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Abstract: In recent years, the deep neural network has shown a strong presence in classification tasks
and its effectiveness has been well proved. However, the framework of DNN usually requires a
large number of samples. Compared to the training sets in classification tasks, the training sets for
the target detection of hyperspectral images may only include a few target spectra which are quite
limited and precious. The insufficient labeled samples make the DNN-based hyperspectral target
detection task a challenging problem. To address this problem, we propose a hyperspectral target
detection approach with an auxiliary generative adversarial network. Specifically, the training set is
first expanded by generating simulated target spectra and background spectra using the generative
adversarial network. Then, a classifier which is highly associated with the discriminator of the
generative adversarial network is trained based on the real and the generated spectra. Finally, in
order to further suppress the background, guided filters are utilized to improve the smoothness
and robustness of the detection results. Experiments conducted on real hyperspectral images show
the proposed approach is able to perform more efficiently and accurately compared to other target
detection approaches.

Keywords: hyperspectral images; target detection; generative adversarial network

1. Introduction

Hyperspectral images (HSIs) obtained by remote sensing systems usually contain
hundreds of continuous narrow bands over a wide range of an electromagnetic spectrum.
Each pixel of HSIs forms a continuous spectrum, which is able to provide abundant useful
spectral information that is beneficial to distinguish different objects [1]. By exploiting the
different electromagnetic spectra of materials, targets of interest in the hyperspectral scene
can be detected and identified through effective processing algorithms.

As one of the most important research areas, target detection (TD) is basically a binary
classifier which aims at separating target pixels from the background with known target
spectra. Furthermore, just as fields of synthetic aperture radar (SAR) target recognition [2],
electromagnetic sources recognition [3] and single-image super-resolution [4], which are
very likely to be confronted with the problem of insufficient training samples, TD tasks
also face the challenge of a small size of labeled training samples. Because of the small
fraction of pixels being labeled as targets, the method of statistical hypothesis testing
is usually exploited in classical target detection algorithms. Representative algorithms
include the linear spectral matched filter (SMF), matched subspace detector (MSD) and
adaptive coherence/cosine estimator (ACE). These algorithms define the target spectral
characteristics by either a single target spectrum or a target subspace, while modeling the
background statistically by a Gaussian distribution or a subspace representing either the
whole or the local background statistics. Through the generalized likelihood ratio test
(GLRT), the output for a certain pixel is obtained [1]. As kernel methods in machine learning
are introduced to target detection, the approaches mentioned above are further extended
to nonlinear versions, such as kernel SMF and kernel MSD [5], which can solve nonlinear
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problems to some extent. However, how to design a suitable kernel remains a problem.
Constrained energy minimization (CEM), as a linear filter, is another target detection
approach which constrains a desired target signature while being able to minimize the total
energy of the output of other known signatures [6].

Meanwhile, target detection algorithms based on sparse representation are also exten-
sively explored by researchers. Central to sparse representation is the idea that a signal
can be expressed as a linear combination of very few atoms of an over-complete dictionary
consisting of a set of training samples from all classes. Then, the class information can be
revealed by the sparse coefficients under the assumption that signals from different classes
lie in different spaces [7]. Typical approaches include the original sparse representation-
based target detector (STD) and its variants: sparse representation-based binary hypothesis
detector (SRBBH) [8] and sparse and dense hybrid representation-based target detector
(SDRD) [9]. On the basis of STD, SRBBH perceives the detection problem as a competition
between the background-only subspace and the target-and-background subspace under
two different hypotheses. However, different from SRBBH, SDRD emphasizes that the
background and the target sub-dictionaries collaboratively compete with each other, which
facilitates the learning of sparse and dense hybrid representations for the test pixels.

Although progress has been achieved and many problems in detection tasks have
been solved, challenges are still there within the realm of hyperspectral target detection.
First, due to sensor noise and other factors, the target spectrum of the same material may
vary dramatically, which makes it hard to represent the target spectrum using only a single
spectrum or a subspace. Further, since spatial resolutions of HSIs are usually lower than
that of multi-spectral and chromatic images, mixing pixels covering several materials still
exist, which makes detection tasks much more complicated. Moreover, the problem of
target detection is mostly nonlinear, but the approaches mentioned earlier are more likely
to make decisions under linear assumptions, which does not do justice to the complex
reality of HSI processing. Furthermore, it is noteworthy that many of these approaches just
fail to work well when nonlinearity increases.

Recently, the deep neural network (DNN), which has achieved great success in the field
of computer vision, has attracted the attention of the HSI processing community. However,
due to the small training set with very few target spectra in the task of hyperspectral
detection, DNNs designed for large datasets can hardly be utilized directly. In order
to utilize the great representation power of a DNN, the training strategy, as well as the
network structure and function must be carefully designed.

Furthermore, based on the whole new avenue opened up by DNNs, approaches
of [10–14] have been proposed accordingly, in which the neural network has been exploited
as an unsupervised feature extractor. Specifically, in [10], a distance-constrained stacked
sparse autoencoder is utilized for feature extraction, which is able to maximize the dis-
tinction between the target pixels and the other background pixels in the feature space,
and the process is followed by background suppression via a simple detector based on a
radial basis function kernel. The authors of Ref. [11] introduce two adversarial losses in the
autoencoder to reconstruct enhanced hyperspectral images and utilize the RX detector for
anomaly detection. Meanwhile, the autoencoder also proves effective to be exploited to
extract spectral features [12] which are further processed with band selection and spatial
post-processing techniques for background suppression. Similar processing techniques
can be found in deep latent spectral representation learning proposed in [13]. Another
approach that is comparable is 3-D macro–micro residual autoencoder (3-D-MMRAE) in
which a convolutional autoencoder is built to extract the spectral and spatial features from
both the macro and the micro branches, and the extracted features are further fed to a
hierarchical radial basis function (hRBF) detector for target preservation and background
suppression [14]. The results have demonstrated the effectiveness of these approaches in
HSI processing, but the underlying mechanism of the transformation process using an
autoencoder remains to be uncovered.
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Besides unsupervised approaches, supervised approaches have also garnered much
attention. Furthermore, among such approaches, the subtraction pixel pair feature (SPPF),
which tries to enlarge the training set by using pairs between target spectra and background
spectra [15], eclipses many others as a very effective approach. To be specific, the approach
acquires a sufficiently large number of samples using SPPF and ensures the excellent
performance of the multi-layer convolutional neural network. Perhaps more effective is the
approach of [16], which combines the representation-based method together with the linear
mixing model to generate adequate background and target samples to train the neural
network. Whilst being compared to [15], the subtraction process in [16] is performed in the
final layer rather than the input layer, which improves the detection performance.

Apart from the approaches mentioned above, efforts performed from other angles
which prove fruitful are [17–19]. The authors of Ref. [17] utilize a semi-supervised learning
method through a two-step training process, which unfolds with the unsupervised pre-
training of a generative adversarial network, followed by the fine-tuning of a discriminator
through limited labeled samples. The authors of Ref. [18] realize few shot learning based
on domain adaptive approaches. To be specific, a network including both feature fusion
and channel attention is built for feature extraction and, then, the learned features from
different sensors are correlated through a discriminator whereby the weights learned in
the source domain are able to be transferred to the target domain for the following few
shot learning. The authors of Ref. [19] approach the detection problem based on multiple
instance learning, in which a sparsity constraint is introduced for the estimated attention
factor of the positive training bags and ensures the approach yields superior performance.

In this paper, we propose a novel hyperspectral target detection approach with an aux-
iliary generative adversarial network. It is a neural network which can be trained with very
limited target spectra directly without using any other preprocessing approaches. Similar
to the general generative adversarial network [20], the proposed network mainly contains
two parts: a generator and a discriminator. The generator generates simulated target
spectra and background spectra, which ease the problem of insufficient training samples.
Then, the initial detection results can be acquired by a classifier which is highly correlated
with the discriminator. Since the neural network only deals with the spectral information
of pixels, post-processing techniques are added to make full use of the spatial information.
Furthermore, in order to preserve the edges of the targets, several guided filters [21] are
utilized which can further suppress the background and improve the smoothness as well
as the robustness of the detection results.

Extensive experiments have been conducted on real HSIs and the results show the pro-
posed approach is more effective compared to the conventional target detection approaches.
The contributions of the proposed approach are summarized as follows:

(1) A novel hyperspectral target detection framework based on the generative adversarial
network is proposed, which can exhibit good performance while being trained with
limited target spectra.

(2) During the training process, a generator capable of generating simulated target spectra
is obtained. Furthermore, the generated targets as well as the background spectra
allow us to better understand the real distributions of the target and the background.

(3) A combination of guided filters is adopted to further suppress the background, which
ensures the smoothness and robustness of the results and makes the processing of
various sizes of targets possible.

The remainder of this article is organized as follows: Section 2 introduces the relevant
theories and the proposed approach based on the generative adversarial network in detail.
Section 3 shows the analysis process and the experimental results. Section 4 puts forward
a brief discussion on similar approaches and sheds light upon the future work. Section 5
draws the conclusion.



Remote Sens. 2021, 13, 4454 4 of 15

2. Materials and Methods

Before introducing the proposed approach, we first explicate the theories related to
generative adversarial network and guided filter, which were used for spectral target
detection and spatial smoothing in the proposed approach, respectively. In the following
section of this paper, we examined the circumstantial process.

2.1. Generative Adversarial Network

Generative adversarial network (GAN) was first proposed and used for estimating
generative models in [20]. To achieve good performance, GAN utilizes two models: a
generator and a discriminator, both of which can be realized by neural networks.

The basic idea of GAN is that the generator tries to generate fake samples and fool the
discriminator, while the discriminator tries to distinguish between real samples coming
from the data and fake samples coming from the generator. This adversarial competition
drives both the generator and the discriminator to improve their performance until the
generated or fake samples cannot be distinguished from the real ones. This process can be
formulated in a more mathematical manner.

Suppose pdata(x), pz(z) denote data distribution and a random noise distribution, re-
spectively. The generator builds a mapping pz(z) : G(z; θg)→ pg(x), where pg(x) denotes
the distribution of generated samples. As for the discriminator, let D(x; θd) denote the
probability of x coming from pdata(x) rather than pg(x). Then, the objective function of the
generator and the discriminator, denoted as Lg and Ld, can be formulated as Equations (1)
and (2), respectively.

min
G

Lg = Ez∼pz(z)[log(1− D(G(z)))] (1)

max
D

Ld = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))] (2)

Thus, during alternate iteration of the training process, the final value function V(D, G)
can be formulated as Equation (3).

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)]

+Ez∼pz(z)[log(1− D(G(z)))]
(3)

The value function in Equation (3) can be further interpreted as a distance metric,
i.e., Jensen–Shannon divergence. In practice, however, vanilla GAN proposed in [20] is
usually hard to train in deep networks. Researchers holding different viewpoints have been
working hard to propose various variants which can be optimized more easily, including
the activation function, objective function and network architectures, etc.

For example, in [22], several strategies for training stable deep convolutional GANs
are suggested, including adopting batchnorm, using ReLU activation in the generator other
than the output layer and using LeakyReLU activation in the discriminator. On the other
hand, through the variational divergence estimation network, the training objective of
GAN is generalized to arbitrary f-divergences in [23]. Moreover, in order to accommodate
different application scenarios, modified network architectures are introduced, such as
information maximizing GAN (InfoGAN) [24] and auxiliary classifier GAN (ACGAN) [25].

Generally speaking, generative adversarial network is mainly utilized either to model
the distribution of samples or to generate samples. Although there exist several criteria for
evaluating the quality of generated samples, open issues still remain in the particular fields.

In the proposed approach, we exploit the core idea of GAN and try to detect targets
through discrimination. To be more concrete, a detection network is built with an aux-
iliary GAN which provides supplementary samples and shares several layers with the
detector. Furthermore, to fix the problem of the detection network in being only able to
deal with spectral information, a spatial post-processing technique was employed in the
training process.
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2.2. Guided Filter

Guided image filtering is one kind of self-adaptive image filters. It computes the
filtering process according to the content of a guided image which can be the input image
itself or another image. To put it more specifically, the guided filter is assumed to be a local
linear model between the guided image I and the filtering output q. Suppose q is a linear
transformation of I in a local area wk centered at the pixel k [21]:

qi = ak Ii + bk, ∀i ∈ wk (4)

where ak and bk denote linear coefficients which are assumed to be constant in wk. On the
other hand, the output q is modeled as the input p which eliminates a few other parts n,
defined as:

qi = pi − ni (5)

When Equations (4) and (5) are combined together, the previous tough issue is trans-
formed into a minimization problem with a quadric formula:

E(ak, bk) = ∑
i∈wk

[(ak Ii + bk)− pi]
2 + εa2

k (6)

where ε is a regularization parameter which penalizes large ak.
As an edge-preserving smooth operator, guided filter is faster and works better near

edges when compared to the popular bilateral filters. Therefore, we adopted guided filter as
a post-processing technique in the detection algorithm to further suppress the background
information and the tiny isolated points in the previous detection maps.

2.3. Proposed Approach

In this section, we explain the proposed detection approach in detail. Firstly, a general
introduction about the detection framework with circumstantial explanations was given.
After that, the architectures of the network along with the training objective were intro-
duced. Finally, a bank of guided filters used for spatial smoothing was illustrated briefly.

2.3.1. General Framework

Given the fact that labeled target spectra are quite limited, unlabeled spectra including
targets and backgrounds should, therefore, be utilized much more efficiently. To this end,
our approach utilized the generative adversarial network to model the distributions of both
the target spectra and the background spectra. Furthermore, to our delight, we found when
the generative adversarial network converged, the generator would well generate both
the simulated target spectra and the background spectra, and the discriminator was also
able to extract useful information to be used for target detection. Hence, a target detector
could be merged with the discriminator of a GAN. The general framework of the proposed
approach is shown in Figure 1.

As demonstrated in Figure 1, the whole process of the proposed approach was divided
into two phases: network training and detecting. In the training process, the target
spectra together with the unlabeled spectra to be detected were regarded as the targets
and the backgrounds, respectively, and were fed into the general adversarial network
for training. Although it seemed venturesome to deem all of the unlabeled spectra as
backgrounds, the generative adversarial network proved to be able to counteract the
wrong apportionment very effectively with simulated samples. When the training process
converged, the discriminator of GAN was selected as the detector in the detecting phase.
In this process, we obtained an initial detection map through the discriminator based on
the spectral information. Furthermore, to further suppress the background and the tiny
outliers, guided filters were utilized to improve the smoothness and robustness of the
detection results.
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Figure 1. General network of our approach.

2.3.2. Network Architecture and Objective Function

With respect to the specific network architectures, it should be noted that the neural
network during training was divided into a generator network and a discriminator net-
work. Furthermore, we followed different criteria while building these two networks for
target detection.

As shown in Figure 1, a residual structure was adopted in the generator, which was
very expressive and could be used to well model the complicated distributions of the target
and the background spectra. Meanwhile, in order to stabilize the training process, spectral
normalization (SN) layers which were proposed in [26] were added between every two
fully connected layers. As for the discriminator, we designed a dual branch structure. One
branch output the truth value indicating whether the sample was real or false, and the other
output the class label indicating whether the sample was target or background. The dual
branches shared as many layers as possible, linking the generative adversarial network
with a detector. Parameters of our network are listed in Table 1.

As the discriminator in the proposed network was able to provide two kinds of
probabilities through the dual branches, viz. one for the truth value and the other for the
class label, the loss of the discriminator denoted as Ld could, accordingly, be represented
by two parts, i.e., Ladv for the truth loss and Lclc for the class loss, which were similar to
that of ACGAN as proposed in [25] and could be defined as Equation (7):

Ld = Ladv + Lclc = [∑
i

max(0, 1− si
r) + ∑

j
max(0, 1+

sj
g)]−∑

i,j
[c log ĉ + (1− c) log(1− ĉ)]

(7)

where si
r and sj

g denote the truth values for real and generated samples separately and c and
ĉ denote the real and the predicted class labels for all the samples, respectively. As shown
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in Equation (7), the first two terms represented the hinge version of the adversarial loss
as proposed in [26,27], while the third term represented the cross-entropy between the
real and the predicted class labels. Through integrated loss, as the network converged,
the discriminator could not only distinguish between real and generated samples, but also
provide a class label for each sample.

Table 1. Parameter of the proposed network.

Network Layer Type Shape Activation

Generator

Input
Fully Connected 16× 128 None

SN ReLU

Res. 1–3
Fully Connected 128× 64 None

SN ReLU
Fully Connected 64× 128 None

Output
Fully Connected 128× Nbands None

SN Tanh

Discriminator

Input
Fully Connected Nbands × 256 Leaky ReLU
Fully Connected 256× 128 Leaky ReLU

Branch 1
Fully Connected 128× 32 Leaky ReLU
Fully Connected 32× 1 Sigmoid

Branch 2
Fully Connected 128× 32 Leaky ReLU
Fully Connected 32× 2 Sigmoid

As for the objective of the generator (denoted as Lg), the case became quite simple.
As demonstrated in Equation (8):

Lg = Lgen + α× Lreg = −∑
j

sj
g + α×∑

p
|X̂p+1

+X̂p−1 − 2X̂p|
(8)

where X̂p denotes a certain value on position p of the generated spectrum X̂, the first
term denotes the ordinary generative loss and is denoted as Lgen, and the second term,
represented as Lreg, refers to the second-order difference and denotes a relatively weak
but useful penalty which could help to smoothen the generated spectra and stabilize the
training process. Worth noting, α is a penalty constant which was empirically set as 1.

As for the training process of the proposed network, it was very similar to that of
conventional GAN. Specifically, the technique of back-propagation was utilized in the
training process to minimize Ld and Lg alternately. When the network converged, it came
to the detection phase. In this phase, the generator was removed and the discriminator was
utilized as a detector to deal with the real spectra. Since we could utilize the discriminator at
different times and with different weights, several initial detection maps could be acquired.
To further suppress the background and the tiny outliers, necessary spatial processing
techniques were adopted.

2.3.3. Bank of Guided Filters

Furthermore, since spatial correlation was useful in detecting certain objects in HSIs,
a bank of guided filters could be utilized to smoothen the initial detection results. The frame-
work of spatial filtering with guided filters is illustrated in Figure 2.
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Figure 2. Spatial filtering with guided filters.

As shown in Figure 2, the initial detection maps obtained at different times were firstly
filtered by the bank of filters individually. In this case, all the filters would adopt the initial
input image as the guided image and they differed from each other only in radius r and the
regularization coefficient ε. Then, different degrees and scales of smoothening procedures
were conducted on the initial detection maps. After that, max pooling was performed on
the filtered images to gather the most valuable information. At last, an overall average
value regarding the images acquired at different times was calculated so as to obtain a
relatively stable detection result.

3. Results

To evaluate the robustness and effectiveness of the proposed approach, experiments
were conducted for the target detection of HSIs. Firstly, the assessment criteria of tar-
get detection were provided along with the hyperspectral datasets that were utilized in
this paper. Then, the preferences of the proposed network were analyzed through the
experimental results. Finally, comparisons were performed between our approach and
some other detection approaches such as ACE, CEM, STD, etc. The results showed the
proposed approach could yield superior detection performance in terms of both efficiency
and accuracy.

3.1. Assessment Criteria

In order to assess the detection performance reliably, a 2D receiver operating character-
istic (ROC) curve was adopted together with the intuitional detection maps. As an effective
metric for the ROC curve, the area under the curve (AUC) of the false positive rate (Pf )
versus the true positive rate (Pt) was calculated. Pf , Pt could be defined as Equation (9):

Pf =
FP

FP + TN
, Pt =

TP
TP + FN

(9)

where FP and TP denote the false positive samples (backgrounds which were detected
as targets) and the true positive samples (targets which were detected as targets), respec-
tively, and FN and TN denote the false negative samples (targets which were detected
as backgrounds) and the true negative samples (backgrounds which were detected as
backgrounds), respectively. Therefore, Pf was also known as the false alarm rate and Pt the
recall rate in the field of TD.

3.2. Datasets

Three HSI datasets were utilized in our experiments which were described as follows.
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3.2.1. Airport–Beach–Urban Dataset

This dataset is available online and consists of scenes from airports, beaches and urban
areas. Three images from each scene were selected for the following experiments, and
were denoted as D1, D2 and D3, respectively. All of them were acquired by the airborne
visible/infrared imaging spectrometer (AVIRIS) sensor and contained 100× 100 pixels in
the spatial domain. After removing the water-absorption and noisy bands, each group of
HSIs included 205, 193, 207 bands, respectively. Their color composites and the correspond-
ing reference maps are shown in Figure 3, and five target signatures were utilized as the
training samples for each image.

(a) (b) (c)

Figure 3. Color composites and reference maps: (a) D1, (b) D2 and (c) D3.

3.2.2. San Diego Airport Dataset

The second dataset was acquired by the AVIRIS sensor over the San Diego airport in
CA, USA. The original HSIs contained 400× 400 pixels in the spatial domain and 189 bands
after removing the water-absorption and noisy bands. Two small parts were utilized for
the experiments. They all contained 100× 100 pixels and were denoted as D4 and D5,
respectively. The color composites and the corresponding reference maps are illustrated in
Figure 4a,b. Each of them contained three planes which were considered as the targets to
be detected and five target signatures were selected as the training samples for each image.

(a) (b) (c)

Figure 4. Color composites and reference maps: (a) D4, (b) D5 and (c) D6.

3.2.3. Urban Dataset

The third dataset was collected by the hyperspectral digital imagery collection ex-
periment (HYDICE) sensor and its spatial and spectral resolutions were 2 m and 10 nm,
respectively. A small part denoted as D6 with 80× 100 pixels and 162 bands was utilized
in the experiments. The color composites and the corresponding reference maps are shown
in Figure 4c. There were 21 target pixels to be detected, where 3 target signatures were
utilized as the training samples.

3.3. Preferences

Before further discussion, explanations were first determined here to parameter pref-
erences, including the ratio between the target signature and the unlabeled spectra in one
batch during training, the learning rate along with the number of classifiers and the guided
filters during detection.
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Earlier in this paper, we mentioned that the training set was composed of the target
spectra and the unlabeled spectra. Since the former contained far fewer samples than the
latter, only a small fraction of unlabeled spectra was selected as the backgrounds in each
batch for training in the experiments. In this way, the imbalance between the two kinds of
samples was greatly alleviated. In addition, the amount of target signature was doubled by
adding Gaussian noises. Furthermore, the detection performance evaluated by the AUC
(Pf , Pt) under different ratios between the target spectra (including noisy samples) and the
unlabeled spectra in one batch is shown in Figure 5a.

(a) (b) (c)

Figure 5. AUC (Pf , Pt) under different (a) ratios between samples in one batch, (b) learning rates of the discriminator,
(c) settings of guided filters.

From the results, we could see the ratio between the target spectra and the unlabeled
spectra had an obvious influence on the detection performance, and the optimum ratio
varied from different datasets. Specifically, for D1 and D5, as the proportion of unlabeled
spectra in one batch increased, the AUC increased until it converged. For D3, D4 and D6,
when the proportion of unlabeled spectra increased, the AUC decreased slightly. Further-
more, for D2, with the increasing of the proportion of unlabeled spectra, the AUC first
increased slightly and then decreased dramatically. Judging from the different situations,
we selected 1:10 as a proper ratio between the target spectra and the unlabeled spectra for
the following experiments.

With respect to the learning rate, we adopted an imbalanced learning rate as in [28]
with ld = [10−4, 10−3, 10−2, 10−1], lg = ld/2 for the discriminator and the generator, respec-
tively, and employed RMSprop as the optimizer. Since we used spectral normalization and
the smooth penalty to stabilize the training process, the network could converge in less
than two thousand iterations. The detection performance evaluated by the AUC (Pf , Pt)
under different learning rates is shown in Figure 5b.

According to the results of Figure 5b, the learning rate had a significant influence
on the detection performance, especially for D1 and D2. With a low degree of network
convergence, a small learning rate such as 10−4 led to a decrease in the performance while a
larger learning rate such as 10−1 could lead to a divergent network, resulting in a dramatic
performance collapse. Meanwhile, the AUC changed slightly and exhibited a relatively
robust performance when the learning rate fell into a range from 10−3 to 10−2. Given this
fact, the learning rate of 10−3 was adopted in the following experiments.

After the network converged, it came to the detection phase. Discriminators at
15 different moments were utilized as the detectors, and 9 different guided filter pref-
erences were selected to smoothen the initial detection maps. The pairs between the
radius r and regularization coefficient ε of guided filters were set to be r = [1, 2, 3] and
ε = [0.42, 0.62, 0.82]. The detection performance before and after filtering with different
filters is listed in Figure 5c. The proposed approach adopted three different settings for
filters, viz. (1, 0.82), (2, 0.62) and (3, 0.42), so as to form a filter bank as mentioned in the
previous section.
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As indicated in Figure 5c, the AUC (Pf , Pt) varied as the guided filter setting changed.
The use of guided filtering improved the detection performance in almost every dataset,
and the case was especially true for D1 and D3. However, the influence of filter settings
on different datasets was quite different. For D1, (3, 0.82) was the best setting for (µ, ε) of
guided filters, while for D3, (1, 0.42) was the optimal setting. Meanwhile, the AUC was
almost the same for both D4 and D5. As the proposed approach adopted a bank of guided
filters, it could always perform well in various datasets.

As neural networks on which the proposed approach was based on are often time-
consuming with high computational complexity, the relevant processing complexity was
explicitly addressed here to further demonstrate the effectiveness of the proposed approach.
Specifically, the processing cost was evaluated in terms of the processing time (in seconds)
and the amounts of learnable parameters, with results illustrated in Table 2. Meanwhile,
the programs in the proposed approach were ran through Tensorflow in Python on a
computer with a Quad-Core core processor of 3.40 GHz (i5-7500), GTX 1070 and 16G
memory. As indicated in Table 2, a range of 0.15 to 0.17 million parameters (varying
with the number of bands) was employed in the proposed network, the number of which
was relatively small and was able to yield efficient detection results. Meanwhile, as the
proposed approach was pixel-based, the processing time would change as the size of
datasets changed. For this reason, D6 (with a smaller size of 80 × 100) showed a better
detection efficiency than the other datasets.

Table 2. The processing cost of the proposed approach in various datasets.

Datasets D1 D2 D3 D4 D5 D6

Time (sec.)
Train 11.83 12.25 12.06 12.03 11.89 9.57

Test 3.05 3.12 3.06 2.99 3.08 2.90

Learnable Parameters 1.5× 105∼1.7× 105

3.4. Comparisons with Other Approaches

In this paper, we compared the proposed approach with two traditional approaches
(i.e., ACE [1] and CEM [6]), two sparse-based approaches (i.e., sparse representation
for target detection (STD) [7], and combined sparse and collaborative representation for
target detection (CSCR) [29]) and a neural network-based approach (i.e., semi-supervised
classification based on GAN (SSC) [17]). A global background estimation strategy was
utilized in ACE, while an adaptive local dual window approach was adopted for the
background dictionary estimation as in [29]. Furthermore, in consideration of the varied
sizes of different targets, dual windows with various sizes were adopted for different
datasets. For D3, the dual window size was [3, 17], while for D6, the dual window size was
set to be [5, 9]. Moreover, the dual window sizes for the remaining datasets were set as
[5, 13]. The detection performance is shown in Table 3, Figures 6 and 7.

Table 3 shows the detection performance evaluated by AUC (Pf , Pt). From this table,
we could see the proposed approach performed well and was able to achieve the highest
AUC (Pf , Pt) in almost every dataset except for D3 (the result of which was only 0.0017
lower than the maximum value). The other approaches performed well in certain datasets,
but +are likely to fall behind the proposed approach when dealing with other datasets.
Furthermore, it is noteworthy that our approach was able to outperform the approach of
SSC (which bears strong resemblance to our approach) in almost every dataset, especially
in D2, which further validated the effectiveness of the unified training process with a
composite loss function. Based on this fact as well as the other facts that were elaborated
earlier, we could draw the conclusion that the proposed approach was more robust and
could deal with various sorts of HSIs without resetting the hyperparameters.
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Figure 6 shows the comparison results between different algorithms in a more visual
way. The performance of a specific approach was displayed in one column. From this
figure, we could observe that the detection results were quite in accord with what was
shown in Table 3, which also supported the conclusion that the proposed approach was
more robust when dealing with various HSIs. Furthermore, with the use of guided filters,
the contour edges were preserved to a considerable extent.

Table 3. Detection results evaluated by AUC (Pf , Pt) of different approaches.

Dataset AUC ACE CEM STD CSCR SSC Proposed

D1 (Pf , Pt) 0.9155 0.9199 0.8854 0.9163 0.9891 0.9962
D2 (Pf , Pt) 0.8786 0.8840 0.9130 0.9581 0.9420 0.9922
D3 (Pf , Pt) 0.8530 0.8160 0.9421 0.9717 0.9941 0.9924
D4 (Pf , Pt) 0.9248 0.9163 0.8883 0.9538 0.9884 0.9968
D5 (Pf , Pt) 0.9953 0.9965 0.9966 0.9979 0.9929 0.9987
D6 (Pf , Pt) 0.9789 0.9895 0.9962 0.9968 0.9974 0.9976

Figure 6. Detection results of different approaches: (a) color composites, (b) reference maps, (c) ACE, (d) CEM, (e) STD, (f)
CSCR, (g) SSC and (h) the proposed.
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(a) (b) (c)

(d) (e) (f)

Figure 7. ROC curve (Pf , Pt) of different datasets: (a) D1, (b) D2, (c) D3, (d) D4, (e) D5 and (f) D6.

Besides what was mentioned above, additional points that could be determined from
the ROC curve of Figure 7 were: for D1 and D4, the proposed approach outperformed the
other approaches under various false positive rates (also known as false alarm rates) and
was able to allow Pt to reach its peak value at a very small false alarm rate. Meanwhile,
for D5 and D6, the gap between the proposed approach and the other approaches was very
small when the false alarm rate was bigger than 10−2. Furthermore, the former displayed a
more competitive performance when the false alarm rate dropped to a value below 10−3.
With regard to D2 and D3, the situation became more complex. When the false alarm rate
dropped to a low value, Pt in certain approaches was higher. However, when the false
alarm rate was higher than a certain value (about 2× 10−3 for D2, 10−2 for D3), Pt of the
proposed approach outperformed the other approaches and quickly reached its maximum
point. Such property of the proposed approach would make a much higher AUC as shown
in Table 3.

4. Discussion

It was found that similarities exist between and among approaches of [17,18] and
our approach as in these approaches, the technique of adversarial training process was
exploited to fix the problem of limited labeled samples. However, it should be noted that
in [17,18], the training process was separated into different phases, which was likely to
result in a weakened correlation between networks. To avoid the gap between the different
training phases, a neural network with a composite loss function was built in our approach,
which was able to crack the problem to a comparatively satisfactory extent.

Another point that may need to be addressed more clearly here is the proposed ap-
proach utilized generated samples in the training process, the technique of which usually
falls under data augmentation. However, visible differences were present between the pro-
posed approach and other augmentation approaches such as [30,31]. Specifically, the two
processes, i.e., data augmentation and the training of the target detector, were realized
simultaneously as a whole in the proposed approach, but were realized sequentially in the
others. Furthermore, more importantly, as a data-driven approach, no prior assumptions
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were needed for GAN in the proposed approach, whereas for other approaches, hypotheses
(e.g., linear mixing model or subspace) are often needed for data augmentation.

Alongside the efforts performed in the proposed approach, further research can be
conducted on how to develop an approach which is entirely based on neural networks for
target detection using a single-target signature.

5. Conclusions

In sum, we proposed a novel hyperspectral target detection framework with an
auxiliary generative adversarial network in this paper. Simulated samples of target and
background spectra were generated by the generative neural network to facilitate the
target detection process. Extensive experiments conducted on the HSI datasets showed
the proposed target detection approach equipped with the post-processing technique of
guided filtering was more competitive when compared to other approaches.
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