
remote sensing

Article

Optimizing Urban LiDAR Flight Path Planning Using a Genetic
Algorithm and a Dual Parallel Computing Framework

Anh Vu Vo 1,* , Debra F. Laefer 2 and Jonathan Byrne 3

����������
�������

Citation: Vo, A.V.; Laefer, D.F.; Byrne,

J. Optimizing Urban LiDAR Flight

Path Planning Using a Genetic

Algorithm and a Dual Parallel

Computing Framework. Remote Sens.

2021, 13, 4437. https://doi.org/

10.3390/rs13214437

Academic Editors: Juan M. Haut,

Mercedes E. Paoletti and Zebin Wu

Received: 8 September 2021

Accepted: 31 October 2021

Published: 4 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science, University College Dublin, Dublin, Ireland
2 Center for Urban Science & Progress and the Department of Civil and Urban Engineering,

New York University, New York, NY 11201, USA; debra.laefer@nyu.edu
3 Intel Ireland, Leixlip, Kildare, Ireland; jonathan.byrne@intel.com
* Correspondence: anhvu.vo@ucd.ie

Abstract: This paper introduces a genetic algorithm (GA) and a beam tracing algorithm incorporated
within a dual parallel computing framework to optimize urban aerial laser scanning (ALS) missions
to maximize vertical façade data capture, as needed for many three-dimensional reconstruction and
modeling workflows. The optimization employs a low-density point cloud from the site of interest as
a spatial representation of the urban scene. The GA is suitable for LiDAR flight path optimization
due to its capability of handling open-ended problems that have many solutions. However, GAs
require evaluating a very large number of candidates. The use of an initial point cloud allows realistic
modeling of the urban environment in the optimization at the cost of high data input volumes. To
cope with the computational and data demands, a dual parallel computing framework was devised.
The parallel computing framework consists of two layers of parallelization. In the upper layer,
multiple evaluators work in parallel and in conjunction with a main multi-threading GA optimizer to
perform GA operations and evaluate the flight paths. In the lower layer, to evaluate assigned flight
paths, each evaluator distributes its data and computation to multiple executors, which can reside
on multiple physical nodes of a distributed-memory computing cluster. In addition to parallelism,
the data partitioning on the lower layer allows out-of-core computation. Namely, data partitions are
efficiently transferred between disks and memory so that only relevant subsets of data are kept in
the main memory. The objective of the proposed method is threefold: (1) search for flight paths that
yield the highest numbers of vertical points, (2) create a means to explicitly consider the detailed
spatial configuration of urban environments, and (3) assure that the proposed optimization strategy
is fast and can scale to large problem sizes. Multiple experiments were conducted and demonstrated
the success of the proposed method. Converged results were achieved after dozens of generations
within two hours. Two flight paths identified by the GA as the most and the least optimal candidates
were deployed in real flight missions. The optimal flight path captured 16% more vertical points
than the least optimal one, slightly higher than the 13% predicted. Both layers of parallelization were
efficient: 13.1/16 for the lower layer and 3.2/4 for the upper layer. The two complementary layers of
parallelization allowed flexible and efficient use of distributed computing resources to reduce the
runtime. The scalability of the proposed approach was successfully demonstrated up to a data size of
460 million points. The optimization results were realistic and aligned well with the test flight results.

Keywords: LiDAR; point cloud; aerial laser scanning; aerial mapping; flight path planning; spatial
optimization; parallel computing; distributed computing; spatial algorithm; Apache Spark

1. Introduction

Light detection and ranging (LiDAR) is a technology that uses light, most commonly
from a laser, to detect and measure distance to objects. LiDAR sensors can be deployed
on an aerial platform (e.g., fixed wing aircraft, helicopter, or drone) to form an aerial laser
scanning (ALS) system for topographic, biomass, or urban mapping. In addition to a

Remote Sens. 2021, 13, 4437. https://doi.org/10.3390/rs13214437 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6471-4905
https://orcid.org/0000-0001-5134-5322
https://orcid.org/0000-0003-4556-8348
https://doi.org/10.3390/rs13214437
https://doi.org/10.3390/rs13214437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13214437
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13214437?type=check_update&version=1

Remote Sens. 2021, 13, 4437 2 of 27

LiDAR sensor, an ALS system requires a scanning mechanism and a system to capture the
platform’s position and orientation [1]. ALS typically produces explicitly georeferenced,
three-dimensional (3D) sampling point data collectively known as a point cloud. ALS is
increasingly adopted in large-scale 3D mapping at national, regional, and municipal lev-
els [2,3]. Typical ALS missions result in 0.5–10 points/m2, which is standard for topographic
mapping [4]. Examples include New York City’s topobathymetric LiDAR dataset [5],
the United States 3D Elevation Program’s datasets [6], and the Netherlands’ national Li-
DAR datasets [7]. However, much higher point densities (e.g., >50 points/m2) can be
achieved in a single pass, such as the 3D mapping of Vienna in Austria at 50 points/m2 [8]
and the mapping of Duursche in the Netherlands at 70 points/m2 [9]. A pair of excep-
tionally dense examples are the 2007 and 2015 ALS mapping of Dublin, Ireland (i.e., 225
and 335 points/m2, respectively) conducted by Laefer et al. [10,11]. High density ALS
mapping enables many downstream applications that are not viable with low density data
such as the detection of small objects. Since aerial LiDAR adoption is rapidly becoming
the preferred method by local and national governments for large-scale 3D mapping, this
paper exclusively considers LiDAR scans to the exclusion of imagery-based approaches.

As ALS technologies advance and continue to be adopted, efforts to harness the use-
fulness of ALS data are increasingly threatened by the data’s expanded scale, intensified
density, and enhanced complexity. To keep pace with these data challenges, LiDAR data
processing software need improvement in both performance and scalability. Performance
refers to the capability of a software to solve a problem in a short amount of time. Scal-
ability refers to the software’s ability to cope with growth in data volumes, complexity,
and/or workload. Parallel computing is an efficient solution to achieve performance and
scalability [12] by executing multiple, simultaneous tasks closely cooperating to solve
a problem [13]. Parallel computing has been explored for post-acquisition LiDAR data
analysis and processing (e.g., [14–18]). In this paper, a different perspective is taken. Par-
allel computing is employed for optimizing data acquisition. Specifically, a dual parallel
computing framework is introduced to facilitate ALS flight path planning in dense urban
environments to optimize vertical façade coverage.

Mapping dense urban environments requires specific considerations since the majority
of standard practices in airborne LiDAR data acquisition were developed for topographic
mapping. For instance, flight line directions must be planned to alleviate occlusions caused
by tall features and to maximize building façade data capture. Such problems do not
arise frequently in topographic mapping but must be addressed to achieve comprehensive
mapping of dense urban environments. Herein flight path planning is formulated as a
geometric problem to be optimized with a genetic algorithm (GA). GAs solve open-ended
optimization problems that have multiple solutions by using natural selection inspired
processes. Attractively, GAs optimization does not require a priori assumptions about a
fitness function’s characteristics (e.g., unimodality, continuity, existence of derivatives).

A biologically inspired operator critical in every GA is selection [19]. For dense urban
mapping, candidate LiDAR flight paths (i.e., candidate solutions) are chosen based on
the number of points generated on vertical surfaces. As that computation is expensive
and repeatedly required for every flight path, the speed of the computation dictates the
feasibility of the GA. To address that, this research proposes two layers of parallelization.
On the upper layer, multiple flight path candidates of the same generation are evaluated
simultaneously. This layer is straightforward since GAs are inherently parallelizable.
On the lower layer, the evaluation of each flight path candidate is conducted using a novel
algorithm that strategically partitions the data for parallel processing in a distributed-
memory computing cluster. The two layers of parallelization enable fast and scalable
GA-based LiDAR flight path optimization.

Remote Sens. 2021, 13, 4437 3 of 27

In particular, this research makes the following contributions:

• Introduces a beam casting algorithm that uses a pre-existing point cloud to realistically
predict results of new LiDAR scans;

• Presents a data parallelism strategy that allows the beam casting to be performed in
parallel and at scale using a distributed-memory computing cluster;

• Incorporates the beam casting algorithm and a genetic algorithm within a dual parallel
computing framework for fast and scalable optimization;

• Rigorously evaluates the accuracy of the proposed optimization strategy through
actual test flights;

• Systematically assesses the computational performance of the proposed computing
framework.

Section 2 of the paper discusses the background and related work in LiDAR flight mis-
sion planning and existing uses of parallel computing for LiDAR data analysis. Section 3
presents the proposed method in detail. The results of the optimization and the computa-
tional efficiency of the proposed method are presented in Section 4 and further discussed
in Section 5, before conclusions are provided in Section 6.

2. Background and Related Work

This section encapsulates background and previous work related to LiDAR flight
mission planning and uses of parallel computing for LiDAR data analysis.

2.1. LiDAR Flight Mission Planning

LiDAR flight mission planning is the process of determining sensor settings (e.g.,
scan angle, scan frequency, pulse rate) and flight settings (e.g., platform, flight altitude,
speed, flight map), among other parameters to deliver project requirements. Common
requirements include LiDAR point density, distribution, and accuracy. The ASPRS’s Manual
of Airborne Topographic LiDAR [20] provides guidelines for LiDAR flight mission planning.
One key component is to equate the along-track and the cross-track point density to
achieve ultimate uniform sampling. A balance between the along- and cross-track densities
is desirable and can be achieved by properly setting the flight speed, pulse rate, and scan
rate. With respect to urban mapping, the manual recommends an increase in the overlap
between adjacent flight swaths (i.e., sidelap) to account for the presence of tall buildings
or other tall features in the urban environment, but no consideration is made for vertical
data capture, as the guidelines were written for topographic mapping to map the ground
surface between the buildings and not the buildings themselves. In fact, vertical surface
coverage is never mentioned.

Following these general guidelines, historically urban LiDAR missions were flown
with parallel flight lines (Figure 1a). Prominent examples from fixed-wing aircraft include
New York’s Post Sandy LiDAR survey [21] and the Netherland’s national scans [7]. The ap-
proach has been adopted for unmanned aircraft, as well [22]. In a radical departure from
this, Hinks et al. [23] first introduced the concept of vertical LiDAR density and proposed
an innovative strategy to reinvision urban flight missions to maximize vertical LiDAR
data capture. The proposed flight pattern (Figure 1b) employs two sets of parallel flight
lines orthogonal to each other, oriented 45◦ from the dominant street grid, and having
a minimum 67% sidelap. These were proposed as additions to the common along- and
cross-track horizontal density estimation.

In 2014, Dashora et al. [24] introduced a genetic algorithm to minimize LiDAR flight
time and, hence, data acquisition costs. In that research, three scanner parameters (scan
angle, scan frequency, and pulse frequency) and three flight parameters (direction, altitude,
and speed) were optimized to achieve a minimum flight duration including the time
required for transition between flight lines. The mathematical relationship between the
optimizable parameters and the project requirements (i.e., horizontal point density) was
established assuming a flat, horizontal terrain. The six parameters were represented
as six genes composing a chromosome representing a flight plan candidate in the GA

Remote Sens. 2021, 13, 4437 4 of 27

implementation. Converged results were achievable with 200 generations—each had
between 60 and 600 flight plan candidates. From this, Dashora et al. [24] concluded that
GAs were effective for LiDAR flight mission planning and capable of taking into account a
large number of variables.

(a) Parallel flight lines

project area

(b) Gridded flight lines
(transitions are removed for simplicity)

flight line

transition to next line

defined project area

buffered project area

LEGEND

Figure 1. Comparison of the conventional parallel flight line approach and the gridded flight line
approach optimized for mapping dense urban environments.

2.2. Parallel Computing for LiDAR Data Analysis

Given the sheer size of data that LiDAR projects typically produce, the use of par-
allel computing to accelerate analyses and cope with the increasing data volumes is in-
evitably important. Most LiDAR software, including CloudCompare, Point Cloud Library,
and PDAL [25–27] provide some level of parallelism, even though parallel supports are of-
ten partial. There is a large body of LiDAR related research that has investigated both main
types of parallel systems: shared memory and distributed memory. In a shared-memory
system, all computing cores share access to the computer’s memory. A parallel program
that can employ that type of system is called a multi-threading program. In a distributed-
memory system, each core has its private memory and functions similar to an autonomous
computer called a node. Computing nodes in a distributed-memory system exchange data
through explicit communication (e.g., message passing) over a network. Compared to
shared-memory systems, distributed-memory systems are more difficult to program and,
typically, are not as fast due to significantly higher communication overheads. However,
distributed-memory systems can be scaled more easily and far less expensively [28]. Thus,
building a large-capacity distributed-memory system is easier and less expensive than
building a shared-memory system of the same capacity.

Notably, all parallel functions in CloudCompare, Point Cloud Library, and PDAL
are multi-threading in nature and were designed to run on a shared-memory computer.
Critically those functions cannot scale beyond a single computer. Examples of research on
multi-threading LiDAR analysis algorithms include the parallel Delaunay triangulation
algorithm by Wu et al. [29], the point cloud registration algorithm by Martinez et al. [15],
and the spatial segmentation algorithm by Che and Olsen [30]. The efficiency of multi-
threading parallelism was favorably reported in all of the research. The use of distributed-
memory systems for LiDAR data analysis has also attracted much interest. For exam-
ple, Zhang et al. [31] and Bodenstein et al. [32] independently introduced two different
spatial clustering algorithms that exploit the high scalability of distributed-memory sys-
tems. Both cited examples followed the explicit parallel programming approach and used
the Message Passing Interface framework [33]. With that approach, programmers must
explicitly instruct how the different cores should perform their tasks and coordinate with
other cores. Major complexities, such as avoiding race and deadlock, must be specifically
addressed. Explicit parallel programming is the most powerful method, but it is complex.

A simpler way to program distributed-memory systems is to use frameworks such
as MapReduce [34]. The framework abstracts away the actual complexity of parallel
programming and exposes a simple interface that programmers use to formulate their
computational problems. Such an approach is simple, more accessible but usually less

Remote Sens. 2021, 13, 4437 5 of 27

computationally efficient. The two common MapReduce implementations are Hadoop
MapReduce [35] and Spark [36]. Both have been extensively explored for LiDAR data
analysis. For example, Krishnan et al. [14] introduced a MapReduce algorithm for trans-
forming LiDAR point clouds into digital elevation models. In that research, the Hadoop
MapReduce implementation of the algorithm performed favorably against a baseline C++
parallel implementation that ran on a single-node, shared-memory computer. Given the
same low-end hardware setting, the MapReduce solution was easier to implement and was
faster for out-of-core computing. The C++ baseline implementation only outperformed
the MapReduce counterpart when it had access to sufficient memory to keep all data
in-core. Krishnan et al. [14] also noted that a large memory (e.g., 512 GB) computer was
much more expensive than a 10-node cluster of lower-end (i.e., off-the-shelf commodity)
computers. Spark, a successor of Hadoop MapReduce, is typically 10–100 s times faster
due to its more efficient memory usage. In addition, Spark provides a richer interface so
that applications need not follow the rigid structure of one map and one reduce function as
per the original MapReduce framework. The use of Spark for LiDAR point cloud analysis
is seen in various research (e.g., [16,18,37–40]). In all of those cases, parallel computing was
used for post-acquisition data analysis.

3. Methodology

This research demonstrates how low-density scans can be used in a dual parallel
computing framework with a GA to optimize urban ALS missions to maximize vertical
façade data capture, as needed for many 3D reconstruction and modeling workflows. While
building upon the vertical coverage priorities of Hinks et al. [23], this paper transforms the
potential for more complete data coverage by employing a metaheuristic approach. This is
performed by substituting the idealized mathematical forms used by Hinks et al. [23] for
actual geometric representations of the real natural and built environment based on previ-
ously collected, low-density ALS data from publicly accessible sources. In addition, this
research focuses on the underlying parallel computing strategy that ensures the efficiency
of the proposed GA method.

The structure of the optimization problem lends itself to a reinforcement learning
solution as the combinatoric space is too big for brute force enumeration. Reinforcement
learning is a stochastic optimization approach that is regularly used in this area. While
there are many optimization approaches suitable for such a problem, such as simulated
annealing, particle swarm, and q-learning, as shown by Wolpert and Macready [41] there
has yet to be established an optimal approach for stochastic solvers. The research presented
in this paper does not aim to investigate every optimization approach. Instead, GAs were
selected because the types of flight paths an aircraft could take were highly constrained.
The selection was also based on the success of GAs in solving difficult optimization
problems with large combinatoric search spaces for over 30 years [42]. Herein, a typical
GA was implemented to demonstrate how this could be achieved.

An overview of the data flow and processes employed in the research are presented
in Figure 2. In addition to the flight path parameters and constraints, the optimization
(Process 2 in Figure 2) requires some knowledge of the target urban environment including
at least a rough representation of the street topography and building geometries. In this
research, the urban environment is represented as a special kind of point cloud, called a
base point cloud. A base point cloud represents the data captured in a manner that is likely
to be sub-optimal for vertical surface documentation. To avoid introducing bias into the
baseline data through the existence of some vertical data, the proposed approach advocates
its wholesale removal. A base point cloud can be obtained by removing points on vertical
surfaces from a pre-existing point cloud of the area of interest (Process 1 in Figure 2). Where
a pre-existing point cloud is unavailable, a base point cloud can be generated by rasterizing
any 3D model of the city [43]. The optimization described in the remainder of this section
aims to search for the most optimal flight path in the form of one that yields the largest

Remote Sens. 2021, 13, 4437 6 of 27

number of vertical points. The point cloud derived from the optimal flight path is referred
to as the optimal point cloud.

Initial Point Cloud

Optimize

2

NOTATION

Process

Data flow

Data storeRemove
vertical points

1

Base Point Cloud
Flight path parameters
& constraints

Optimal
Flight Path

Optimal
Point Cloud

Figure 2. Flow chart showing the data flow and processes in this research.

3.1. A Genetic Algorithm for LiDAR Flight Path Optimization

The genetic algorithm was devised to maximize vertical surface point generation.
Algorithm 1 presents the pseudo-code of a typical GA. Given an initial set of randomly
generated flight grids (Ginitial), new generations of flight grids are iteratively created by
biologically inspired processes, including selection, mutation, and crossover. The selection
is based on a fitness function that provides a metric to evaluate the quality of an individual
(i.e., flight grid) [lines 2 & 8 in Algorithm 1]. In the context of urban LiDAR flight path
optimization, the fitness function evaluates a flight grid based on the quantity of vertical
points the flight grid generates (further explained in Section 3.2).

Based on the fitness scores (i.e., outputs of the fitness function), two subsets are se-
lected from an original generation (Gi) using operations SelectS and SelectO on lines
4 and 5. The first subset (called survivors, Si) derived from function SelectS contains
high-performing individuals that are passed unchanged onto the next population (line 4
in Algorithm 1). The second subset derived from function SelectO contains other high-
performing individuals that are combined pairwise via a process called crossover to create
offspring, Oi (line 5 in Algorithm 1). The offspring are supposed to inherit good charac-
teristics from the high-performing individuals in the previous population. Subsequently,
a small fraction of the offspring, Oi, is randomly mutated (line 6 in Algorithm 1). The muta-
tion process is supposed to create random characteristics absent in the previous population.
The survivors, Si, and the offspring, Oi, are combined to form the next population, Gi+1
(line 6 of Algorithm 1). New generations of flight grids are iteratively generated, until the
results converge. Namely, the fitness scores are not further improved after (1) a certain
number of iterations is reached, (2) the best fitness score exceeds a certain value, or (3) the
number of iterations reaches a predefined value. The GA returns the best individual of all
flight paths generated.

Remote Sens. 2021, 13, 4437 7 of 27

Algorithm 1 Typical structure of a genetic algorithm
Input: Ginitial . initial random generation
Output: Indvbest . best individual of all generations

1 i←− 0; Gi ←− Ginitial ; Indvbest ←− ∅ . initialization
2 Fitness(Gi) . compute fitness scores
3 while !finished do
4 Si ←− SelectS(Gi) . select survivors
5 Oi ←− SelectO (Gi) . perform crossover to generate offspring
6 Oi ←− Mutate(Oi) . apply mutation
7 Gi+1 ←− Si + Oi . create next generation from survivors and offspring
8 Fitness(Gi+1) . compute fitness scores of the next generation

9 Indvbest
select best←− Gi+1 . select the best individual

10 i←− i + 1
11 end

There are many GA implementations that differ slightly. In this research, Jenetics,
a Java GA library by Wilhelmstötter [44] was used. Jenetics provides base, domain classes
(e.g., Population, Phenotype, Chromosome, and Gene), operation classes (e.g., Alterer
and Selector), and Engine classes to connect all components into a GA. A Population is a set
of Phenotypes, each of which is a Genotype (i.e., genetic constitution of an individual) with
a fitness score. A Genotype is composed of multiple Chromosomes. Each chromosome
consists of a set of Genes. A key step in the application of GA to LiDAR flight path
optimization is to translate the problem domain into GA concepts.

Building upon the work of Hinks et al. [23], a flight grid pattern (Figure 1b) is de-
fined. A flight grid is represented by three numeric parameters (Θ, X, Y) that define the
orientation and position of the flight grid (Figure 3a). All three parameters are bounded,
Θ ∈ [0, 90), X ∈ [−s/2, s/2), Y ∈ [−s/2, s/2); where s is the flight line spacing (Figure 3a).
Two different GA representations of flight grids are considered. The first representation
(called Numeric) is based on the Integer Chromosome built-in Jenetics. A Genotype (i.e., a
flight grid) is composed of two Integer Chromosome (Figure 3b). The first Chromosome
consists of a single (32-bit) Integer Gene that represents Θ. The second Chromosome is com-
prised of two (32-bit) Integer Genes that represent X and Y. In the second representation
(called Bit Vector), each value of Θ, X, and Y is encoded as a binary string (8-bit integer) and
represented as a BitVector Chromosome. A Genotype in this second representation contains
only a single Bit Vector Chromosome, which is composed of 32 Bit Genes (Figure 3c). While
a Numeric representation is more straightforward, it appears to be less effective, based on
some preliminary testing by the authors. Specifically, the BitVector representation allows
faster convergence.

In addition to the representations described in this section, the GA implementation
requires a definition of a fitness function, which is explained in Section 3.2. Apart from
these, all other elements of the GA algorithm (e.g., operation classes and evolution engine)
were adopted directly from Jenetics.

Remote Sens. 2021, 13, 4437 8 of 27

Northing

Easting

X

Y Θ

(a) Flight grid's rientation and position

(b) Numeric representation

(c) Bit Vector representation

Chromosome 1

Chromosome 2

Θ

X Y

Numeric Genotype

32-bit Integer
 Genes

Chromosome 1

1-bit Bit Genes

Θ X Y

Bit Vector Genotype

Figure 3. Representations of a flight path candidate for GA optimisation in which: (a) is the parame-
terization of a flight path candidate; (b,c) are two alternative representations: Numeric and BitVector.

3.2. A Beam Tracing Algorithm to Simulate Vertical Points Captured by a LiDAR Flight Path

Given that a significant sidelap (>67%) is allowed between every pair of adjacent
flight swaths (i.e., stripes of point data captured by a flight line), sufficient capture of the
geometry of horizontal surfaces such as ground and building roofs is trivial [20]. Instead,
the main challenge is to capture vertical surfaces such as building façades [23]. As such,
the number of points on vertical surfaces that a flight grid generates is a straightforward
indicator by which measure how good or bad a flight grid is, in terms of documenting
an urban area. This is used as the basis of the fitness score. While the output is simple to
understand, computing it is complex, as the simulation requires knowledge of the flight
geometry (i.e., altitude, position and orientation of the flight grid), the urban geometry
(i.e., buildings and other urban objects), and certain scanner settings (e.g., scan angle,
angular resolution). Figure 4 illustrates the spatial model underlying the estimation of the
number of vertical points that a flight grid can generate (i.e., the fitness score). The flight
geometry is in all cases assumed to be composed of a set of straight flight lines separated by
a predetermined, uniform flight line spacing, sl . Each flight line is discretized into a set of
way points, spaced sw apart (Figure 4a). By discretizing the flight lines, the real, continuous
movement of the aircraft is modeled as a discrete stepwise traverse across the way points.
As previously noted, the urban geometry is represented using a base point cloud, which
eliminates the need to model the complex urban environment manually or via a simplified
mathematical model, which avoids any inaccuracies that could be introduced through such
approaches. A scanner’s settings are usually available in equipment specification sheets
and can be input directly into the simulation. Given the spatial model (Figure 4), which
encapsulates the flight geometry, urban geometry, and scanner settings, laser beams can be
simulated from every way point toward the portion of the base point cloud that intersects
the field of view (FOV) corresponding to each way point (Figure 4c). Because the base
point cloud only consists of non-vertical points, if a laser beam arrives in the vicinity a
point in the base point cloud (beams b1 − b2 and b4 − b11 in Figure 4c), the laser beam
is assumed to be incident on a non-vertical surface. If a laser beam does not approach
any point in the base point cloud (e.g., beam b3 in Figure 4c), then further computation
(detailed in the remainder of this section) is performed to confirm whether the beam strikes
a vertical surface.

Remote Sens. 2021, 13, 4437 9 of 27

(a) Waypoint and field of view (FOV)

Way points

Urban geometry

Laser beamsFlight line

(d) Structures resembling building facades(c) Beam tracing from a waypoint

W

Front view

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

p14

p1

p2

p3 p4

p5 p7

p6 p8 p9 p10 p11

p12 p13

(b) Spatial model for beam tracing

platest

pnext

left flank right flank

platest

pnext

Front view

Top view

Waypoint

sl

sl

sw

FOV

sw

Flight line

Figure 4. Laser beam tracing for estimation of missing vertical points. Red beams denote ones that
strike a vertical surface and blue beams denote beams that strike in the vicinity of a base point on a
non-vertical surface.

Figure 4c presents a subset Π of the base point cloud P within the FOV of a way point,
Wj, and the laser beams B cast from this way point. The beam tracing from each way
point is performed in the 2D vertical plane containing the way point using Algorithm 2.
The laser beams are sorted counter-clockwise based on the beams’ angles to nadir (b1 to
b11 in Figure 4c, Algorithm 2 line 1). Each point in subset Π is mapped to its nearest laser
beam (Algorithm 2, line 3). If multiple points are mapped to the same beam (e.g., p1, p2
and p3 are mapped to b1 in Figure 4b), the point closest to the way point is kept (e.g., b3).
All further points are discarded, as the first point is assumed to obstruct all laser energy.
The discarded points are colored in grey in Figure 4c. The logic is represented on lines 4–6
in Algorithm 2.

In the next step (lines 10–23 in Algorithm 2), the laser beams and their corresponding
base points are evaluated in their sorting order (i.e., b1 to b11, beam set B on line 10 in
Algorithm 2). During the evaluation, when a non-empty beam (i.e., a beam that associates
to a base point) is encountered (Algorithm 2 line 12), its corresponding base point is
recorded (i.e., platest). As previously mentioned, such a beam is assumed to be incident
on a non-vertical surface. When the encountered beam is empty (i.e., the beam does not
associate with any base point, Algorithm 2 line 14), the algorithm traces back to the latest
recorded base point, platest. In the example in Figure 4c, the first empty beam is b3, and the
latest recorded point is p4. The algorithm searches the neighborhood of platest for structures
that resemble building façades (Figure 4d). The search domain differs depending on the
relative position of platest, with respect to nadir. If platest is in the left flank of the FOV
(Algorithm 2 line 15), then the algorithm searches the lower part of the neighborhood of

Remote Sens. 2021, 13, 4437 10 of 27

platest (Algorithm 2 line 16). Otherwise, the upper part of the neighborhood is searched
(Algorithm 2 line 18). If the search returns another point (pnext), which together with platest
forms a vertical structure, the number of laser beams striking on the vertical segment
(platest, pnext) is interpolated (line 21 in Algorithm 2). The total number of such vertical
laser beams is the output of the beam casting from Wj is calculated (Algorithm 2 line 21).
The fitness score of a flight grid is the total number of such beams derived from all way
points of the flight grid. Notably, the number of beams is assumed to be equal to the
number of points yielded by a flight grid since a beam striking on a façade surface usually
results in a single point return. The beam tracing algorithm accounts for both self-shadow
and street-shadow based occlusions as defined by Hinks et al. [23]. The use of a base point
cloud is designed explicitly to allow a more accurate representation of the complex urban
environment and, thus, a more robust measure of the algorithm’s output. The beam casting
algorithm in Algorithm 2 and its use in computing the fitness scores for the optimization
clearly reflect the objective of the optimization.

Algorithm 2 Beam casting from a specific way point
Input: Wj, Π . way point and corresponding base point subset
Output: nj . number of vertical points derived from Wj

1 B←− SortedMapj(bj, ∅) . laser beams cast from Wj
2 foreach pi ∈ Π do
3 bk ←− NearestBeam(pi) . map point pi to the nearest beam
4 pcurrent ←− B(bk) . retrieve the current point corresponding to beam bk
5 if pcurrent = ∅ or Dist(pi, Wj) < Dist(pcurrent, Wj) then
6 B(bk)←− pi . replace the point currently associated with bk
7

8 end
9 nj ←− 0

10 foreach bk ∈ B do
11 platest ←− ∅; pnext ←− ∅
12 if B(bk)! = ∅ then
13 platest ←− B(bk) . keep the point associating with bk as platest
14 else
15 if platest in left flank then
16 pnext ←− SearchLower(platest) . search for a façade point
17 else
18 pnext ←− SearchUpper(platest) . search for a façade point
19 end
20 if pnext! = ∅ then

21 nj
add←− NumBeams(platest, pnext) . interpolating beams

22 bk ←− B(pnext); platest ←− pnext; pnext ←− ∅
23 end
24 end

3.3. A Distributed Computing Strategy for Fitness Function Evaluation

The beam tracing introduced in Section 3.2 is not particularly computationally com-
plex, nor does it involve big data. In contrast, the actual computational challenge is in the
fitness computation, which comes from two sources. First is that the number of way points
can be large. Thus, the beam tracing must be performed thousands or millions of times.
Second, the selection of base points inside the FOV of a way point is an expensive process.
Matching base points to their corresponding way points is essentially a spatial join between
two potentially large datasets, P ./ W. The point dataset, P, can contain millions or even
billions of points depending on the spatial extent and the point density. The number of way
points in W can be several thousands or more depending on the flight geometry and the
discretization resolution. A base point pi ∈ P is joined with way point wj ∈W, if the FOV

Remote Sens. 2021, 13, 4437 11 of 27

of a wj contains pi. The join is many-to-many, where a way point is joined with multiple
base points, and a base point is joined with multiple way points. Algorithm 3 presents a
complete strategy for the fitness score computation that addresses both challenges.

Algorithm 3 Parallel algorithm for computing the fitness score (i.e., the total
number of laser beams incident on vertical surfaces) of a flight grid

Input: P, F(X, Y, Θ, sl , sw) . base point cloud, and flight parameters
Output: n . total number of vertical points derived from the flight grid

1 Setij([Wj, pi])←− ∅ . set of way point–base point pairs
2 foreach pi ∈ P do
3 pi ←− CoordTransform(pi, X, Y, Θ) . transform point coordinates
4 Setj([Wj, pi])←− WayPoint(pi, sl , sw) . compute way point coordinates

5 Setij([Wj, pi])
add←− Setj([Wj, pi]) . add the new pair to the set

6 end
7 . aggregate base points by way points
8 Setj([Wj, Seti(pi)])←−AggregateByKey(Setij([Wj, pi]))
9 foreach [Wj, Seti(pi)] ∈ Setij([Wj, pi]) do

10 Π←− Seti(pi) . base point subset
11 nj ←− BeamCasting([Wj, Π]) . beam casting per way point
12 end
13 return n = ∑(nj) . return the total number of vertical points

Algorithm 3 computes the fitness score, n, of a candidate flight grid using the base
point cloud, P, and the flight parameters, F(X, Y, Θ). The algorithm is composed of two
stages. Stage 1 (the for loop on lines 2–5 in Algorithm 3) performs P ./ W (i.e., base
points and way points joint). Stage 2 (the for loop on lines 9–11 in Algorithm 3) performs
beam casting for each way point as described in Section 3.2. Between the two stages is the
data shuffling operation (i.e., AggregateByKey, line 8 in Algorithm 3), which aggregates
base points by their corresponding way points. Both for loops are straightforwardly
parallelizable. Each execution of the first for loop takes an individual base point pi,
calculates coordinates of the way points Wj corresponding to the given base point and add
the way point – base point pairs to Setij([Wj, pi]). The calculation of way point coordinates
starts with transforming the coordinate system (lines 3 in Algorithm 3) so that the flight
lines are parallel to the coordinate axes.

l Idx =

[
xi
sl

]
(1a)

wIdx =

[
yi
sw

]
(1b)

Ωswath = H tan(ϕmax) (1c)

Consider a set of flight lines parallel to the Y axis as in Figure 5, the algorithm
calculates the index of the flight line closest to pi using Equation (1a). The squared brackets
denote rounding to the nearest integer. In the example in Figure 5, the closest flight line
to pi(xi = 137.2, yi = 0.7) is l2 because l Idx = [xi/sl] = [137.2/80.0] = [1.715] = 2.
On the given flight line, the way point closest to pi is calculated using Equation (1b).
In Figure 5, wIdx = [yi/sw] = [0.7/0.5] = [1.4] = 1. Hence, pi is closest to way point
w1 on flight line l2. In addition to the closest way point, pi is mapped to way points on
other flight lines nearby the closest flight line, as long as the Euclidean distance from
pi to the line calculated in the XY plane is shorter than the expected half swath width.
The half swath width (Ωswath) is calculated as in Equation (1c) and is constant for the
entire flight mission. Function WayPoint on line 4 of Algorithm 2 encapsulates the way

Remote Sens. 2021, 13, 4437 12 of 27

point calculation expressed in Equation (1a–1c). Thanks to the coordinate transformation,
the spatial mapping of base points to way points becomes the simple arithmetic formulae
in Equation (1). More importantly, both of the transformations (i.e., CoordTransform
and WayPoint) are performed independently for each base point. As Setij([Wj, pi]) is a
distributed dataset, adding the newly computed way point — base point pairs do not
require any synchronization among elements of the dataset. Every step in the first for
loop is parallel. In the second for loop (lines 9–11 of Algorithm 3), each execution takes an
individual way point, Wj, and the corresponding base point subset Π to perform the beam
casting algorithm described in Algorithm 2 and Section 3.2. Similar to the first for loop,
the second for loop is straightforwardly parallelizable since each individual execution is
independent.

Top view

w0

flight lines

base point, pi

waypoints

X

Y
l0 l1 l2 l3 l4

w1

w2

xi=137.2

yi=0.7

sl=80.0

sw=0.5

Figure 5. Mapping of base point to way points, where a base point pi is mapped to 3 flight lines l1, l2,
l3 before being mapped to the way points on the flight lines.

Figure 6 shows the data lineage corresponding to Algorithm 3. All datasets in Algorithm 3
are distributed datasets, called Resilient Distributed Datasets (RDD) in Spark, the distributed
computing framework selected to implement the algorithm. Each dataset (e.g., the base point
cloud, P) is divided into multiple partitions distributed across multiple executors for parallel
transformation and computation. Executors are distributed software processes that can reside
on different nodes of a computing cluster. In Figure 6, each rounded box represents a data
partition, and each stack of partitions represents an RDD.

Notably, the transformations within Stage 1 and Stage 2 do not require data to
be exchanged between partitions, and their data flows are confined to be within the
partition boundaries. Thus, no communication between executors or nodes is needed.
The CoordTransform and WayPoint transformations in Stage 1 are applied for each base
point pi. Similarly, the BeamCasting transformation in Stage 2 is applied on each way
point and a limited subset of base points (Π) corresponding to the way point. All of those
transformations are easily parallelizable, because manipulation of one record is totally inde-
pendent of other manipulations and side effects. In addition, the amount of data involved
in each transformation is limited. Thus, each transformation is performed in memory.

The operation that is not straightforwardly parallelizable is the aggregation of base
points by way point that occurs between the two stages. That operation requires phys-
ical movement of data between partitions that potentially reside on different nodes.
Multiple partitions need to be combined to build partitions for a new RDD. The com-
plex operation is implemented based on the parallel AggregateByKey function in Spark.
The AggregateByKey function aggregates data within each partition before shuffling the
data between nodes, thereby minimizing data transfer across the cluster. Another operation
that needs data transfer across nodes is the final function that gathers the numbers of verti-
cal points from all partitions and computes the final sum. That operation is straightforward
and is implemented using the Collect function in Spark.

Remote Sens. 2021, 13, 4437 13 of 27

pi [Wj, pi]

flatMapToPair aggregateByKey map collect

partition

RDD

LEGEND

transformation

stage

[Wj, Seti(pi)] nj

Driver

(CoordTransform, WayPoint) (BeamCasting)

Stage 1 Stage 2

Figure 6. Data lineage corresponding to Algorithm 3, where in Stage 1, no cross-partition exchange
is needed as the points within each partition are mapped to their corresponding way points. Sub-
sequently, the data are shuffled among the partitions to aggregate the points by their way points.
Ultimately, in Stage 2, the beam tracing algorithm is applied to each point data subset corresponding
to individual way points to calculate the fitness score. No cross-partition exchange is needed in
Stage 2.

In summary, the principal strategy behind the fitness score computation is data par-
allelism. The algorithm is composed of two map transformations and one data shuffling
transformation. The datasets are divided into small partitions distributed across mul-
tiple executors. During each map transformation, multiple executors work in parallel
to apply the same transformation to their data partitions. The data partitions are kept
sufficiently small so that every transformation can be performed within the memory space
allocated to each executor. The shuffling transformation that occurs between the two map
transformations is the most complex part of the algorithm. That shuffling transformation
is implemented based on a highly optimized function in Spark (i.e., AggregateByKey).
Throughout that algorithm, the computation is decomposed into loosely coupled trans-
formations that are conducted by different executors in a highly independent manner.
Expensive communication across executors and nodes is restricted. As such, the algorithm
is suitable for being deployed on a distributed-memory cluster in which the computing
nodes that host executors do not share a memory space and use an interconnect for their
limited communication.

3.4. Multiple Evaluators—An Additional Level of Parallelism

Sections 3.2 and 3.3 describe the parallel computing strategy that enables the eval-
uation of one flight grid. That parallelization is herein referred to as the lower layer of
parallelization. Atop that, an upper layer of parallelization is introduced by allowing
multiple evaluators to simultaneously evaluate the fitness scores of different flight grids.
The two layers of parallelization are depicted in Figure 7. The GA optimizer at the upper
layer controls the entire optimization process. The GA optimizer is a multi-threading Java
process that has one thread performing the GA operations and multiple threads connecting
to different parallel evaluators. The setup is aimed for deployment on a distributed envi-
ronment in which the GA optimizer and the evaluators reside on independent computing
nodes that do not share disk or memory spaces. The GA optimizer and the evaluators
exchange limited data via socket connections. Such a distributed architecture easily allows
scaling the computing resource (e.g., adding more parallel executors) to accommodate
increases in the workload (e.g., an increase in input dataset). On the lower layer, each
Evaluator is an independent Spark application, which sequentially analyzes its subset of
flight grids using multiple, parallel executors of a distributed memory cluster as described
in Section 3.3. In addition, each executor can perform multiple, parallel tasks (denoted
as T in Figure 7) using multi-threading. The multiple, parallel levels allow an efficient
usage of available computing resource to perform the computation rapidly. Compared
to the lower layer of parallelization explained in Sections 3.2 and 3.3, the upper layer of

Remote Sens. 2021, 13, 4437 14 of 27

parallelism is more straightforward, because the evaluation of one flight grid is wholly
independent of the other flight grids. What could partially impede the parallelism on
this layer is the evaluator coordination performed by the GA Optimizer (e.g., assigning
flight grids; gathering and synchronizing results). While the upper layer of parallelization
can accelerate the optimization more straightforwardly, it does not target the big data
challenges addressed by the lower layer. Thus, a combination of the two levels is needed.

Evaluator

Driver

Spark Context

Spark Application

Evaluator

Driver

Spark Context

Spark Application

Executor

T T

Executor

T T

Executor

T T

Executor

T T

Executor

T T

Executor

T T

T

T

GA Optimizer

Evolution Engine

Fitness Function

Upper layer
of parallelization

Lower layer
of parallelization

Figure 7. Dual levels of parallelization are shown where the GA optimizer distributes the flight path
candidates to different evaluators for fitness score computation. To evaluate a flight path candidate,
each evaluator partitions and distributes the work to multiple executors, each of which can use
multiple parallel threads.

4. Results

This section presents the computational experiments that demonstrate the success of
the GA optimization strategy and evaluate the computational performance and scalability
of the parallel algorithms presented in Section 3. In addition, the accuracy of the proposed
method was evaluated based on two actual test flights. The two test flights followed flight
grids that were selected based on their prediction of achieving the best and worst outcomes
as a function of their having the highest and lowest fitness scores identified by the GA,
respectively. The flights were conducted at 300 m above the ground level at a speed of
50 knots. The flight line spacing (sl) was 80 m, which is equivalent to a side lap of 77%.
The flights were conducted with a Riegl Q680i scanner with a pulse rate of 400 kHz and an
FOV of 60◦. Those flight and scanner configurations were set as fixed parameters in the
GA optimization and the test flights.

A study area of 1km2 in Sunset Park, New York (Figure 8) was selected based on local
flight permissions. The main input of the optimization process was the base point cloud of
the area. For this, a publicly available, city-wide LiDAR scan of New York City from 2017 [5]
was used. Those data were acquired at 1800 m above the ground level with parallel a flight
line pattern (e.g., Figure 1a) and an average sidelap of 60% [3]. The aggregate point density
calculated on horizontal surfaces was 11 points/m2. The total number of base points after
vertical point removal was 9,688,794. All computational experiments were performed using
a distributed-memory computer cluster of 18 nodes connected with 100 Gb/s Ethernet
connection. Each node had 2 × 24 core Intel Xeon CPU@2.90GHz and 384 GB memory.
Strictly speaking, the cluster is hybrid, as it had multiple distributed-memory nodes,
each of which had multiple shared-memory cores. The cluster is a shared facility that
simultaneously accommodates many other computations apart from the experiments
reported in the section.

Remote Sens. 2021, 13, 4437 15 of 27

298,000

EPSG:32118
NAD83 / New York Long Island

5
3

,5
0

0
N

.

elevation
0m 40m

North

297,500 298,500

5
2

,5
0

0
5

3
,0

0
0

E.

Brooklyn
Army Terminal

Figure 8. Plan view of the Sunset Park study area in Brooklyn, NY, USA.

4.1. GA Optimization Results

To confirm the success of the GA in LiDAR flight path optimization, the GA was
executed with two opposing objectives: maximizing and minimizing the fitness function.
There were 36 flight grids per generation. The crossover and mutation rates were 0.8 and
0.05, respectively. Two flight grids were selected from each generation as survivors. As
in any stochastic solver, there is no way to know a priori which parameters are optimal
for a new problem space. The initially selected parameters were set based on practical
experience and trial and error. Regarding the specific number of survivors, if less than
one survivor is kept, a convergence may be harder to achieve as elite candidates are lost
during the evolution process. If too many survivors (e.g., 50% of the population) are kept,
the optimization may not be able to explore the search space and may easily become caught
in local maxima.

The evolution processes corresponding to the two opposite objectives are presented
in Figure 9a. Each rotated bell curve represents the fitness score distribution of a gener-
ation. The blue curves represent the GA progress when the objective was maximization.
The orange curves correspond to the minimization. As evident from Figure 9a, the GA op-
erators successfully drove the fitness scores towards the defined objectives. The blue curves
progressed upwards, while the orange curves progressed downwards. While Figure 9a
shows all 32 generations tested, the results converged from the 10th generation for both
the maxi- and minimization. The executions resulted in the most and the least optimal
flight grids, as shown in Figure 9b and 9c, respectively. The difference in vertical point
yield between the most and least optimal flight grids was projected to be approximately
13%. The most optimal flight grid was nearly diagonal to the main street axes (Figure 9b)
versus the least optimal flight grid, which was nearly orthogonal (Figure 9c). This result
agreed with the previous finding by Hinks et al. [23] even though Hinks et al. [23] arrived
at that conclusion via simplistic geometric modeling. The agreement of the two approaches
is attributable to the dominant rectilinear layout of the street axes in the study areas. In the
remainder of the paper, the most optimal flight grid is referred to as the Diagonal flight
grid and the least optimal as the Orthogonal flight grid.

Remote Sens. 2021, 13, 4437 16 of 27

Figure 9. LiDAR flight path optimization results: (a) The evolution of the population fitness scores
over 32 generations according to 2 opposite optimization objectives; (b,c) The most and least optimal
flight paths derived from the GA optimization, respectively.

To understand the actual effectiveness of the Diagonal and Orthogonal flight grids
identified by the GA in capturing vertical surface structures, the two flight grids were
flown on 11 May 2019, as part of a single mission. The point clouds derived from the
two flights are herein referred to as the Diagonal and Orthogonal point clouds. The point
density histograms of the two point clouds are shown in Figure 10. The point density
was calculated using the local point density index [45], which took into account the local
surface orientation.

Compared to the Orthogonal point cloud, the Diagonal point cloud had more points on
vertical surfaces (indicated as V in Figure 10). With respect to the point density on horizontal
surfaces, the Diagonal point cloud had more higher-density points (270 points/m2) and
fewer lower-density points (250 points/m2) [indicated as H in Figure 10]. To quantify
the actual difference, the number of vertical points in the two point clouds were counted.
A point was considered vertical if its local fitting surface was within 10◦ from a perfectly
vertical plane. According to that analysis, the Diagonal point cloud had 16% more vertical
points compared to the Orthogonal point cloud. That level of difference was slightly higher
than the 13% predicted by the proposed algorithm (Figure 9a). Given that the study area is
populated with mostly low-rise to medium-rise buildings, the 16% gain in vertical points
is significant. If the study was conducted in a metropolitan area with taller buildings and
narrower alleyways, the higher effectiveness of the Diagonal flight grid would be even
more notable.

Remote Sens. 2021, 13, 4437 17 of 27

V
Vertical density
(on building facades)

H
Horizontal density
(on ground and roof surfaces)

Figure 10. Density histograms of the complete Diagonal and Orthogonal point clouds, where the
Diagonal point cloud has a higher number of high-density points.

Figures 11 and 12 provide a more detailed analysis of the vertical point densities
of the Diagonal and Horizontal point clouds. Figure 11 shows the point distribution
on two building façades A and B, which both faced a narrow alleyway. Such façades
are susceptible to street occlusion and are typically missed by high-altitude ALS flights.
Façade A is particularly challenging, because the space between the roof edges over the
alleyway, where laser beams could enter to capture the façade, was only 1.3 m wide.
Nevertheless, both façades were captured with reasonable densities and completeness in
the Diagonal flight grid, as well as a significantly higher density than in the Orthogonal,
as observable in both the visualization and histograms. Compared to the Orthogonal flight
grid, the Diagonal flight grid captured 24% and 61% more vertical points on façades A and
B, respectively. This translated to a significant difference in average vertical point density.

Shown in Figure 12 are the North-East and South-West façades of the Brooklyn Army
Terminal (BAT), a standalone building with no tall structures nearby. So, unlike façades
A and B in Figure 11, the BAT façades were not susceptible to street occlusion. For these
façades, the advantage of the Diagonal flight was less dramatic. While the Diagonal
flight grid captured 18% more vertical points on the North-East façade (see point density
histogram), the density distribution was less uniform, as the façade was at the edge of a
Diagonal flight grid flight line. In fact, on the South-West façade, the Diagonal flight grid
captured 7% less vertical points.

While not every façade was better captured by the Diagonal flight grid, the overall
higher effectiveness of the Diagonal flight grid compared to the Orthogonal flight grid
was observed in both the overall statistics of the complete datasets and from most specific
detailed observations. The Diagonal flight grid captured 16% more vertical points than the
Orthogonal flight grid. That 16% difference was slightly higher than the 13% predicted by
the algorithms presented in Section 3. Nevertheless, the results satisfactorily substantiated
the accuracy of the proposed methodology. The remainder of the section analyzes the
computational efficiency of the proposed algorithms.

Remote Sens. 2021, 13, 4437 18 of 27

Figure 11. Comparison of acquired vertical data on two façade highly susceptible to street occlusion shows the higher
numbers of high-density points in the Diagonal point clouds are observable in both the histogram and the point cloud plots.

Remote Sens. 2021, 13, 4437 19 of 27

Figure 12. Façades not susceptible to street occlusion—the Diagonal flight grids captured more vertical points on the North
East façade but less vertical points on the South East façade.

4.2. Performance Evaluation

The GA executions shown in Figure 9 took 99 and 65 min for maximizing and mini-
mizing the objective functions, respectively. In each execution, four evaluators were used.
Each evaluator had four executors with four cores. The numbers of evaluators, executors,
and cores were selected based on the computational experiments presented later in this
subsection. The total runtime of less than 2 h makes the proposed method practical and fea-
sible for an actual flight planning. Given the two layers of parallelization, more computing
resource can be flexibly added to speed up the optimization as needed. In the following
subsections, the efficiency of the two layers of parallelization is analyzed in detail.

Remote Sens. 2021, 13, 4437 20 of 27

4.2.1. Lower Layer of Parallelization

To evaluate the efficiency of the lower layer of parallelization, different numbers of
executors and cores were used to compute the fitness score of a fixed flight grid. The run-
times of the fitness score computations are presented in Figure 13 (Small Dataset) and
Table 1. The reported runtimes captured the entire process from the time each Spark job
was submitted until it terminated. In addition to the net computing time, all overheads
such as the time required for the cluster management system to allocate resources, release
resources, and clean up temporary data were included. In general, the runtime reduced
when more executors and cores were added. The speedup factors in Table 1 measure the
reduction in runtime when more resources are used. The speedup factors were calculated
as S = Tserial/Te,c, where Tserial is the serial runtime (1 executor, 1 core) and Te,c is the run-
time corresponding to a parallel execution that uses e executors and n cores. The speedup
factors in Table 1 were low. In particular, the runtime reduced only 4.9 times when the
number of executors increased by 16 times (given one core per executor). In an ideal
scenario, an increase of resource by n times should result in n times reduction in runtime.
While such an ideal speedup is rarely achievable in practice [13], the factor of 4.9/16 is low.
The low efficiency is attributable to the small size of the input base point cloud (i.e., under
10 million points). The net computing time for the small dataset was in the range of under
40 s when multiple executors and cores were used. That computing time was comparable
to the overheads. While parallelism did reduce the net computing time, it did not affect the
overheads. Thus, the efficiency of the parallel solution was hidden when the test dataset
was small.

To confirm the actual efficiency of the proposed parallel algorithm for flight grid
evaluation, an experiment was conducted for an additional area 46 times larger than
the study area (see Appendix A). The large study area shown in Figure A1 is located in
Brooklyn, New York and encloses the Sunset Park site shown in Figure 8. The number of
base points was over 460 million points. The runtimes for the large experiment are reported
in Figure 13 (Large Dataset) and Table 2. The overheads were insignificant relative to the
net computing time. Thus the efficiency of the parallel algorithms appeared much more
clearly. A speedup factor of 13.1 was achieved when increasing the number of executors
from 1 to 16 (given one core per executor). Adding more executors resulted in a higher level
of efficiency compared to adding cores. For example, the speedup was 7.1 when increasing
the number of executors by 8 times, while the speedup was only 3.3 when octupling the
number of cores. Among all tests conducted, the highest speedup factor was 18.3 when
16 executors and 8 cores per executor were used. The result successfully demonstrated the
efficiency of the lower layer of parallelization.

Figure 13. Efficiency of the lower layer of parallelization—overall, the runtime reduced when the
numbers of executors and cores increased. The runtime reduction is much more obvious in the
experiments using the Large dataset.

Remote Sens. 2021, 13, 4437 21 of 27

Table 1. Efficiency of the lower level of parallelization—Small Dataset.

Num. Executors

1 2 4 8 16

nu
m

.c
or

es
pe

r
ex

ec
ut

or

1 Runtime (s) 130 83 47 31 27
Speedup — 1.6 2.8 4.2 4.9

2 Runtime (s) 77 49 30 28 22
Speedup 1.7 2.7 4.3 4.6 5.8

4 Runtime (s) 52 32 25 20 21
Speedup 2.5 4.1 5.1 6.6 6.2

8 Runtime (s) 32 28 23 19 17
Speedup 4.0 4.6 5.6 6.8 7.5

Table 2. Efficiency of the lower level of parallelization—Large Dataset.

Num. Executors

1 2 4 8 16

nu
m

.c
or

es
pe

r
ex

ec
ut

or

1 Runtime (s) 5771 2884 1507 812 439
Speedup — 2.0 3.8 7.1 13.1

2 Runtime (s) 4151 2171 1121 697 383
Speedup 1.4 2.7 5.1 8.3 15.1

4 Runtime (s) 2627 1423 785 522 331
Speedup 2.2 4.1 7.4 11.0 17.4

8 Runtime (s) 1762 1008 657 359 315
Speedup 3.3 5.7 8.8 16.1 18.3

4.2.2. Upper Layer of Parallelization

Similar to the lower layer, the upper layer of parallelization was evaluated by varying
the number of evaluators and observing the runtime. To avoid the randomness of the GA
process, the experiments were conducted for a fixed generation of 36 flight grids. Each
evaluator was given four executors and each had four cores. Figure 14 and Table 3 show
the results of the experiments. The runtime reduced when more evaluators were added.
The speedup factors were 1.6, 2.4, and 3.2 when the number of evaluators increased by 2, 3,
and 4 times, respectively. In the current implementation, while the number of flight grids
was distributed evenly among evaluators, there was occasionally an observable imbalance
in response time between evaluators. At the end of each GA generation, all faster evaluators
had to wait for the slowest evaluator, before the GA operators could generate the next
generation. A significant imbalance in response time between evaluators could impede the
efficiency of the upper layer of parallelization. Such imbalance could be alleviated by a
more sophisticated load balancer, which may allocate tasks based on the actual response
of the evaluators to minimize wait time. Nevertheless, having this upper level provides
additional control of the total level of parallelism. In the particular case of the small dataset
experiment, adding three more evaluators (each with four executors) was more efficient
than adding the same number of executors directly to the one existing evaluator. With the
same amount of computing resource (i.e., 16 executors × 4 cores), the former approach
resulted in a reduction of 1.2 times in runtime (Table 1), while the latter approach resulted
in a reduction of 3.2 times (Table 3). The combination of both levels of parallelization
resulted in a maximum overall efficiency factor of 32.5/64. In particular, the evaluation
of one grid without parallelism (i.e., one evaluator, one executor, and one core) took 130 s
(Table 1), whereas the evaluation of 32 grids with four evaluators, four executors, and four
cores took 144 s (Table 3). The speedup factor is calculated as 130/ 144

32 = 32.5, while the
total number of parallel cores is 4× 4× 4 = 64.

Remote Sens. 2021, 13, 4437 22 of 27

Table 3. Efficiency of the upper level of parallelization.

Num. Evaluators

1 2 3 4

Runtime (s) 454 282 186 144
Speedup — 1.6 2.4 3.2

Figure 14. Efficiency of the upper layer of parallelization, where the runtime reduced when the
number of evaluators increased.

5. Discussion

This paper introduces a novel, scalable, and computationally efficient method to opti-
mize LiDAR flight path planning for specific objectives within a dense urban environment.
The proposed method employs a genetic algorithm, a dual parallel computing framework,
and low-density, publicly accessible data sets. This enabled optimization to be objectively
based on real-world characteristics of individual geo-locations. This was demonstrated
herein for maximizing vertical point density acquisition, in which a 16% increase in vertical
point yield was obtained even in a region dominated by low-rise structures and relatively
wide streets, which meant that there was a relatively sparsity of vertical façade areas to be
documented compared to a central business district and that there was a low level of street
shadowing since the street widths provided significant separation in that direction. Thus,
as expected in such a region, the selected cases showed that achieving reasonable vertical
coverage for unoccluded, standalone structures could be possible with little consideration
to flight path orientation (Figure 12). However, even under these relatively undemanding
conditions, when structures (even relatively low-rise ones) were closely spaced, achieving
full coverage was problematic (especially on the lowest stories) without a directed data
acquisition scheme (Figure 11). As such, in high-density areas, with narrower streets or a
more mixed condition of building heights and street widths, some form of the diagonal
grid would be expected to produce even more dramatic results.

While the Sunset Park case furnished a quantifiable demonstration of the potential
benefits of the optimization, the exercise highlighted several more fundamental contri-
butions. The first is the incorporation of a multi-objective framework with a low-density
base point cloud. While the current optimization included only a handful of variables and
imposed extremely limited ranges on them because of aviation authority flight restrictions
and the imposition of a set of parallel lines to be followed by a manned aircraft, this is not
necessarily reflective of the future aerial LiDAR. The past decade has shown rapidly grow-
ing capacities and commercial options of unmanned autonomous vehicles as individual
units and swarms (e.g., [46–48]). The proposed framework could be further developed
for planning complex flight paths that may be composed of curved and/or non-parallel
flight lines as often seen in UAV mapping. A different algorithm could be substituted for
the beam tracing algorithm in the framework to model data collected by complex sensor
systems which may include multiple, independent sensors of different types (e.g., LiDAR
and hyperspectral).

Remote Sens. 2021, 13, 4437 23 of 27

The GA was demonstrated in this research as being effective in searching for optimal
flight grids based on their ability to capture vertical surfaces. However, that specific
application does not reflect the capability of the proposed computing framework. Since
GAs are known for their ability to incorporate multiple optimization objectives, the main
computing framework can be amended and connect to different flight path evaluators to
optimize for multiple objectives. The use of a base point cloud that is generated from a
publicly accessible, sparse point cloud captured by typical, high-altitude ALS missions as
the primary geometric input for the optimization allows for a more realistic representation
of the actual, complex, urban configuration, which contributes to the ultimate accuracy of
the outputs. In areas where no pre-existing point cloud is available, the proposed approach
can use a synthetic point cloud generated from any 3D models of the area of interest. Many
methods such as the 3D rasterization presented by Zlatanova et al. [43] are readily available
for generating such a synthetic point cloud.

Achieving useful outcomes in a reasonable time frame would not have been possible
without the dual layers of parallelization, which offered a flexible and efficient means
to connect multiple distributed software and hardware components to rapidly evaluate
large numbers of flight grids for the optimization. The upper layer of parallelization
connected the GA optimizer to multiple evaluators, which worked in parallel to evaluate
different subsets of flight grids. The lower layer of parallelization allowed each evaluator
to use multiple executors and cores to speed up its computation. The upper layer is
robust and is independent of the flight patterns and optimization objectives. However,
the parallelization strategy on the lower layer relies on a parallel, regularly spaced flight
line pattern. A different parallelization strategy may be needed when more complex flight
scenarios and/or different objectives are required (e.g., when using a swarm of drones).
Nevertheless, the out-of-core approach introduced in this paper is particularly effective in
handling a large, base point cloud for planning data capture of an extensive project area.
The combination of the multiple parallelization strategies and the out-of-core approach
assure both computational performance and scalability of the proposed method.

While access to a high-end computing cluster is critical to the success of this research,
the proposed approach does not necessarily dependent on such accessibility. Where no suit-
able on-premise computing facility is readily available, cloud computing can be an option.
With cloud computing, one or multiple computing clusters can be requested on-demand,
for the exact duration of the optimization. The distributed architecture introduced in the
paper can harvest the collective capacities of multiple clusters that are geographically dis-
tributed. That powerful feature is important when the problem size is large and reduction
of computational time is critical.

6. Conclusions

The computational strategy introduced in this paper makes three significant contri-
butions for the planning of aerial LiDAR flight path planning and, more generally, of the
management of these types of processes. The first is the data partitioning strategies, which
allow efficient use of the cluster memory and disk spaces. As the data are divided into
small partitions, only relevant data subsets have to be kept in memory at a specific stage
of the computation. This feature is often referred to as out-of-core computation, which
is particularly important when data are too large to fit in the computer memory space.
The second is the algorithm that leverages the distributed-memory architecture to assure
scalability. The third significant contribution is the dual layers of parallelization, which
allows flexible uses of multiple computing nodes and cores to reduce the computational
time. That ability is critical in the processing efficiency.

The success of the GA application and the parallel computing strategies were rigor-
ously evaluated through several empirical studies conducted for a 1 km2 area in Sunset
Park, Brooklyn, New York. The most and least optimal flight grids identified by the GA
were flown in May 2019. The comparison of the point clouds obtained from the flight
grids demonstrated the higher effectiveness of the optimal flight grid compared to its

Remote Sens. 2021, 13, 4437 24 of 27

counterpart (i.e., 16% more vertical points—slightly higher than the 13% predicted). The
GA executions for the study area took under 2 h. Both layers of parallelization were effi-
cient, with the efficiency of the lower layer of parallelization 13.1/16 and that of the upper
layer 3.2/4. For the lower layer of parallelization, multiple cores can be added to each
executor to further speedup the computation, even though adding cores is not as efficient
as adding executors. The two complementary layers of parallelization allow more flexible
and efficient use of computing resources. While the flight grid setting in this research
was restricted to three optimizable parameters, the GA is very capable of handling many
more design parameters. Thus, the proposed approach has strong potential for optimizing
more complex flight missions, such as those conducted with small unmanned aircrafts
and with a range of equipment capabilities (e.g., different ranges and/or fields of view) or
multiple sensors.

Author Contributions: Conceptualization, D.F.L., A.V.V. and J.B.; methodology, A.V.V., D.F.L. and
J.B.; software, A.V.V.; validation, A.V.V.; formal analysis, A.V.V. and D.F.L.; resources, D.F.L.; data
curation, D.F.L. and A.V.V.; writing—original draft preparation, A.V.V. and D.F.L.; writing—review
and editing, A.V.V., D.F.L. and J.B.; visualization, A.V.V.; supervision, D.F.L.; project administration,
D.F.L.; funding acquisition, D.F.L. All authors have read and agreed to the published version of
the manuscript.

Funding: Funding for the flight mission was generously provided by the Center for Urban Science
and Progress at New York University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The software source code associated with the algorithms introduced
in the paper is available at: https://github.com/av-vo/lidar-flight-optimisation. A public release
of the test flight data is in progress. The dataset will be available at this permanent address:
https://hdl.handle.net/2451/60458.

Acknowledgments: The computer cluster used in this research was part of the New York University’s
High Performance Computing facility. The authors are grateful for the outstanding support from
NYU HPC staff. Additional computing resource used in the development of the software prototype
was provided through sub-allocation “TG-IRI180015” from the Extreme Science and Engineering
Discovery Environment (XSEDE) supported by National Science Foundation grant ACI-1548562 [49].
The authors would like to thank Brittney O’Neil, Bobby Tuck, and Tuck Mapping Solutions Inc. for
facilitating the test flights.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ALS Aerial laser scanning
BAT Brooklyn Army Terminal
DOITT Department of Information Technology and Telecommunication
FOV Field of view
GA Genetic algorithm
LiDAR Light Detection And Ranging
RDD Resilient Distributed Dataset

Appendix A

Figure A1 shows the spatial extent of the 460 million point dataset used to evaluate
the efficiency of the lower layer of parallelization in Section 4.2.1. This additional area
includes the primary 1 km2 study area in Sunset Park.

https://github.com/av-vo/lidar-flight-optimisation
https://hdl.handle.net/2451/60458
https://hdl.handle.net/2451/60458

Remote Sens. 2021, 13, 4437 25 of 27

Figure A1. Plan view of spatial extent of the 460 million point dataset.

References
1. Petrie, G.; Toth, C. Introduction to laser ranging: Profiling, and scanning. In Topographic Laser Ranging and Scanning: Principles and

Processing; Shan, J., Toth, C.K., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2008; Chapter 1.
2. Vo, A.; Laefer, D.; Bertolotto, M. Airborne laser scanning data storage and indexing: State of the art review. Int. J. Remote Sens.

2016, 37, 6187–6204. [CrossRef]
3. Stanley, M.H.; Laefer, D.F. Metrics for aerial, urban lidar point clouds. ISPRS J. Photogramm. Remote Sens. 2021, 175, 268–281.

[CrossRef]
4. Heidemann. Lidar base specification (ver. 1.3). In U.S. Geological Survey Standards—Collection and Delineation of Spatial Data;

Number October; U.S. Geological Survey: Reston, VA, USA. Available online: https://pubs.er.usgs.gov/publication/tm11B4
(accessed on 7 April 2020). [CrossRef]

5. New York City Department of Information Technology & Telecommunications (DoITT). Topobathymetric LiDAR Data (2017).
2019. Available online: https://data.cityofnewyork.us/City-Government/Topobathymetric-LiDAR-Data-2017-/7sc8-jtbz
(accessed on 30 August 2021).

6. Sugarbaker, L.; Constance, E.; Heidemann, H.K.; Jason, A.; Lucas, V.; Saghy, D.; Stoker, J. The 3D Elevation Program Initiative: A
Call for Action; Technical Report; U.S. Geological Survey: Reston, VA, USA, 2014. [CrossRef]

7. AHN. Actueel Hoogtebestand Nederland. 2020. Available online: https://www.ahn.nl/ (accessed on 30 July 2021).
8. Höfle, B.; Hollaus, M. Urban vegetation detection using high density full-waveform airborne lidar data-combination of object-

based image and point cloud analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 281–286.
9. Rahman, M.; Kadir, W.; Rasib, A.; Ariffin, A.; Razak, K.; Estate, R.; Baharu, J. Integration of high density airborne LiDAR and high

spatial resolution image for land cover classification. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium
(IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 2927–2930.

10. Laefer, D.; O’Sullivan, C.; Carr, H.; Truong-Hong, L. Aerial Laser Scanning (ALS) Data Collected over an Area of around 1 Square km in
Dublin City in 2007; UCD Digital Library: Dublin, Ireland, 2014. [CrossRef]

11. Laefer, D.; Abuwarda, S.; Vo, A.; Truong-Hong, L.; Gharibi, H. 2015 Aerial Laser and Photogrammetry Survey of Dublin City Collection
Record; NYU Spatial Data Repository: New York, NY, USA, 2017. [CrossRef]

12. Lastovetsky, A.L. Parallel Computing on Heterogeneous Networks; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 24.
13. Pacheco, P. Parallel hardware and parallel software. In An Introduction to Parallel Programming; Morgan Kaufmann: Burlington,

MA, USA, 2011; Chapter P2, pp. 15–77.
14. Krishnan, S.; Crosby, C.; Nandigam, V.; Phan, M.; Cowart, C.; Baru, C.; Arrowsmith, R. OpenTopography: A services oriented

architecture for community access to LiDAR topography. In Proceedings of the 2nd International Conference on Computing for
Geospatial Research & Applications—COM.Geo ’11, Washington, DC, USA, 23–25 May 2011; ACM Press: New York, NY, USA,
2011; pp. 1–8. [CrossRef]

http://doi.org/10.1080/01431161.2016.1256511
http://dx.doi.org/10.1016/j.isprsjprs.2021.01.010
https://pubs.er.usgs.gov/publication/tm11B4
http://dx.doi.org/10.3133/tm11B4
https://data.cityofnewyork.us/City-Government/Topobathymetric-LiDAR-Data-2017-/7sc8-jtbz
http://dx.doi.org/10.3133/cir1399
https://www.ahn.nl/
http://dx.doi.org/10.7925/drs1.ucdlib_30462
http://dx.doi.org/10.17609/N8MQ0N
http://dx.doi.org/10.1145/1999320.1999327

Remote Sens. 2021, 13, 4437 26 of 27

15. Martinez, J.L.; Reina, A.J.; Morales, J.; Mandow, A.; García-Cerezo, A.J. Using multicore processors to parallelize 3D point cloud
registration with the Coarse Binary Cubes method. In Proceedings of the 2013 IEEE International Conference on Mechatronics
(ICM), Vicenza, Italy, 27 February–1 March 2013; pp. 335–340.

16. Li, Z.; Hodgson, M.; Li, W. A general-purpose framework for parallel processing of large-scale LiDAR data. Int. J. Digit. Earth
2017, 11, 26–47. [CrossRef]

17. Vo, A.; Laefer, D.; Smolic, A.; Zolanvari, S. Per-point processing for detailed urban solar estimation with aerial laser scanning and
distributed computing. ISPRS J. Photogramm. Remote Sens. 2019, 155, 119–135. [CrossRef]

18. Vo, A.; Laefer, D. A Big Data approach for comprehensive urban shadow analysis from airborne laser scanning point clouds.
ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV-4/W8, 111–116. [CrossRef]

19. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021,
80, 8091–8126. [CrossRef]

20. Morton, B.; Young, J. Guidelines for LiDAR data collections. In Manual of Topographic LiDAR; Renslow, M., Ed.; American Society
of Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2012; Chapter 5.

21. U.S. Geological Survey. 2013–2014 U.S. Geological Survey CMGP LiDAR: Post Sandy (New York City); NOAA Office for Coastal
Management: Charleston, SC, USA, 2014. Available online: https://www.fisheries.noaa.gov/inport/item/49891 (accessed on 30
August 2021).

22. Alsadik, B.; Remondino, F. Flight planning for LiDAR-based UAS mapping applications. ISPRS Int. J. Geo-Inf. 2020, 9, 378.
[CrossRef]

23. Hinks, T.; Carr, H.; Laefer, D.F. Flight optimization algorithms for aerial LiDAR capture for urban infrastructure model generation.
J. Comput. Civ. Eng. 2009, 23, 330–339. [CrossRef]

24. Dashora, A.; Lohani, B.; Deb, K. Method of flight planning for airborne LiDAR using genetic algorithms. J. Appl. Remote Sens.
2014, 8, 083576. [CrossRef]

25. Girardeau-Montaut, D.; Roux, M.; Marc, R.; Thibault, G. Change detection on points cloud data acquired with a ground laser
scanner. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2005, 36, W19.

26. Rusu, R.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on Robotics
and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [CrossRef]

27. Hobu, Inc. PDAL—Point Data Abstraction Library. 2021. Available online: https://pdal.io/ (accessed on 30 August 2021).
28. Kleppmann, M. Reliable, scalable, and maintainable applications. In Designing Data-Intensive Applications—The Big Ideas behind

Reliable, Scalable, and Maintainable Systems; O’Reilly Media: Sebastopol, CA, USA, 2017; pp. 3–22.
29. Wu, H.; Guan, X.; Gong, J. ParaStream: A parallel streaming Delaunay triangulation algorithm for LiDAR points on multicore

architectures. Comput. Geosci. 2011, 37, 1355–1363. [CrossRef]
30. Che, E.; Olsen, M.J. Multi-scan segmentation of terrestrial laser scanning data based on normal variation analysis. ISPRS J.

Photogramm. Remote Sens. 2018, 143, 233–248. [CrossRef]
31. Zhang, J.; Wu, G.; Hu, X.; Li, S.; Hao, S. A parallel k-means clustering algorithm with mpi. In Proceedings of the IEEE 2011

Fourth International Symposium on Parallel Architectures, Algorithms and Programming, Tianjin, China, 9–11 December 2011;
pp. 60–64.

32. Bodenstein, C.; Gotz, M.; Riedel, M. Analysis of 3D point clouds using a parallel DBSCAN clustering algorithm. Innov.
Supercomput. Dtschl. 2015, 3, 33–35.

33. Walker, D.W.; Dongarra, J.J. MPI: A standard message passing interface. Supercomputer 1996, 12, 56–68.
34. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
35. Apache Hadoop. 2021. Available online: https://hadoop.apache.org/ (accessed on 1 September 2021).
36. Apache Spark. 2021. Available online: https://spark.apache.org/ (accessed on 1 September 2021).
37. Brédif, M.; Vallet, B.; Ferrand, B. Distributed dimensionality-based rendering of LiDAR point clouds. Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci. 2015, XL-3/W3, 559–564. [CrossRef]
38. Liu, K.; Boehm, J.; Alis, C. Change detection of mobile LIDAR data using cloud computing. In International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives; International Society of Photogrammetry and
Remote Sensing: Prague, Czech Republic, 2016; Volume 41, pp. 309–313.

39. Liu, S.; Tang, J.; Wang, C.; Wang, Q.; Gaudiot, J.L. Implementing a cloud platform for autonomous driving. arXiv 2017,
arXiv:1704.02696.

40. Alis, C.; Boehm, J.; Liu, K. Parallel processing of big point clouds using Z-Order-based partitioning. In International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives; International Society of Photogrammetry and
Remote Sensing: Prague, Czech Republic, 2016; Volume 41, pp. 71–77.

41. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
42. Goldberg, D.E.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [CrossRef]
43. Zlatanova, S.; Nourian, P.; Gonçalves, R.; Vo, A. Towards 3D raster GIS: On developing a raster engine for spatial DBMS. In

Proceedings of the ISPRS WG IV/2 Workshop Global Geospatial Information and High Resolution Global Land Cover/Land Use
Mapping, Novosibirsk, Russian, 21 April 2016; pp. 45–60.

44. Wilhelmstötter, F. Jenetics: Java Genetic Algorithm Library (2019). 2019. Available online: http://jenetics.io (accessed on 30
August 2019).

http://dx.doi.org/10.1080/17538947.2016.1269842
http://dx.doi.org/10.1016/j.isprsjprs.2019.06.009
http://dx.doi.org/10.5194/isprs-annals-IV-4-W8-131-2019
http://dx.doi.org/10.1007/s11042-020-10139-6
https://www.fisheries.noaa.gov/inport/item/49891
http://dx.doi.org/10.3390/ijgi9060378
http://dx.doi.org/10.1061/(ASCE)0887-3801(2009)23:6(330)
http://dx.doi.org/10.1117/1.JRS.8.083576
http://dx.doi.org/10.1109/ICRA.2011.5980567
https://pdal.io/
http://dx.doi.org/10.1016/j.cageo.2011.01.008
http://dx.doi.org/10.1016/j.isprsjprs.2018.01.019
http://dx.doi.org/10.1145/1327452.1327492
https://hadoop.apache.org/
https://spark.apache.org/
http://dx.doi.org/10.5194/isprsarchives-XL-3-W3-559-2015
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1023/A:1022602019183
http://jenetics.io

Remote Sens. 2021, 13, 4437 27 of 27

45. Vo, A.; Lokugam Hewage, C. N.; Le Khac, N. A.; Bertolotto, M.; Laefer D. A parallel algorithm for local point density index
computation of large point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, VIII-4/W2-2021, 75–82. [CrossRef]

46. Chen, S.; Laefer, D.F.; Mangina, E. State of technology review of civilian UAVs. Recent Patents Eng. 2016, 10, 160–174. [CrossRef]
47. Albani, D.; Manoni, T.; Nardi, D.; Trianni, V. Dynamic UAV swarm deployment for non-uniform coverage. In Proceedings

of the 17th International Conference on Autonomous Agents and Multiagent Systems, Stockholm, Sweden, 10–15 July 2018;
pp. 523–531.

48. Zhou, Y.; Rao, B.; Wang, W. UAV Swarm Intelligence: Recent Advances and Future Trends. IEEE Access 2020, 8, 183856–183878.
[CrossRef]

49. Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G.; et al.
XSEDE: Accelerating scientific discovery. Comput. Sci. Eng. 2014, 16, 62–74. [CrossRef]

http://dx.doi.org/10.5194/isprs-annals-VIII-4-W2-2021-75-2021
http://dx.doi.org/10.2174/1872212110666160712230039
http://dx.doi.org/10.1109/ACCESS.2020.3028865
http://dx.doi.org/10.1109/MCSE.2014.80

	Introduction
	Background and Related Work
	LiDAR Flight Mission Planning
	Parallel Computing for LiDAR Data Analysis

	Methodology
	A Genetic Algorithm for LiDAR Flight Path Optimization
	A Beam Tracing Algorithm to Simulate Vertical Points Captured by a LiDAR Flight Path
	A Distributed Computing Strategy for Fitness Function Evaluation
	Multiple Evaluators—An Additional Level of Parallelism

	Results
	GA Optimization Results
	Performance Evaluation
	Lower Layer of Parallelization
	Upper Layer of Parallelization

	Discussion
	Conclusions
	
	References

