall
from 2001 to 2018. Equation (1) is the standard anomaly equation generally used in statistics
to estimate the Z-score [63]. Since the study covers a vast region from the western coast
to the eastern coast of India, rainfall quantity is different in dry and wet regions. Thus,
we have to standardize rainfall in order to compare the relative intra and inter-annual
variability over the study region:

SRA(i, x, y) =
Rainfall(i, x, y)− Mean[Rainfall2001−2018(i, x, y)]

STD[Rainfall2001−2018(i, x, y)]
(1)

SNA(i, x, y) =
NDVI(i, x, y)− Mean[NDVI2001−2018(i, x, y)]

STD[NDVI2001−2018(i, x, y)]
(2)

where SRA(i,x,y) represents the annual standardized rainfall anomaly (SRA) in the ith year
at the pixel location (x,y) and rainfall(i,x,y) represents the annual rainfall of ith year being
processed. Mean[rainfall2001–2018 (i,x,y)] represents the long-term mean annual rainfall
from 2001 to 2018. STD[rainfall2001–2018 (i,x,y)] represents the standard deviation of annual
rainfall from 2001 to 2018. Moreover, we computed the annual standardized NDVI anomaly
(SNA) for 18 years by using Equation (2) with the same approach as mentioned above for
Equation (1). Here, the negative SRA values in a year correspond to less rainfall than the
average, while positive SRA values indicate surplus rainfall. Similarly, the negative SNA
values indicate stress or degradation or deforestation. On the other hand, positive SNA
implies increased vegetation vigour (greening).

2.3.3. Seasonal and Periodic Variability in the Vegetation and Rainfall

We evaluated the long-term seasonal variability of rainfall and NDVI over 18 years.
First, we derived the three different seasonal means from monthly rainfall: summer (March,
April and May), monsoon (June, July, August, September and October) and winter (Novem-
ber, December, January and February). However, on the other hand, NDVI composites
of 16 days intervals with a spatial resolution of 250 m were temporally averaged into a
monthly composite. These monthly composites were spatially upscaled from 250 m to
5 km monthly NDVI by using the mean aggregation method to match rainfall resolutions.
Then, NDVI monthly data were converted into three seasonal data as mentioned above.
Finally, the long-term mean NDVI and rainfall in these three seasons were estimated and
compared in order to understand the seasonal variability and dependency effect of rainfall
on vegetation. Moreover, we explored the forest–rainfall feedback over different epochs
(first epoch—2001 to 2005; second epoch—2006 to 2010; third epoch—2011 to 2015; fourth
epoch—2016 to 2018). Similarities in the difference pattern of rainfall and NDVI between
these epochs were checked in different phases for understanding the responses of vege-
tation to rainfall (i.e., 1st phase = second epoch – first epoch; 2nd phase = third epoch –
second epoch; 3rd phase = fourth epoch – third epoch). The annual rainfall maps using
ordinary kriging was used instead of the original CHIRPS data.

2.3.4. NDVI-Rainfall Ratio

The photosynthetic productivity of an ecosystem in a region is related directly to
the total water use for carbon assimilation per unit of soil water loss [64], especially in
tropical climates. In this regard, we estimated the spatial distribution of proxy water
use efficiency based on the ratio of yearly integrated NDVI and accumulated rainfall,
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as both are correlated [65,66]. The potential water use efficiency was estimated by the
NDVI-Rainfall Ratio (NRR) in this study (Equation (3)):

NDVI_Rainfall Ratio(NRR)i =
∑N

c=1 NDVIc

∑M
d=1 RFd

(3)

where c, d refers to composite number, N is the total number of NDVI composites and M is
the total number of rainfall composites in ith year.

2.3.5. Sensitivity to Spatial Resolution, Growth Period and Aggregation Method

Furthermore, we analysed the consistency in Sen’s slope for long-term trends with
respect to (a) different spatial resolutions (250 m and 5 km), (b) different temporal growth
periods and (c) different aggregation methods. First, we considered the smoothed NDVI
data at 250 m resolution and then estimated mean NDVI over the entire annual cycle
(NDVI-A250) and mean NDVI during the peak growth period (NDVI-P250). Generally,
peak growth period refers to the period where NDVI values are greater than 50% of the
maximum annual NDVI (see Singh et al. [29] and Rajan and Jeganathan [67] for details).
In central India, the major vegetation vigour is observed during July, August, September
and October. Hence, in this research, we estimated the mean NDVI during these periods,
referred to as NDVI_P250. Using these two datasets, we estimated Sen’s slope. Similarly,
Sen’s slope was estimated for the mean aggregated 5 km NDVI from annual and peak
periods (NDVI-A5km and NDVI-P5km). These four Sen’s slope datasets (SEN-A250, SEN-
P250, SEN-A5km and SEN-P5km) were reclassified into ten classes, and the consistency
in their area statistics was analyzed. Finally, the 250 m trend datasets were aggregated to
5 km for which we followed a 2-tier approach where first, the Sen’s slope images were
reclassified, and then the majority slope class within the 5 km grid was chosen. Importantly,
converting Sen’s slope values directly from 250 m to 5 km based on the majority function
would be error prone. The majority based aggregation function is reliable only on nominal
data and not on continuous data where variation may be greater. Hence, 250 m trend
values (SEN-A250 and SEN-P250) were first reclassified into 10 classes and then aggregated
to 5 km based on the majority class (referred as SEN’_A5km, SEN’_P5km). These six
outcomes were analyzed for their consistency based on area statistics.

3. Results
3.1. Long-Term Trend Analysis of Rainfall and Vegetation

Figure 3a reveals the long-term mean rainfall, and Figure 3d reveals the long-term
mean NDVI for the period 2001 to 2018. The results show that the long-term mean rainfall
was low in the north-west direction of the study area and high in the Western Ghats and
eastern region.

The long-term mean NDVI exhibited a clear correlation with rainfall with a larger
mean NDVI in the east of the study area and the Western Ghats. In contrast, the western
part of MP exhibited smaller mean values of NDVI where rainfall was low. The long-
term rainfall (Figure 3b) and NDVI (Figure 3e) trends were estimated by using Sen’s
slope analysis at the pixel level, which revealed an interesting pattern of decreasing and
increasing trends in different areas across the landscape (Figure 3b). The largest increasing
trend was seen in the western part of MP, JH and the Western Ghats, covering an area
of 0.3% (1100 km2). Increasing rainfall trends, grouped into positive Sen’s slope classes
of 0–0.5, 0.5–1 and 1–1.5 were observed over 30.36%, 21.92% and 6.38% of the area. The
Western Ghats, MH, south-eastern parts of MP, southern parts of CH, the central part of
OD and the north-eastern region of JH showed a decreasing rainfall trend grouped into
negative Sen’s slope classes of −1.4 to −1, −1 to −0.5 and −0.5 to 0, covering 2.18%, 11.16%
and 27.72% of the area, respectively. A positive NDVI trend was distributed spatially over
much of the study region, and the classes >0.002 and 0.001–0.002 revealed the locations
of increasing NDVI over 56.77% and 26.29% of the area, respectively. The negative NDVI
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trend classes of <−0.003, −0.003 to −0.002 and −0.002 to −0.001 are mainly confined to
small parts of the northern region, being observed over 0.15%, 0.08% and 0.43% of the area,
respectively. Significant pixels of increasing and decreasing trends as shown in Figure 3c,f
were validated for their reliable increasing and decreasing trend for Rainfall and NDVI
(see Figure S2). Figure 4 reveals the representative vegetation growth pattern of evergreen,
semi-evergreen, moisture and dry deciduous vegetation types for 18 years (2001 to 2018).
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3.2. Inter-Annual Variability of Rainfall Anomaly

The Standardised Rainfall Anomaly (SRA) reveals any statistical variability in rainfall,
with different categories of anomaly depicting different levels of water stress (i.e., negative
anomaly) or wetness (i.e., positive anomaly) in different years (Figure 5). Table 1 shows
the percentage area under different negative and positive anomalies in dry, normal and
wet years. The central Indian forest experienced extreme drought conditions during 2002
(98.24% of the area), 2004 (92.81% of the area), 2009 (89.55% of the area), 2014 (90.11% of
the area) and 2015 (95.80% of the area). However, surplus rainfall was observed in 2003
(69.52%), 2005 (63.93%), 2007 (71.97%), 2011 (70.35%), 2013 (94.79%) and 2016 (69.86%).
Among these years, 2002 was the most extreme dry year, and 2013 was the wettest year.
During 2001–2018, on average, 46.52% of the area experienced positive anomalies. While
53.48% area showed negative anomalies, of which 15.38% of the area suffered from dry
conditions (i.e., <−1 SRA) and 16.61% of the area from wet condition (excess rainfall, i.e.,
>1 SRA) (see Supplementary Table S1 for more details on percentage area under different
negative and positive anomalies from 2001 to 2018 ).
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Figure 5. Standardized rainfall anomaly (SRA) over 18 years (2001–2018).

Table 1. Standardised Rainfall Anomaly (SRA) during dry, normal and wet years.

SRA Anomaly
Classes 2002 2011 2013

<−2 Extremely Dry 13.99 0.84 0
−2–−1 Very Dry 50.3 11.21 0.01
−1–−0.5 Moderately Dry 21.05 6.02 0.61
−0.5–0 Normal 12.9 11.58 4.59
0–0.5 Normal 1.25 24.89 15.35
0.5–1 Moderately Wet 0.52 31.33 18.29
1–2 Very Wet 0 14.08 35.93
>2 Extremely Wet 0 0.05 25.23

3.3. Vegetation Response to Seasonal Rainfall Variation

Figure 6 shows the spatial distribution of the season-wise (i.e., winter, summer and
monsoon) long-term mean rainfall and NDVI from 2001 to 2018. Although rainfall varied
drastically with the seasons in central India, the large NDVI values in all three seasons
indicate the presence of a great expanse of natural vegetation in the study area, with
evergreen/semi-evergreen in the western and seasonal rainfall-dependent deciduous vege-
tation in the remaining part. During the winter (Figure 6a), the central and southeastern
regions received a certain amount of rainfall (up to 30 mm), while the western part re-
ceived scant rainfall. However, a moderate increase in rainfall intensity was observed
with the arrival of summer (Figure 6b), with less rainfall amount in the western regions.
Interestingly, the high-density forest in the eastern parts of Odisha (OD), Jharkhand (JH)
and Chhattisgarh (CH) received a higher amount of rainfall in the summer. However,
during the monsoon, the Western Ghats and western regions received the highest rainfall,
the central and eastern regions received moderate-to-high rainfall and the north-western
region had the least rainfall (Figure 6c).
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We also analyzed the seasonal mean NDVI and its response to rainfall variability for
the same period. During the winter, the regions with the most rainfall (i.e., the eastern
region and parts of WG) showed a healthy vegetation condition where evergreen/semi-
evergreen/moist-deciduous vegetation is dominant (Figure 6d). Nevertheless, during the
summer season, due to heatwaves, browning of vegetation was observed over the vast
stretches of the central and north-western regions of the study area where dry deciduous
vegetation is dominant (Figure 6e). The seasonal NDVI variability revealed the phenologi-
cal cycle in central India. The natural vegetation here attains peak growth with maximum
greenness during the monsoon and senescence during the dry conditions in summer and
winter. Its spatial variability is linked with species types (Figure 6d–f).

3.4. Periodic (5 Yearly) Rainfall and Vegetation Sensitivity

The entire study period was divided into four epochs (i.e., 2001–2005, 2006–2010,
2011–2015 and 2016–2018) so that the annual rainfall and NDVI variability can be better
characterized in different epochs, as shown in Tables 2 and 3. The spatial pattern of mean
annual rainfall was more-or-less consistent in different epochs with minor variability, which
can be observed in Figure 7a–d. The annual rainfall has increased over the years, which can
be observed through the increasing areal coverage of the 1200–1500 mm class and a relative
decrease in the <800 mm class area in Table 3. This may have contributed to vegetation
growth, as observed by the increase in the area of the NDVI class >0.6 in different epochs.
The first epoch (2001–2005) was a relatively drier period than the other epochs. In all the
epochs, the Western Ghats region consistently received the maximum rainfall due to its
topographic alignment, and the north-western part of MP received the lowest rainfall.
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Table 2. Percentage area distribution of rainfall in different epochs.

Rainfall (mm) Epoch 1
2001–2005

Epoch 2
2006–2010

Epoch 3
2011–2015

Epoch 4
2016–2018

<800 7.31 4.84 2.23 1.78
800–1000 8.65 9.40 6.86 7.74

1000–1200 15.55 16.63 15.34 13.53
1200–1500 47.22 36.26 46.62 47.03
1500–1800 19.22 30.90 26.65 27.75

>1800 2.05 1.97 2.30 2.18

Table 3. Percentage area distribution of NDVI in different epochs.

NDVI Epoch 1
2001–2005

Epoch 2
2006–2010

Epoch 3
2011–2015

Epoch 4
2016–2018

<0.15 0.31 0.26 0.22 0.08
0.15–0.30 1.24 0.74 0.40 0.41
0.30–0.40 13.35 9.31 6.21 7.42
0.40–0.50 35.12 36.63 33.37 33.41
0.50–0.60 32.47 33.15 33.72 33.46
0.60–0.70 15.66 17.51 21.80 21.29

>0.70 1.85 2.40 4.28 3.93
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All epochs experienced three major patterns: high rainfall in the Western Ghats and
coastal region, moderate rainfall in the north-eastern region and the lowest rainfall in
the north-western region. Interestingly, the mean NDVI in different epochs revealed a
consistent pattern of vigour in the classes 0.40–0.50 and 0.50–0.60 (Table 3), which may be
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an indication of the strong resilience of the vegetation system in the region. In the first
epoch (the driest period in 18 years), the mean NDVI values were consistently smaller in
the larger part of the north-western region (Figure 8a), which is a clear indication of the
adaptation of vegetation systems in low-rainfall areas.
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Figure 8. Spatio-temporal variability in the long-term mean annual NDVI in different epochs: (a) 1st epoch (2001–2005),
(b) 2nd epoch (2006–2010), (c) 3rd epoch (2011–2015) and (d) 4th epoch (2016–2018).

In fact, these areas are drier regions with scrubs, grasses and thorn vegetation types [68–70]
and especially lantana camara, which have covered most parts of the protected forests of
central India [68,71]. Apart from this, the region is abundant with teak forests [69,72] with
low biomass accumulation, which is limited due to environmental conditions compared to
other moist forests. The regions with large mean NDVI (class 0.6–0.83) are characterized
with densely vegetated areas of moist deciduous forest in the eastern region and evergreen
forests in the Western Ghats (Figure 8).

We analyzed the temporal differences in rainfall across different epochs by classifying
the derived difference into seven classes (Figure 9a–c). We checked their association
with the relative temporal difference in NDVI (Figure 9d–f). Tables 4 and 5 show the area
percentage of different classes in three different phases. Here, the difference between epochs
is referred to as phases: phase-1 refers to (epoch2-epoch1); phase-2 is (epoch3-epoch2);
and phase-3 is (epoch4-epoch3). In phase-1, negative values mean that the current epoch
(second) received less rainfall than the previous (first ) epoch, and positive values mean
that the region received higher rainfall in the current epoch. The phase-1 result (Figure 9a)
revealed that in the northern part of the study area (shown in red-to-yellow colour in
Figure 9a), the second epoch (2006–2010) received less rain than the first epoch (2001–2005).
Interestingly, a similar pattern was observed in NDVI difference, i.e., a decline in vegetation
growth in phase-1 revealing a possible regional rainfall dependency (Figure 9a,d). The
phase-2 results revealed that the third epoch’s rainfall was greater than the second in the
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northern part (Figure 9b). In contrast to the first phase, the spatial pattern of positive
NDVI classes showed a gain in vegetation growth and the effect of rainfall in central India
(Figure 9e).
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Table 4. Percentage area distribution of rainfall difference in different phases.

Rainfall (mm) Phase 1
(2nd–1st Epoch)

Phase 2
(3rd–2nd Epoch)

Phase 3
(4th–3rd Epoch)

−740–−200 1.06 8.26 2.37
−200–−100 13.87 12.47 14.43
−100–−50 4.03 16.44 12.66
−50–0 7.39 13.07 17.28
0–50 14.48 9.92 21.49

50–100 12.97 13.40 18.93
100–699 46.20 26.44 12.84

In the third phase (Figure 9c), rainfall decline was relatively high, which negatively
affected the spatial pattern of vegetation growth in the fourth epoch (Figure 9f). All phases
depicted three different patterns: (a) dry spell over the northern region during the first
phase, (b) wet spell during the second phase in the north and dry spell in the south and
(c) dry spell during the third phase. Overall, there exists a similarity in the spatial pattern
between rainfall and NDVI variation, confirming the water dependency of the central
Indian vegetation ecosystem in all phases. However, the dependency seems to be much
higher in the northern regions than in the south-east. Despite the decline in rainfall in phase
2 (Figure 9b), there was a positive vegetation growth (larger NDVI values in Figure 9e).
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Table 5. Percentage area distribution of NDVI difference in different phases.

NDVI Phase 1
(2nd–1st Epoch)

Phase 2
(3rd–2nd Epoch)

Phase 3
(4th–3rd Epoch)

−0.38–−0.06 0.47 0.27 0.29
−0.06–−0.03 0.31 0.16 3.69
−0.03–−0.01 4.86 1.32 26.77

−0.01–0 14.11 5.38 30.49
0–−0.01 28.45 15.93 24.36
0.01–0.03 41.20 59.97 13.29
0.03–0.48 10.60 16.97 1.11

3.5. Response of Vegetation Growth during Drought, Normal and Wet Years

From the perspective of local and global climate change, it is pertinent to examine
the effect of different climatic extremes (dry, wet and normal) on the growth dynamics of
natural vegetation. The classified standardized rainfall anomaly (SRA) and Standardised
NDVI Anomaly (SNA) maps from 2002 (dry), 2011 (normal) and 2013 (wet) are presented
in Figure 10. Around 98.24% of the study area showed a negative rainfall anomaly in
2002 (Figure 10a). There was an apparent reduction in NDVI throughout the study area
in 2002, and a positive NDVI anomaly was observed only in 7.09% of the forested area
(Figure 9d). During the normal year (2011), around 69.90% of the area observed a positive
rainfall anomaly, except in the southern part of CH and OD (Figure 10b). Surprisingly,
even in the regions of positive rainfall anomaly in the same year, around 38.51% of the
area experienced a negative NDVI anomaly over northern CH and the northwest of OD
(Figure 10e).
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In 2013 (wet year), around 94.98% of the area experienced a positive rainfall anomaly
except for a few parts of JH, southern OD, CH and the Western Ghats (Figure 10c). In the
same year, most vegetation showed a positive growth anomaly (NDVI vigour) over 88.57%
of the area (northern and eastern MP, northern CH, most parts of JH and OD), while only
11.43% of the area (southern MP, CH and south-eastern parts of OD) experienced a mild
negative anomaly (Figure 10f). However, some regions experienced contrasting positive
and negative NDVI anomalies, which might be due to the varying levels of rainfall in the
catchments, sub-surface flow, soil moisture, evapotranspiration, water table fluctuation
and topographic conditions. Hence, future research is needed to investigate the response
of different types of vegetation in different catchments.

3.6. Spatio-temporal Distribution of NDVI-Rainfall Ratio (NRR)

Figure 11d reveals the spatial distribution of long-term mean water use efficiency
(i.e., NRR for the study area). It is observed that the average NRR was highest in the
south and north and lowest in the Western Ghats, parts of Maharashtra and parts of MP.
The variability in NRR is due to the spatial distribution of vegetation type, vegetation
adaptation capacity, soil conditions, altitude and runoff. The area of different NRR classes
in different climatically extreme years is provided in Table 6.
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Table 6. NRR distribution (in % area) in a dry, normal and wet year and its long-term mean.

NRR
Class Dry Year (2002) Normal Year

(2011) Wet Year (2013) Long-Term
Mean

1–50 0.65 4.06 6.31 1.81
50–70 5.05 14.98 28.85 8.24
70–90 20.08 42.10 43.64 40.65

90–110 35.90 26.39 18.33 39.60
110–130 27.68 10.23 2.56 8.66
130–150 8.21 1.97 0.30 1.00
150–250 2.43 0.27 0.01 0.04

The long-term mean NRR shows that around 46% of the forested regions had good-to-
high NRR, which increased to 74% in the dry year and reduced to 21% in the wet year. NRR
can, thus, help in understanding the resilience of the central Indian forest ecosystem as
high values of NRR indicate greater adaptability to water stress conditions. In Figure 11d,
different values of NRR could be related to different vegetation types such as the dark green
colour being related to evergreen forest, yellowish shades are related to semi-evergreen
and moist deciduous forest and the red shades for the dry deciduous area.

4. Discussion

The study of terrestrial vegetation and its dynamics is important not only at the re-
gional level but also to help in understanding the impacts of climate change and extreme
events on the global scale. This research investigated the spatial pattern of rainfall, its
variability and its influence on forests at the regional level in India. In general, the study
area experienced entropic rainfall distributions with variation over 18 years. Significant
increasing trends in rainfall in MP and decreasing trends in CH were found in this study.
Similar decreasing trends were reported by Paul et al. [73]. However, few previous stud-
ies have reported an increasing trend in rainfall over central India across different time
frames [74,75]. Despite the decreasing rainfall trends, the major proportion of the area
showed greening over central India, which might be due to government initiatives related
to water conservation measures, afforestation and declines in the rate of deforestation,
as revealed by Reddy et al. [76]. Apart from this, aerosol loading in the atmosphere has
increased over India [77,78], which, in turn, has helped cloud formation and increased
rainfall [79]. Wang et al. [80] revealed field evidence about the rise in aerosol loading and
its link with positive vegetation growth in China.

Interestingly, Chakraborty et al. [81] reported browning over central India, which
contradicts the findings of greening in this research: the differences may be due to the
approach used in their study. In our study, we tested the trend at different resolutions
and with different methods, and in all the results, the greening pattern was dominant (see
Figures 12 and 13). Undoubtedly, vegetation greening reveals the presence of sufficient
moisture, and the southwest monsoon keeps the landscape free from prolonged water
stress. Overall, a browning of vegetation was observed in only a few regions located in
MP, the north-west of JH and south of CH and OD. The decreasing rainfall trends over
Chhattisgarh are in agreement with ground observation [82].
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The dependency of dry deciduous forest and moist deciduous forest on rainfall varied
across the landscape. We observed that the dependency of dry forest on rainfall was much
greater than for moist deciduous forest, inferred from the regression analysis using random
samples. Several studies reported that the spatial pattern of greening might reveal the
water-use capacity of different vegetation types and species in tolerating stress or drought
at the regional level [38,83,84]. In our research, the NRR in 2002 was much higher in the
drought year than the wet year (i.e., 2013) (Figure 11), which reveals the high resilience of
central Indian vegetation, even with low rainfall for a prolonged period [85].

Since the temperature is high throughout the year in central India, water availability
increases vegetation photosynthesis; hence, peak growth of vegetation is observed during
the monsoon. However, high precipitation does not guarantee high moisture in a region
as soil moisture depends on various factors. Here, we assumed that high rainfall positive
anomalies in an area are a sign of water availability for vegetation growth and development.
However, many factors such as altitude, soil characteristics, root uptake, drainage and
runoff, subsurface flow, evapotranspiration and water holding capacity of the soil control
water availability in any region [86]. Apparently, in the tropical region, deciduous forest
growth is mainly controlled by rainfall. Our results for the spatio-temporal pattern of
rainfall and vegetation responses in five-yearly phases showed a divergent response
in drier and wetter periods at the regional scale. Ultimately, the undulating terrain of
the central Indian landscape plays a vital role in controlling micro-habitat variation and
moisture availability due to runoff. In addition, factors such as drought-tolerant species,
evapotranspiration, the duration and intensity of rainfall, temperature, elevation gradient
and soil types over central India can affect the variability between phases and long-term
trends as a whole [87–90].

Samanta et al. [91] observed that warming of the Indian Ocean has a diminishing
effect on rainfall in central India, especially during drought years. A significant rise in
extreme events was reported over the central Indian landscape with the weakening of
the monsoon and increasing spatial variability at local and regional levels [41,92]. As a
consequence of climatic change and an imbalance in terrestrial and sea surface warming,
central Indian tropical forest ecosystems may experience stress in moisture supply. It
results in biodiversity loss, which may affect ecosystem services and life-support systems
in the region, impacting the long-term survival of forest-dependent populations.

The effect of upscaling NDVI to 5 km on Sen’s slope and the significance of trends
was tested. The majority based approach produced a more reliable result as its estimates
were close to the estimates using NDVI at a spatial resolution of 250 m (Tables S3 and S4).
However, for both NDVI_A5km and NDVI_P5km data, it was observed that Sen’s slope
classes in the mean-based approach (i.e., SEN_A5km and SEN_P5km) with the small area
were underestimated, and Sen’s slope classes with the large area were overestimated.
Interestingly, the reverse was observed (overestimation of small area classes and vice versa)
in the majority-based approach (i.e., SEN’_A5 km and SEN’_P5 km). Although continuous
vegetation information can be derived at a very fine spatial resolution up to 20 m, contin-
uous rainfall data at a fine spatial resolution are not yet available. Hence, increasing the
spatial resolution of the available rainfall observations needs serious attention from the
research community.

5. Conclusions

We used remote sensing-derived vegetation indices and rainfall data over 18 years to
investigate the response of central Indian tropical forests to rainfall variation. The research
revealed a complex spatial pattern of diverse vegetation responses to rainfall seasonality,
expressed through long-term trends and impacts on vegetation in different five-yearly
phases. Central Indian vegetation showed resistance to dry spells and water scarcity
despite decreasing or deficit rainfall trends. This means that the productivity of vegetation
has been sustained even during drought-like conditions in different years. Hence, we
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conclude that it has high resilience and water use efficiency relative to climatic oscillations
in the region.

Nevertheless, it was found that rainfall impacted vegetation growth to some extent:
negatively in a drought year (2002) and positively in a wet year (2013). The research
presented here quantified this dependency spatially for the first time. Interestingly, high-
density forests in the eastern states of Odisha (OD), Jharkhand (JH) and Chhattisgarh (CH)
received a greater amount of rainfall in the summer, providing an interesting focus for
further investigation. Greening patterns were observed over 88% of the forested landscape
at 250 m spatial resolution, and 2-tier majority-based aggregation of Sen’s slope data at
5 km spatial resolution revealed reliable area estimates consistent with those at 250 m.

We recommend that policymakers set up a network of rainfall stations, runoff mea-
surements, phenocams and eddy covariance towers to quantify the impacts of climate
change and assess forest vulnerability relative to future changes across central India. Such
a network may also help to understand the exchange of carbon and water fluxes, water
use efficiency and the impact of droughts at the micro-habitat, watershed, forest type and
species levels.

Supplementary Materials: The following figures and tables are available online at https://www.
mdpi.com/article/10.3390/rs13214474/s1, Figure S1. Spatio–temporal variability of Sen’s slope
derived from different datasets: (a) based on original CHIRPS and (b) based on Kriging corrected
CHIRPS. Figure S2. Validation of significant (a,c) decreasing trends and (b,d) increasing trends. Table
S1. Standardised Rainfall Anomaly (SRA) from 2001 to 2018. Table S2. Standardised NDVI Anomaly
(SNA) during dry, normal and wet years. Table S3. Area statistics (in %) of Sen’s slope derived from
different approaches using the Annual Mean NDVI. Table S4. Area statistics (in %) of Sen’s slope
derived from different approaches using Mean NDVI from the peak-growth period.
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