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Abstract: The haze in remote sensing images can cause the decline of image quality and bring many
obstacles to the applications of remote sensing images. Considering the non-uniform distribution of
haze in remote sensing images, we propose a single remote sensing image dehazing method based
on the encoder–decoder architecture, which combines both wavelet transform and deep learning
technology. To address the clarity issue of remote sensing images with non-uniform haze, we
preliminary process the input image by the dehazing method based on the atmospheric scattering
model, and extract the first-order low-frequency sub-band information of its 2D stationary wavelet
transform as an additional channel. Meanwhile, we establish a large-scale hazy remote sensing
image dataset to train and test the proposed method. Extensive experiments show that the proposed
method obtains greater advantages over typical traditional methods and deep learning methods
qualitatively. For the quantitative aspects, we take the average of four typical deep learning methods
with superior performance as a comparison object using 500 random test images, and the peak-
signal-to-noise ratio (PSNR) value using the proposed method is improved by 3.5029 dB, and the
structural similarity (SSIM) value is improved by 0.0295, respectively. Based on the above, the
effectiveness of the proposed method for the problem of remote sensing non-uniform dehazing is
verified comprehensively.

Keywords: remote sensing images; non-uniform haze; deep learning; image dehazing

1. Introduction

Remote sensing (RS) observations can be divided into two categories: the satellite
RS and the aerial RS, according to the platforms they rely on. We mainly focus on the
research of the aerial RS images in this paper. RS images taken by the aerial platforms
benefit from rich information, high spatial resolutions, and stable geometric locations
and they have already been widely used in meteorology, agriculture, the military, and
other fields. However, RS images are particularly vulnerable to weather factors. The
particles that suspend in the air, e.g., water vapor, clouds, and haze, easily weaken the
light reflected from an object’s surface. This attenuation may result in image degradation
phenomena, such as contrast reduction, color distortion, and unclear detail information
in the observed RS images [1]. It brings many negative impacts on the ground objects
classification, recognition, tracking, and other advanced applications based on the RS
images. Effective dehazing for RS images can decrease the impact of hazy weather on the
RS imaging system, which is vital to the later advanced applications of RS images [2].

RS images are different from the ground images. On the one hand, the quality of the
RS images that are obtained even under the haze-free conditions is equivalent to the quality
of images that are shot on the ground under the hazy conditions because the light is largely
attenuated, which is caused by the air particles due to the long imaging paths. Therefore,
the contrast, saturation, and color fidelity of the captured RS images are not good under
normal circumstances. On the other hand, the distribution of haze in RS images is also
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quite different from that in the ground images. In severe weather conditions, e.g., haze,
since the ground imaging is obtained in the short imaging distance, the imaging field of
view is very limited. Although the ground imaging also has the non-uniform distribution
of haze, the haze on the captured image shows uniform distribution characteristics due
to the limited imaging field of view. There is a great difference between the RS images
and ground images. Given the large imaging distances, the obtained RS images contain
a large range of ground coordinates, and it is difficult to ensure uniform distribution of
haze in such a large ground range. The RS images under the hazy weather have a typical
non-uniform haze distribution. In summary, the dehazing for non-uniform haze remote
sensing (NHRS) images has more practical significance for the research on the clarity of RS
images.

Most of the traditional dehazing methods are based on the atmospheric scattering
model that was first proposed by McCartney [3]. A detailed derivation and description are
carried out by Narasimhan and Nayar [4,5]. This model can be formulized as:

I(x) = J(x)t(x) + A(1 − t(x)) (1)

where I(x) denotes the observed hazy image, J(x) denotes the haze-free image, A refers
to the global atmospheric light, t(x) refers to the transmission, and x represents the cor-
responding pixel. The dehazing process is to estimate A and t(x) from I(x), and then
recover the ultimate haze-free image J(x). In Equation (1), I(x) is a known parameter,
while the other parameters are unknown. It is critical to estimate A and t(x). The problem
of solving multiple unknowns from one equation is a typical ill-conditioned problem in
mathematics. Therefore, in the actual solving process, the statistical prior knowledge of
physical quantities is usually fully utilized to achieve the purpose of solving multiple
physical quantities in the equation.

Before the advent of deep neural networks, dehazing methods were mostly based on
the above-mentioned atmospheric scattering model. With the development of deep learning
technology, some dehazing methods based on deep learning have been proposed for the
task of ground image dehazing. However, since RS images correspond to large imaging
fields of view in most cases, the haze presents in the form of non-uniform distribution in
the RS images. Therefore, most of the existing dehazing methods, including deep learning
networks, are unsuitable for the non-uniform dehazing tasks, that is, the problem of RS
image dehazing cannot be well solved by these methods due to the difference in the
imaging characteristics between ground images and RS images.

Compared with the ground imaging for a natural scene, the imaging distance of RS
image is greatly increased, and the imaging optical path could encounter the non-uniform
haze distribution. As a result, the light with different wavelengths no longer has the
same or nearly the same scattering coefficient, which leads to the typical dehazing method
encountering the issue that the atmospheric scattering model is difficult to solve. Moreover,
since atmospheric scattering model only takes the short-distance single scattering into
account, this model has certain limitations on long-distance imaging. In recent years, the
deep learning method has achieved great success in the field of image processing as it
can solve complex issues. However, directly applying it to the problem of non-uniform
dehazing for RS images will mainly face the following challenges:

Firstly, in the field of image dehazing, the commonly used “haze and haze-free”
datasets include the NYU2 dataset, RESIDE dataset, Middlebury Stereo dataset, etc., all
of which contain datasets of ground natural scenes with uniform haze distribution. For
the task of RS dehazing, the NHRS dataset is relatively scarce, which brings a challenge to
the data-dependent dehazing method of deep learning. Secondly, RS images have a long
imaging distance, which leads to the general fuzziness of the texture and edge details in
the collected images. In addition, compared with ground imaging, the imaging field of
view of RS images is greatly increased, resulting in a significant decrease in the correlation
between pixels in RS images, which makes deep feature learning in deep learning networks
encounter challenges.
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In this paper, we research the aforementioned challenges, and the main contributions
of this paper are as follows:

• Firstly, a single RS image dehazing method, which combines both wavelet transform
and deep learning technology, is proposed. We employ the atmospheric scattering
model and 2D stationary wavelet transform (SWT) to process a hazy image, and
extract the low-frequency sub-band information of the processed image as the en-
hanced features to further strengthen the learning ability of the deep network for
low-frequency smooth information in RS images.

• Secondly, our dehazing method is based on the encoder–decoder architecture. The
inception structure in the encoder can increase the multi-scale information and learn
the abundant image features for our network. As the hybrid convolution in the
encoder combines standard convolution with dilated convolution, it expands the
receptive field to better improve the ability of detecting the non-uniform haze in RS
images. The decoder fusions the shallow feature information of the network through
multiple residual blocks to recover the detailed information of the RS images.

• Thirdly, a special design in the aspect of loss function is made for the non-uniform
dehazing task of RS images. As the scene structure edges of an RS image itself
are usually weak, the structure pixels are weakened more seriously after dehazing.
Therefore, on the basis of the L1 loss function, we employ the multi-scale structural
similarity index (MS-SSIM) and Sobel edge detection as the loss function to make the
dehazed image more natural and improve the edge of the dehazed RS images.

• Lastly, aiming at the problem that a deep learning network depends on the support of
high-quality datasets, we propose a non-uniform haze-adding algorithm to establish
a large-scale hazy RS image dataset. We employ the transmission of the real hazy
image and the atmospheric scattering model in the RGB color space to obtain the RGB
synthetic hazy image. The haze in a hazy image is mainly distributed on the Y channel
component of the YCbCr color space. Based on this distribution characteristic of haze,
the RGB synthetic hazy image and the haze-free image are jointly corrected to obtain
the final synthetic NHRS image in the YCbCr color space.

The remainder of the paper is organized as follows: Firstly, we review the related
research in the field of image dehazing in Section 2, then introduce the proposed deep
learning dehazing method detailedly in Section 3. The performance evaluation of the
proposed network for image dehazing is conducted in Section 4, which also includes a
description of the dataset and the training procedure. Finally, Section 5 is the conclusion.

2. Related Work

At present, the methods of image dehazing can be roughly divided into two categories.
The first one is the dehazing method based on the atmospheric scattering model, which is
mainly based on the traditional methods of mathematical models. These methods have
been developed for a long time and are relatively mature. The second one is the modern
dehazing method based on deep learning in recent years.

2.1. Traditional Dehazing Methods

The basic principle of the traditional dehazing methods is to rely on the artificial
extraction of features associated with haze, such as dark channel, tonal difference, and local
contrast, etc. Specifically, the dehazing method of the atmospheric scattering model based
on Equation (1) mostly uses statistical prior knowledge to estimate physical quantities , such
as the transmission, to implement dehazing. Typical methods are as follows: He et al. [6]
proposed the dark channel prior (DCP) dehazing method and found that the darkest
pixel value in the RGB three-channel image block of the haze-free image is close to zero
(excluding sky area). The DCP is based on the statistics of outdoor haze-free images, and it
makes image dehazing simple and effective. Fattal et al. [7] proposed a method to estimate
the transmission by using the locally uncorrelated characteristic of the transmission and
surface shading, and the scattered light is eliminated to increase the scene visibility and
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recover haze-free scene contrasts. Berman et al. [8] introduced a non-local prior dehazing
(NLD) method to identify haze-lines and estimated the per-pixel transmission in the hazy
image space coordinate system. They found that the colors of the haze-free image formed a
tight cluster in the RGB space after being approximated to a few hundred distinct colors.
Zhu et al. [9] proposed a color attenuation prior (CAP) to the single image dehazing
method, which created a linear model of the scene depth of hazy images and combined
with a supervised learning method to recover the depth information. With the help of the
depth maps of hazy images, the transmission can be easily estimated, and the radiation of
the scene can be recovered by the atmospheric scattering model, so as to effectively remove
the haze from a single hazy image.

The above-mentioned traditional dehazing methods have preferable dehazing results
on uniform distribution hazy images of the ground. Due to the complex structures of RS
imaging scenes and the large imaging fields of view, the traditional dehazing methods are
difficult to apply directly to the restoration of NHRS images.

2.2. Dehazing Methods Based on Deep Learning

Although single image dehazing is a challenging task, the human brain can quickly
distinguish the haze concentration in the natural scenes without any additional information.
Based on this, the deep learning methods that simulate the mechanism of the human
brain are used in the research of image dehazing. Deep neural networks have been
successfully applied to many computer vision and signal processing tasks, such as image
clarity, object/action recognition [10], emotion recognition [11], etc.

The typical methods are as follows: Mei et al. [12] proposed a U-net encoder–decoder
deep network called the progressive feature fusion network (PFF-Net) using progressive
feature fusion. It completed the restoration of a hazy image by learning a highly non-linear
transformation function from the observed hazy image to the haze-free ground-truth.
Yang et al. [13] established a two-stage and end-to-end network, and we name it as Wavelet
U-net (W-U-Net), which contained two characteristics. On the one hand, discrete wavelet
transform and discrete wavelet inverse transform were used to replace the downsampling
and upsampling operations, respectively, in the network. On the other hand, a chromatic
adaptation transform is employed to adjust the luminance and color, which makes the
generated image closer to the ground-truth. Qu et al. [14] proposed an enhanced pix2pix
dehazing network (EPDN) , which was independent of the atmospheric scattering model. A
GAN is embedded in the network to transform the image dehazing problem into an image-
to-image conversion problem. The original purpose of the above-mentioned methods
is to dehaze the ground images. For the hazy RS images, Li et al. [15] proposed a first-
coarse-then-fine two-stage dehazing network named FCTF-Net. In the first stage, the
encoder–decoder architecture is used to extract multi-scale features. The second stage is
used to refine the results of the first stage.

In general, due to the difference in the imaging mechanisms of ground images and RS
images, there are still many unsolved problems in RS images dehazing research, especially
the more realistic problem that NHRS images dehazing is less involved. This paper has
conducted special research on this issue. The deep neural network can extract both shallow
features and deep spatial semantic information at the same time. This advantage of the
deep neural network is effectively utilized in this paper. The neural network module is
used to replace the traditional mathematical model with a large amount of calculation and
optimization estimation to build an NHRS image dehazing network.

3. Proposed Method

In this section, we introduce our proposed method in three sub-sections, namely, the
network architecture, the loss function design, and the non-uniform haze-adding algorithm.
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3.1. Network Architecture

To use the powerful image representation capabilities of deep learning to improve the
dehazing effect of RS images, an image dehazing network based on the encoder–decoder
architecture is proposed. In the following section, the proposed RS image dehazing network
is introduced in detail. As shown in Figure 1, the network is divided into three parts: an
encoder, a decoder, and a wavelet channel.
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Figure 1. The architecture of the proposed network. Our network mainly consists of three parts (encoder, decoder, and
wavelet channel). The encoder and decoder are connected by smooth dilated residual blocks and a gated fusion sub-network.
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Encoder: The encoder consists of an inception module, a convolutional layer, and
four downsampling layers. The scene scales in the RS images vary greatly, which means
that there are big scene buildings and small scene cars. During the initial input phase of
the network model, a structure similar to the inception [16] is introduced, namely using
different scales of convolution layers to extract scene features of different scales in order to
achieve the effect of multi-scale information extraction. It is very beneficial to the special
image feature structures of RS images. In addition, the inception structure can reduce the
number of parameters while increasing the depth and width of our network, which can
better deal with the phenomenon of non-uniform distribution of haze in RS images. In
the downsampling layer, a hybrid convolution composed of a standard convolution and
a dilated convolution [17] is employed to extract the shallow features of the image more
effectively, expand the receptive field to improve the ability of detecting the non-uniform
haze in RS images, and make the dehazing results of the NHRS images more clear and
natural. The size of convolution kernel for the standard convolution and dilated convo-
lution is 3, and the dilation rate of dilated convolution is 2. After the hybrid convolution,
three residual blocks [18] are used to further extract the image features. Each residual block
is composed of two 3 × 3 convolutional layers, two instance normalization layers [19],
and two rectified linear units (ReLU) functions. The residual block deepens the network
structure. It can effectively extract features, strengthen feature propagation ability, prevent
a vanishing gradient caused by the very deep network structure, generate natural and real
images more easily, and improve the dehazing results of the NHRS images. The detailed
encoder structure is given in Tabel 1. In this paper, the inception module also includes the
pooling layer, but for the sake of brevity, the pooling layer is omitted in the figure and table.

Table 1. Details of the encoder. It includes the local structure, output size, and output channel of each layer in the encoder.

Layer Local Structure Output Size Output Channel

Input 320 × 320 3

Inception (1 × 1 Conv)× 5, (3 × 3 Conv)× 3 320 × 320 3

Convolution 11 × 11 Conv 320 × 320 16

(3 × 3 Conv, s = 2, d = 1), (3 × 3 Conv, s = 2, d = 2) 160 × 160 32
Downsampling Layer1 ReLU 160 × 160 32

((3 × 3 Conv, IN, ReLU)× 2)× 3 160 × 160 32

(3 × 3 Conv, s = 2, d = 1), (3 × 3 Conv, s = 2, d = 2) 80 × 80 64
Downsampling Layer2 ReLU 80 × 80 64

((3 × 3 Conv, IN, ReLU)× 2)× 3 80 × 80 64

(3 × 3 Conv, s = 2, d = 1), (3 × 3 Conv, s = 2, d = 2) 40 × 40 128
Downsampling Layer3 ReLU 40 × 40 128

((3 × 3 Conv, IN, ReLU)× 2)× 3 40 × 40 128

(3 × 3 Conv, s = 2, d = 1), (3 × 3 Conv, s = 2, d = 2) 20 × 20 256
Downsampling Layer4 ReLU 20 × 20 256

((3 × 3 Conv, IN, ReLU)× 2)× 3 20 × 20 256

Decoder: The decoder consists of four upsampling layers and a convolutional layer.
The upsampling layer is composed of a deconvolution layer and three residual blocks. The
deconvolution kernel size is 3 and the stride is 2. The structure of the residual block is the
same as that of the residual block in the encoder. In order to obtain more high-resolution
information and better recover the details in the original image, extra information is added
at the skip connection. This image information is derived from the first-order low-frequency
sub-band information of the 2D SWT after dark channel processing of the hazy RS image,
which will be introduced in detail in the wavelet channel module. Between the encoder and
decoder refers to the structure of the smoothed dilated convolution residual block and the
gated fusion sub-network proposed by Chen et al. [20]. In this specific design, we use the
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smoothed dilated convolution residual block and the gated fusion sub-network to connect
the encoder and decoder, and set the number of channels of the residual block to 256 to
meet the propagation requirements of the network. Compared with the standard residual
block, the smoothed dilated convolution [21] residual block has a larger receptive field
and can effectively aggregate contextual semantic information. This makes the network
more effective in processing a non-uniform hazy image. The kernel size of the smoothed
dilated convolution is set to 3. A gated fusion sub-network is added after the smoothed
dilated convolution residual blocks. The purpose is to fuse the feature information from
different levels to further improve the results of NHRS image dehazing. The detailed
decoder structure is given in Tabel 2.

In Tables 1 and 2, ‘Conv’ and ‘Deconv’ are short for ‘Convolution’ and ‘Deconvolution’,
respectively. ‘ReLU’ and ‘IN’ are short for ‘Rectified Liner Funtion’ and ‘Instance Normal-
ization Layer’, respectively. Furthermore,‘s’ and ‘d’ are short for ‘stride’ and ‘dilation rate’,
respectively.

Table 2. Details of the decoder. It includes the local structure, output size, and output channel of
each layer in the decoder.

Layer Local Structure Output Size Output Channel

3 × 3 Deconv, s = 2 40 × 40 128
Upsampling Layer1 ReLU 40 × 40 128

((3 × 3 Deconv, IN, ReLU)× 2)× 3 40 × 40 128

3 × 3 Deconv, s = 2 80 × 80 64
Upsampling Layer2 ReLU 80 × 80 64

((3 × 3 Deconv, IN, ReLU)× 2)× 3 80 × 80 64

3 × 3 Deconv, s = 2 160 × 160 32
Upsampling Layer3 ReLU 160 × 160 32

((3 × 3 Deconv, IN, ReLU)× 2)× 3 160 × 160 32

3 × 3 Deconv, s = 2 320 × 320 16
Upsampling Layer4 ReLU 320 × 320 16

((3 × 3 Deconv, IN, ReLU)× 2)× 3 320 × 320 16

Convolution 11 × 11 Conv 320 × 320 3

Dehazed output 320 × 320 3

Wavelet Channel: The 2D SWT can decompose an image into multiple sub-bands,
including one low-frequency sub-band and several high-frequency sub-bands [22]. The
low-frequency sub-band has a significant impact on the objective quality of the image,
while the high-frequency sub-band has a significant impact on the perceived quality. In the
dehazing task of an NHRS image, the low-frequency sub-band is selected as an additional
image feature for the proposed dehazing network. This low-frequency information can
provide more image features to improve the objective quality of the image. Compared
with features of a heavy hazy image, the features of a thin hazy image can improve the
image dehazing effect more obviously, and improve the objective quality and visual effect
of the image more effectively. Therefore, the traditional dehazing method based on the
atmospheric scattering model is first used for the initial image processing. The improved
DCP method slightly changes in extracting global atmospheric light value A. It extracts the
A values of the RGB three channels, respectively, and performs the subsequent calculations
of the haze-free image restoration. After the initial processing, the image is converted to
a gray one. Then, 2D SWT decomposition is performed to extract the information of the
first-order low-frequency sub-band, which acts as an input into the network as the fourth
channel and is downsampled with a standard convolution with the stride of 2 and the
kernel size of 3. Before downsampling, we use standard convolution with the kernel of 1
to increase the dimension here. Then, the feature fusion is performed at the upsampled
skip connection as the enhanced feature information of the image to further strengthen
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the learning ability of deep network for low-frequency smooth information in RS images,
thereby improving the non-uniform images dehazing results of the network.

3.2. Loss Function Design

Because of the particularity of NHRS images, a special design is made on the loss
function, which plays a key role in the deep learning network training. This special design
uses a combination of an L1 loss, an MS-SSIM loss, and a Sobel edge detection loss.

L1 Loss: The difference in pixels between the dehazed image Ĵ and the ground-truth J
is calculated:

L1 = ||J− Ĵ||1 (2)

MS-SSIM Loss: The structural similarity index (SSIM) [23] is an index to measure the
similarity of two images. It considers the luminance, contrast, and structure indicators,
which is more suitable with the human visual experience. The sensitivity of the human
visual system to noise depends on the local luminance, contrast, and structure. We use
MS-SSIM [24], an SSIM loss function based on multiple layers (e.g., 5 layers) [25]:

LMS-SSIM = 1 − MS-SSIM(J, Ĵ) (3)

Sobel Edge Loss: The Sobel operator is usually used to obtain the first-level gradients
of an image. It further detect the edge by weighting the gray value difference of the up,
down, left, and right areas of each pixel in the image. Therefore, the Sobel operator can be
used to extract the edges of one image and suppress noise smoothly:

LSobel = ||ESobel( Ĵ)− ESobel(J)||1 (4)

where ESobel denotes Sobel edge detection.
Total Loss: Based on the aforementioned loss functions, the total loss for training the

proposed network is defined as:

L = λ1L1 + λ2LMS-SSIM + λ3LSobel (5)

where λ1, λ2, and λ3 are used to adjust the weights between three loss components.

3.3. Non-Uniform Haze Adding Algorithm

To train the dehazing network, both haze and haze-free images are essential. However,
in practice, it is difficult to obtain the matching data directly, especially for the NHRS
images. The haze of real hazy images is used in the process of non-uniform haze adding,
so that the effect of non-uniform haze adding is close to real hazy images. The haze
itself is not purely low-frequency information or high-frequency information. Based on
this characteristic, it is difficult to extract the haze from an image using the time domain
or frequency domain filtering. In most dehazing research based on deep learning, the
atmospheric scattering model is mostly used to directly add haze to obtain the training
hazy images, and many of these methods directly extract both the transmission t(x) and
the global atmospheric light value A randomly. In most cases, there is a great gap between
the synthetic hazy images and the real hazy images. This is also the most difficult problem
in the research of deep learning dehazing based on training data.

We have conducted more in-depth research on NHRS image training data. The
proposed non-uniform haze-adding algorithm mainly includes three parts: transmission
estimation, atmospheric light estimation, and haze adding. As for transmission estimation,
the coarse transmission is extracted by the dark channel prior and minimum filtering
method in real hazy images. The block effect and halo effect [26] in the coarse transmission
will affect the effect of the non-uniform haze adding. Thus, the resulting coarse transmission
requires an additional step of refinement. Guided image filtering [26] is used to refine the
coarse transmission and obtain the fine transmission t. For atmospheric light estimation,
we use an improved DCP method to estimate the global atmospheric light value. It is
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worth noting that the global atmospheric light value of the haze-free image is used in
the non-uniform haze-adding algorithm. This method makes synthetic images close to
real hazy images. With regard to haze adding, the haze is found to distribute mainly in
the Y channel component in the YCbCr color space, according to the hazy distribution
characteristic proposed by Dudhane et al. [27] in the process of the ground image dehazing.
Through a broad range of experiments, we have found that the NHRS images also have
the same characteristic. Therefore, the channel separation and recombination in the YCbCr
color space are applied to the non-uniform haze-adding algorithm. First, the synthetic RGB
NHRS images are obtained by using the atmospheric scattering model. The parameters
t(x) and A come from the two parts mentioned above. Then, the Y channel components
(Y2) of the synthetic RGB NHRS images and the Y channel components (Y1) of haze-free
images are fused into a new one Y. Finally, the Y is used to generate the final synthetic
YCbCr NHRS images that are close to the real hazy images and retain the haze-free images’
details. The flow chart of thw non-uniform haze-adding algorithm is shown in Figure 2.
The experimental results of the non-uniform haze-adding algorithm are shown in Section 4.

A(200)

Hazy Image Coarse Transmission Fine Transmission t

Haze-free Image

Synthetic RGB NHRS Image Y2

Y1 Y

Cb1,Cr1 Synthetic YCbCr 

NHRS Image

×25%

×
7
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Channel

Recombination
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Channel Separation

Transmission Estimation

Atmospheric Light Estimation

Haze Adding

Guided  Image 

Filtering

Figure 2. Flow chart of non-uniform haze-adding algorithm. Non-uniform haze-adding algorithm consists of three parts
(transmission estimation, atmospheric light estimation, and haze adding).

4. Experiment and Discussion

This section is divided into two sub-sections, namely, the experiment on non-uniform
haze-adding algorithm and the experiment on proposed method on NHRS images de-
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hazing, which is sufficiently compared with different typical dehazing methods from the
perspective of quantitative and qualitative evaluations.

4.1. Experiment of Non-Uniform Haze-Adding Algorithm

Here we describe the experiment of non-uniform haze-adding algorithm in two parts,
including the implementation details and dataset establishment.

4.1.1. Implementation Details

To obtain a better hazy image dataset, we have made precise settings for the param-
eters in the non-uniform haze-adding algorithm. As shown in Figure 2, in the part of
transmission extraction, a minimum filtering is used to estimate the coarse transmission
from the real hazy images. Then, the guided image filtering [26] is applied to refine the
coarse transmission into a fine transmission t. The minimum filtering window size is three
when synthesizing the training set and validation set, and four when synthesizing the test
set. The filter radius of the guided image filtering is four times larger than the minimum
filtering window size, and the adjustment parameter is 10−6. In the part of atmospheric
light extraction, the parameter A0 is set to the maximum global atmospheric light value
that is equal to 200. If the calculated value A1 is greater than or equal to A0, the global
atmospheric light value A equals A0. Moreover, we conduct massive experiments on haze
adding. In conclusion, 75% of the Y channel (Y2) of the synthetic RGB NHRS images and
25% of the Y channel (Y1) of haze-free images are selected and fused into a new one, Y. The
final synthetic YCbCr NHRS images are composed of Y, newly obtained, and Cb1, Cr1 of
the haze-free images.

Lots of experiments have been carried out according to the non-uniform haze-adding
algorithm mentioned in Figure 2. Some representative experimental results of the non-
uniform haze-adding algorithm are shown in Figure 3.

As shown in Figure 3, the proposed non-uniform haze-adding algorithm retains some
detailed information of haze-free images and alleviates obscuring the textures caused
by thick haze. In addition, the proposed algorithm only adds haze on the Y channel
component, thus, the synthesized images are close to the real NHRS images.

4.1.2. Dataset Establishment

To meet the training requirements of the dehazing network, the dataset establishment
is essential. The training dataset used in this paper is established according to the proposed
non-uniform haze-adding algorithm described in Section 3.3. We utilize three typical RS
haze-free images dataset: AID30 [28], RSSCN7 [29], and BH [30] dataset as basic images.

The AID30 dataset is a large aerial RS images dataset released by Wuhan University
in 2017. It has a spatial resolution of 0.5-0.8 meters and the size of 600 × 600. 660 haze-
free images are selected for synthesizing the non-uniform haze-adding training set. The
RSSCN7 dataset is a 400 × 400 aerial RS image dataset published by Qin Zou [29] of
Wuhan University in 2015. From RSSCN7 dataset, 164 haze-free images are selected for
synthesizing the non-uniform haze-adding validation set. The BH Dataset is a 3840 × 2160
aerial RS image dataset released by the Federal University of Minas Gerais in 2020. From
BH dataset, 36 haze-free images are randomly cropped for synthesizing the non-uniform
haze-adding validation set. In addition, 22 haze-free images from the AID30 dataset,
and 18 haze-free images from the Internet are selected for synthesizing the non-uniform
haze-adding test set. The 22 haze-free images are selected from the AID30 dataset, where
we ensure that these images are not included in the 660 haze-free images from the AID30
dataset.
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(a) (b) (c)

Figure 3. Experimental results of non-uniform haze-adding algorithm. (a) Real NHRS image.
(b) Haze-free RS image. (c) Synthetic NHRS image.
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Similar to the selection of haze-free images, the non-uniform haze extraction images
used in the haze-adding algorithm are used to be different to ensure the synthetic training
set, validation set, and test set are different. The imaging mechanism of satellite NHRS and
aerial NHRS is basically the same, and the former is easier to obtain in the public dataset.
Therefore, the satellite NHRS images are used to replace the aerial NHRS images as the
non-uniform haze extraction images. In this paper, 82 non-uniform haze extraction images
are randomly cropped from three satellite NHRS images, which are obtained from Landsat
8 OLI-TIRS satellite digital products on the website of Geospatial Data Cloud [31]. Among
them, there are 40, 31, and 11 NHRS images for the training set, validation set, and test set,
respectively.

Before adding the haze, we augment the training images by randomly selecting and
flipping the real non-uniform hazy images and haze-free images followed by rotating one
of 0, 90, 180, and 270 degrees. Then, the real non-uniform hazy images and the haze-free
images are cropped to a fixed size, which is 320 × 320 for the training set and validation
set, and 480 × 320 for the test set. To reduce the probability of identical synthetic NHRS
images, the transmission is also randomly expanded by 0.7–0.9, such that the haze density
changes together. Finally, we use 660 haze-free images from the AID30 dataset and 40 non-
uniform haze extraction images to obtain 10,000 synthetic NHRS images as the training set.
Likewise, the validation set contains 2000 synthetic NHRS images, which are obtained by
164 haze-free images from the RSSCN7 dataset, 36 haze-free images from the BH dataset,
and 31 non-uniform haze extraction images. The test set contains 500 synthetic NHRS
images, which are obtained by 22 haze-free images from the AID30 dataset, 18 haze-free
images from the Internet, and 11 non-uniform haze extraction images.

4.2. Experiment of Proposed Dehazing Method
4.2.1. Training Details

In the proposed dehazing method, the PyTorch framework is used for the training and
test, and the NVIDIA 2080Ti GPU training model in Ubuntu 18.04.1 LTS is used. The initial
learning rate is set to 0.0001, and the Adam optimizer is used to accelerate the training.
We train the network for 100 epochs with a batch size of 8. Through a large number of
experiments, the hyper-parameters λ1, λ2, and λ3 in the loss function of Equation (5) are
selected as 0.075, 0.04, and 0.0002, respectively. In the experiment, we try our best to make
fair comparisons using unified 100 epochs for different methods.

4.2.2. Result Evaluation

In this section, we compare our method with seven classical dehazing methods,
including some deep learning methods, and evalute them overall. The comparative typical
methods including DCP [6,26], NLD [8,32], CAP [9], PFF-Net [12], W-U-Net [13], EPDN [14],
and FCTF-Net [15]. Here, the guided image filtering [26] is applied to DCP to further
improve the estimation accuracy of transmission. For the sake of fairness, all of the
methods based on deep learning adopt our established synthetic non-uniform haze dataset
to train.

Qualitative Evaluation

To further qualitatively evaluate and compare the dehazing results of several different
methods of RS images, Figures 4–7 show the several representative dehazing results of
synthetic NHRS images and real NHRS images. Figures 4 and 5 show the dehazing
results of synthetic NHRS images. The first row is synthetic NHRS images, the last row is
ground-truth, and the middle rows are several different dehazing results of NHRS images.

It can be seen that DCP, CAP, and NLD all have excessive enhancement when dealing
with NHRS images. When faced with haze with different intensities, the processing effect
is poor, and the region with a higher density of haze cannot be effectively processed,
which shows that most of the haze in the image can be removed based on the prior
dehazing method, while the scene and target details can be generally recovered. However,
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the dehazing results have obvious color distortion. There are obvious limitations when
dealing with NHRS images. PFF-Net and W-U-Net based on deep learning are effective in
processing non-uniform hazy regions in NHRS images, and there is no color distortion,
but it has the obvious haze residual in thick haze regions in the images. EPDN has better
results when processing NHRS images, and there will be no large amount of haze residue,
but there is still a small area of haze residue. FCTF-Net that is proposed for non-uniform
RS images has a better effect in dealing with non-uniform haze regions, but there will still
be a certain amount of haze residue. Compared with other comparative methods, our
proposed method has the least haze residue and achieves results that are the closest to the
ground-truth.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. Cont.
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(g)

(h)

(i)

(j)

Figure 4. Dehazing results I on synthetic images. (a) Synthetic NHRS images. (b) DCP. (c) CAP. (d) NLD. (e) PFF-Net.
(f) W-U-Net. (g) EPDN. (h) FCTF-Net. (i) Ours. (j) Ground-truth.

(a)

(b)

(c)

Figure 5. Cont.
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(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 5. Dehazing results II on synthetic images. (a) Synthetic NHRS images. (b) DCP. (c) CAP. (d) NLD. (e) PFF-Net.
(f) W-U-Net. (g) EPDN. (h) FCTF-Net. (i) Ours. (j) Ground-truth.



Remote Sens. 2021, 13, 4443 16 of 23

To better verify the effectiveness of our network to deal with NHRS images, we test the
network on real NHRS images. Figures 6 and 7 show the comparison results of eight real
NHRS images. DCP removes most of the haze in the image, but color distortion appears
after the haze removal. NLD causes an over-brightness phenomenon, therefore, the result
of this method is not natural. CAP also has some haze residue and color distortion. The
dehazing results of PFF-Net and W-U-Net still leave a certain amount of haze, but the color
distortion in the prior method is well solved. EPDN and FCTF-Net remove most haze, but
they cannot deal with it effectively in the regions with thick haze. Our proposed method
has achieved a good balance between image dehazing and keeping the natural color of
image dehazing results. The scene of dehazed image by the proposed method is naturally
clear. The proposed dehazing method is obviously superior to other contrast methods in
processing NHRS images; the dehazed images are complete in information, rich in edge
features and details, and the method has good dehazing results.

As discussed in previous works, the deep learning method proposed in this paper
achieves a good compromise in terms of the degree of removal of NHRS images and the
preservation of the naturalness of the restored images. For the thick haze region in the
NHRS images, this method has the highest degree of image information restoration and
moderate overall brightness. Generally speaking, the colors are more realistic and the
scenery is more lifelike.

There exists only a subjective evaluation for the test of the real NHRS images according
to no corresponding reference image without haze. Although the synthetic hazy dataset is
used for training, Figures 6 and 7 show our method has also achieved satisfactory dehazing
effects on real NHRS images.

(a)

(b)

(c)

(d)

Figure 6. Cont.
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(e)

(f)

(g)

(h)

(i)

Figure 6. Dehazing results I on real hazy images. (a) Real NHRS images. (b) DCP. (c) CAP. (d) NLD. (e) PFF-Net.
(f) W-U-Net. (g) EPDN. (h) FCTF-Net. (i) Ours.

(a)

(b)

Figure 7. Cont.
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(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 7. Dehazing results II on real hazy images. (a) Real NHRS images. (b) DCP. (c) CAP. (d) NLD. (e) PFF-Net.
(f) W-U-Net. (g) EPDN. (h) FCTF-Net. (i) Ours.
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Quantitative Evaluation

To quantitatively evaluate the dehazing effects of different methods, we use two
commonly used evaluation indicators in the dehazing task on the synthetic dataset, the
peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). PSNR is based
on the error between the corresponding pixels, which is an error-sensitive image quality
evaluation index. A higher PSNR value means higher similarity between the dehazing
results and the ground-truth, and smaller image distortion. SSIM measures image similarity
from three aspects of luminance, contrast, and structure. A higher SSIM value means that
the results after dehazing are closer to the ground-truth.

Tables 3 and 4 show the PSNR and SSIM values of the eight synthetic NHRS images in
Figures 4 and 5. In these eight images, the PSNR and SSIM values of the proposed method
exceed the other seven methods. In comparison with the FCTF-Net for NHRS images, the
proposed method also achieved better dehazing results, which proves that the proposed
method has certain advantages in processing NHRS images.

It can be seen from Tables 3 and 4 that for the seven comparison methods, the PSNR
and SSIM values obtained by DCP, CAP, and NLD are lower, indicating that although they
are very successful image dehazing methods, there are limitations on the restoration of
NHRS images, which is consistent with the subjective effects in Figures 4 and 5, and there
is a certain gap compared with the deep learning method. PFF-Net, W-U-Net, EPDN, and
FCTF-Net obtain intermediate PSNR values and SSIM values. It can also be seen from
Figures 4 and 5 that these four methods have a better dehazing performance, which is
better than the three dehazing methods based on the atmospheric scattering model, but
slightly worse than the method proposed by us. In a word, from the PSNR and SSIM values
in Tables 3 and 4 and the corresponding dehazing results in Figures 4 and 5, it validates
that the proposed method has superiority in image dehazing compared with the seven
methods.

Table 3. Quantitative evaluation results of PSNR for 8 images in Figures 4 and 5. Bold index indicates the best performance.

Image DCP CAP NLD PFF-Net W-U-Net EPDN FCTF-Net Ours

Figure 4 1st column 18.1757 16.8021 16.0314 22.1598 20.6270 25.1673 26.6991 26.9116
Figure 4 2nd column 23.0893 18.9500 16.8124 21.4356 21.7374 23.7852 27.1162 28.0056
Figure 4 3rd column 20.6492 17.9509 18.6025 21.2522 21.9921 23.7839 26.3346 28.1458
Figure 4 4th column 20.6405 16.2992 16.1343 19.4756 19.7069 25.5164 27.9014 28.6765
Figure 5 1st column 22.0578 19.9599 17.0074 22.5066 23.3277 23.6046 24.4548 27.4342
Figure 5 2nd column 17.7801 19.9324 16.7586 23.2878 22.2942 22.7151 27.2257 30.3904
Figure 5 3rd column 18.4220 17.4235 14.4382 21.3188 20.9592 27.1209 25.0667 28.2225
Figure 5 4th column 16.9078 13.5731 14.8070 21.7622 22.5752 23.5890 25.3069 28.4855

Table 4. Quantitative evaluation results of SSIM for 8 images in Figures 4 and 5. Bold index indicates the best performance.

Image DCP CAP NLD PFF-Net W-U-Net EPDN FCTF-Net Ours

Figure 4 1st column 0.7791 0.7836 0.6383 0.8516 0.8706 0.9163 0.9229 0.9261
Figure 4 2nd column 0.8519 0.7744 0.6459 0.8315 0.8363 0.8743 0.8949 0.8991
Figure 4 3rd column 0.8570 0.7286 0.8036 0.8603 0.8874 0.9325 0.9415 0.9443
Figure 4 4th column 0.8231 0.7204 0.6052 0.7797 0.8074 0.8718 0.8984 0.9001
Figure 5 1st column 0.8646 0.8203 0.8051 0.8548 0.8797 0.9127 0.9188 0.9285
Figure 5 2nd column 0.7258 0.8717 0.7364 0.9072 0.9261 0.9346 0.9539 0.9617
Figure 5 3rd column 0.7220 0.8033 0.5719 0.8350 0.8550 0.9006 0.9014 0.9153
Figure 5 4th column 0.8431 0.6970 0.6738 0.8860 0.8900 0.9264 0.9306 0.9419

To quantitatively evaluate the dehazing effects of different dehazing methods, we
tested the average PSNR value and SSIM value of 500 test images, and also tested the
average feature similarity index (FSIM) value [33]. FSIM is a novel low-level feature-based
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image quality assessment (IQA) metric, and FSIM can achieve much higher consistency
with subjective evaluations than state-of-the-art IQA metrics. A higher FSIM value denotes
that the results after dehazing are closer to the ground-truth. The PSNR, SSIM, and FSIM
results are listed in Table 5.

Table 5. Quantitative evaluation results obtained with the synthetic NHRS images (average of 500 images). Bold index
indicates the best performance.

Metrics DCP CAP NLD PFF-Net W-U-Net EPDN FCTF-Net Ours

PSNR 20.7352 17.5927 17.4697 22.8827 23.2384 24.6138 26.9153 27.9154
SSIM 0.8633 0.7734 0.7505 0.8812 0.8966 0.9178 0.9342 0.9369
FSIM 0.9384 0.8950 0.8838 0.9166 0.9325 0.9502 0.9513 0.9529

The results in Table 5 show that our method obtains certain advantages in comparison
with the results of the seven comparison methods. It has better NHRS images dehazing
performance, with a PSNR value of 27.9154 dB, SSIM value of 0.9369, and FSIM value of
0.9529. The PSNR value, SSIM value, and FSIM value obtained by our method are all higher
than the other seven comparison methods. Among the seven comparison methods, FCTF-
Net obtains the second highest PSNR value, SSIM value, and FSIM value, while the PSNR
value, SSIM value, and FSIM value obtained by DCP, CAP, and NLD are lower, and the
dehazing performance is poor. PFF-Net, W-U-Net, and EPDN obtain intermediate PSNR,
SSIM, and FSIM values. In order to see the advantages of our method more intuitively,
we display the experimental results in the form of bar charts in Figure 8. From Figure 8, it
can also be seen that our method achieves better performance in the PSNR value, SSIM
value, and FSIM value. Compared with the dehazing methods based on the atmospheric
scattering model, it has been greatly improved, and it also has some advantages compared
with the dehazing methods based on deep learning. In short, the experimental results on
the synthetic dataset validate that our proposed method achieves the best experimental
results.

Under the qualitative and quantitative verification of a large number of experiments,
the proposed method can effectively compensate for the image contrast reduction caused
by haze, reconstruct the haze-free image with bright colors, and improve the visibility of
RS images. The haze residue in our method is less than other methods, and there is no
obvious color cast.

(a) (b) (c)

Figure 8. Visual display of the quantitative evaluation results in Table 5. (a) PSNR. (b) SSIM. (c) FSIM.

4.2.3. Discussion

In this paper, we propose a new advanced non-uniform dehazing network, which
combines deep learning with the atmospheric scattering model. Figures 4 and 5 illustrate
the results of seven typical dehazing methods (b–h) and our method (i) for dehazing
synthetic non-uniform haze images. It can be seen from the comparison that those dehazing
methods (b–d) based on the atmospheric scattering model have certain limitations to the
task of non-uniform image dehazing. After dehazing, those images have an obvious color
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distortion or excessive enhancement, especially the third column in Figure 4c and the
second columns in Figure 5b,d. In dehazing methods (e–i) based on deep learning, all
of EPDN, FCTF-Net, and our method show the better dehazing capability for synthetic
non-uniform haze images. From the second columns in Figures 4 and 5, we can see that
there is a slighter haze remaining in some regions of the dehazing result of our method over
that of EPDN and FCTF-Net. It is proved that our method performs better than the other
methods. Not only does our method achieve the ideal performance in a qualitative analysis,
but it also has obvious competitiveness in a quantitative analysis. The average value of
the quantitative evaluation of eight dehazing methods are shown in Table 5. These values
are more clearly displayed in Figure 8 with bar charts, and it verifies that our method has
achieved a relatively ideal performance on the three evaluation indexes. Compared with
the best FCTF-Net among the seven comparison methods, our method improves the PSNR
value by 1.0001 dB, SSIM value by 0.0027, and FSIM value by 0.0016.

The results of eight dehazing methods for real non-uniform haze images are shown in
Figures 6 and 7, respectively. The proposed method has obvious advantages over seven
typical dehazing methods in the dehazing work of real NHRS images. However, there are
still some limitations to our method. As shown in Figure 7, in our dehazing result, there
exists some residual haze in some regions of the images. Unlike the light with different
wavelengths which travels through the thin haze region in the imaging process, when
faced with a thick haze region, the scattering coefficients are no longer identical or nearly
identical. Hence, the traditional methods usually encounter difficulties in solving the
atmospheric scattering model, while the methods based on deep learning are difficult to
construct an effective dataset. As a result, there is still a certain degree of haze residue in
the thick haze region, and our future research will emphasize the thick haze removal in
real NHRS images.

5. Conclusions

In this paper, we propose a dehazing method for RS images with non-uniform haze,
which combines the wavelet transform and deep learning technology. Aiming at the non-
uniform distribution of haze in RS images, we introduce the low-frequency sub-band of the
2D SWT for one-level decomposition into the network to further strengthen the learning
ability of the deep network for low-frequency smooth information in RS images. The
inception structure and the hybrid convolution combining the standard convolution with
dilated convolution are embedded into the encoder module of the network. As a result,
the network can learn more abundant image features and improve the overall detection
capability for non-uniform haze in RS images.

The NHRS dataset is established through our proposed haze-adding algorithm. The
experimental results on the established dataset demonstrated that the proposed method
achieves better performance than the other typical dehazing methods based on the atmo-
spheric scattering model and deep learning in the case of non-uniform haze distribution.
However, due to a certain gap between the synthetic hazy dataset and the real hazy dataset,
it is difficult to complete the precise design of the network model to achieve the effect of
complete dehazing. When the proposed method is applied to real hazy remote sensing
images, there will be a certain degree of haze residue in the thick hazy region in the images.
In our future work, we will further exploit the relevant features of haze, improve our
non-uniform haze-adding algorithm, and try to create an image dataset closer to the real
NHRS images. Moreover, we also explore the deep learning network to better solve the
problem of haze residue in real RS image dehazing.
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