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Abstract: The research in this paper is concerned with the development of a continuous elevation
model in the coastal zones of inland waters. The source data for the creation of numerical terrain
models were data acquired by contemporary sensors, such as such as a single-beam echosounder
and an unmanned aircraft system. Different interpolation methods were tested in the study. A new
approach in the research field is an interpolation method based on the processing of datasets with
different degrees of spatial data reduction. The authors call it the Spatial Interpolation Method based
on Data Reduction (SIMDR). The choice of method is based on quantitative and qualitative analysis,
taking into account the type of interpolation and the method of geodata reduction. A proposal for the
practical implementation of the method involves script processing, which automates the processes of
modeling and error calculation.

Keywords: DTM; seabed; hydrography; UAV; topobathymetry; data reduction; spatial interpolation;
terrain modeling

1. Introduction

Increasing attention is being paid to the creation of elevation models of coastal zones,
in which the bottom is naturally combined with the terrain. In the literature, one can find
various cases of combined models, which are usually determined by the type of sensor used.
Ideally, the product is a continuous model, which requires the use of a topobathymetric
sensor. The product in this case is a point cloud from which a height model can be created.
Another case is the integration of models using different sensors. An example would be
the integration of UAV (Unmanned Aerial Vehicle) and USV (Unmanned Surface Vessel)
sensor data [1] or UAV and mobile laser scanner data [2]. The last option is the integration
of models from GIS (Geographic Information System) databases [3]. Taking into account
the variety of spatial data acquisition technologies, the creation of a uniform elevation
model often requires a customized approach due to the spatial distribution, extent, density,
or presence of areas with missing data [2].

Elevation and bathymetric data can be acquired from various sensors. Some of them
allow the acquisition of bathymetric and topographic data (LIDAR (Light Detection and
Ranging) and UAS (Unmanned Aircraft System)), and some of them only allow the acqui-
sition of bathymetric data (single-beam and multibeam echosounder). Data acquisition
techniques have their advantages and disadvantages. Usually, a sensor dedicated to ac-
quiring bathymetric and topographic data separately provides better quality data and
has fewer limitations. LIDAR sensors and UASs with multispectral sensors are examples.
The topographic and bathymetric LIDAR sensor has different pulse rate, flight altitude,
vertical and horizontal accuracy, vertical datum, resolution, footprint, swath, and data
processing [2]. On the other hand, the limitations of a UAS with an RGB (Red, Green, Blue)
camera usually include its dependence on water transparency, cloudiness, water ripples,
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or the obscuration of part of the water surface by trees [4]. Today, acoustic sensors, such
as single- and multibeam echosounders, are used to acquire bathymetric data. The data
acquired with this technology are used in the production of nautical charts, dredging, or
offshore installation works. Their application can also be seen in research and development
work related directly to the effects of wave and water levels on coastlines [5,6]. Currently,
acoustic sensors are the most accurate systems for acquiring depth of water data, and
models [7,8] generated from these measurement are used as references for other measure-
ment techniques besides acoustics [9,10]. In coastal zones, characterized by shallow depths,
a single-beam echosounder is most often used in combination with a floating platform,
such as a boat or an Unmanned Surface Vehicle [11]. The use of USVs will not always
be possible, due to very shallow depths or natural limitations in the form of submerged
and partially submerged aquatic plants, submerged plants with floating leaves, or various
marsh plants present in the shallow water zone. Other obstacles associated with shallow-
water measurements include the presence of local shallows or underwater obstructions,
such as submerged trees.

During the processing of spatial data, attention must be paid to data reduction. Mod-
ern surveying systems collect very large datasets belonging to Big Data. Their reduction is
necessary in the elaboration process [12–14], similar to the process of surface reconstruction
by triangulation. This method creates an irregular network of triangles, the vertices of
which are the measurement data. Given the dependence of the number of triangles on
the number of measurement points, their reduction is particularly important. A model
generated on a smaller set of data can more easily display and perform various spatial
analyses. According to Osowski [15], data reduction is a method of optimally representing
large quantities of data in a much smaller representation. The purpose of reduction is to
contain the core of information in a reduced volume of data. He also defines selection,
which is closely related to reduction. Osowski describes selection as the operation of
finding the optimal data representations for a specific task. Point sets can be reduced at
the data preprocessing stage (by reducing the number of observation sets through point
removal) or during numerical model generation (by interpolating point depths on grid
nodes) [16].

The use of interpolation techniques that create a continuous surface is also an impor-
tant consideration when generating numerical elevation models. Today, various interpola-
tion methods can be used to calculate heights in a GRID or TIN (Triangulated Irregular
Network) structure. These methods have been the subject of many studies, involving
datasets characterized by different densities or spatial distributions [8,17–21]. In the lit-
erature, we can find numerous examples of authors studying the influences of different
aspects, such as the interpolation method, resolution, data density, and slope, on the
construction of a numerical terrain model or a numerical bottom model. In his work, Des-
ment [22] evaluated the impact of different interpolation methods on, among other things,
the preservation of the shape of a topographic surface. Curtarelli [23] studied four spatial
interpolation methods for mapping the bathymetry of an Amazonian water body, and,
as the authors concluded, each method was able to map important bathymetric features.
Sterańczyk [24] investigated the effects of algorithms available in four different pieces of
software on the accuracy of DEM (Digital Elevation Model) models created from LIDAR
data. The authors of [25] compared four interpolation methods, concluding on the great-
est efficiency of the IDW (Inverse Distance Weighting) method. Habib [26] investigated
three deterministic interpolation algorithms used in the ArcGIS software—TIN, IDW, and
ANUDEM (Australian National University’s Digital Elevation Model)—to generate reliable
DEMs for large-scale mapping. Additionally, the authors also addressed the qualitative
evaluation of DTM (Digital Terrain Model) data. As Podobnikar [27] writes, the application
of the visual method depends on the knowledge and experience of the operator and the
visual inspection of the basic derivatives of the DTM focusses on the visualization of slope,
aspect, curvature, and terrain roughness. Łubczonek [28] examined the methods used
to build a numerical bottom model and determined the accuracy of the modeled surface
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depending on the interpolation algorithm used. In this paper, surfaces were modeled on
data of different densities using surfaces generated from mathematical functions (simulated
surfaces and datasets). Authors of [29] investigated the utility of UAV data reduction for
an urbanized area via random sampling using CloudCompare software. The authors used
kriging for spatial interpolation. On the other hand, in [30], a data reduction algorithm
was developed for large LIDAR datasets, wherein the study areas were flat land and land
with moderate inclination and steep slopes. Modeling was performed by the IDW method.
In contrast, the authors in [25] studied reduction via random sampling, data resolution,
and interpolation methods for a desert area of 13 by 13 m (micro topographic level), and
they pointed to IDW as an effective method. A shared characteristic of the above studies is
that, with a higher degree of data reduction, the surface approximation errors increased. In
our approach, we use different data reduction algorithms for modeling topobathymetric
surfaces and show that the approximation errors of elevation models can be reduced with
increased data reduction.

In this paper, the authors investigated the influence of three elements in the process of
creating a continuous bathymetric and topographic surface: data reduction, interpolation
technique, and the presence of areas with missing data (which is an innovative approach
for such studies). The final result is the proposal of a Spatial Interpolation Method based
on Data Reduction (SIMDR). The analyzed cases concern bathymetric data acquired with
a single-beam echosounder sensor (SBES), topographic data acquired with low-altitude
photogrammetry methods, and the occurrence of data gaps in both. The inability to
acquire data in this study was due to the very shallow depth and transparency of the
water, making it impossible to gather data with the bathymetric sensor or UAS. In addition,
filtering out land cover points and the processes of their development both resulted in
missing data, which should be considered during the process of developing height models
using interpolation techniques. The proposed methodology will be used during work
on the MORGAV project “Development of technology for acquisition and exploration of
gravimetric data of foreshore and seashore of Polish maritime areas” and can be applied
in practice during the development of coastal area models for inland waters. The testing
options include seven interpolation methods: triangulation [31], natural neighbor [32],
nearest neighbor, inverse distance to a power [33], kriging [34], the RBF (Radial Basis
Function) method [35], and minimum curvature [36]. Different degrees and types of data
reduction were also taken into account. The motivation for choosing these methods is their
implementation in many GIS software types and, particularly, those dedicated to creating
numerical terrain models. Despite the recommendation of a particular method, the operator
always encounters a problem in the choice of a particular one, especially in the current
era of changes in the methods of geodata acquisition, which now generate large datasets
with high density. The paper also pays attention to the correctness of terrain plasticity,
taking into account terrain microforms related to the correctness of surface reconstruction.
The practically developed models can be used in many applications. However, due to the
current data acquisition capabilities of smaller hydrographic units, UAVs will be employed.
The first of these is the development of better quality photogrammetric products that allow
more accurate data to be acquired. The more accurate the numerical elevation model, the
smaller the situational errors in objects imaged on the orthophotomap. In the analyzed
area, such objects may be dikes, coastlines, or vegetation. These materials can be used to
create and update topographic and navigational databases for inland navigation. In the
case of dikes, 3D spatial models and image data can be used for monitoring, especially in
areas where lower resolution images have lower photointerpretation potential. From the
point of view of inland navigation and dredging, it is important to determine the exact
depth. In the first case, this is related to navigation safety and involves depth mapping,
while in the second case, it involves the accurate calculation of earth masses. Accurate
elevation models can also be used in studies related to determining the impact of resolution
on gravimetric terrain correction [37]. Combined models allow for comprehensive analyses
that address both bathymetric and topographic features.
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2. Study Area and Materials

The study area included a section of Lake Dabie, located in Poland’s West Pomeranian
Province, along with an adjacent inland area. Lake Dabie is a shallow-water area with
an average depth of 2.61 m [38]. The maximum depth in the study area was 3.82 m. In
the direction of the shore, the depths decrease significantly. The bottom is characterized
by moderate regularity, and there is one depression and quite considerable shallowing
in the strip adjacent to the shoreline. The surrounding land area is characterized by a
flat surface. Approximately 5 m from the shoreline, there is a floodbank with a hardened
surface covered with mineral aggregate. On the water side, part of the site is overgrown
with vegetation characteristic of aquatic areas, dominated by reeds. On the land side, part
of the site is overgrown with shrubs (medium vegetation) and grass (meadow area). Single
trees are also present. The geographical location of the study area is illustrated in Figure 1.
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Figure 1. Study area: (a,b) location of the study area, (c) detailed survey area with
measured elevations.

Topographic data were collected using the UAS platform. The flight took place
on 24 September 2020. The weather conditions were moderately good, partly sunny
with wind gusts. The overcast was variable, from partial to total. Before the flight, the
photogrammetric reference network was stabilized, and consisted of 6 points distributed
evenly over the data processing area. Three points of the photogrammetric matrix were
located on the hard surface (on the embankment), two in the area covered with low
vegetation, and one on the beach. Control points were also measured to verify the height of
the obtained terrain model, and these were used to calculate the errors as an independent
set of measurements. The flight was performed at an altitude of 120 m with a DJI Phantom
4 Pro drone using a polarizing filter according to a predesigned flight plan. During the
flight, 111 images were acquired, and the size of the compiled area was 0.109 km2. The last
two rows of photos were acquired over a water area. The images from these series were
not calibrated (merged with the other images) due to the lack of unambiguous binding
points, and therefore, the percentage of calibrated images is 64%. The basic parameters of
the equipment used and the data acquired are also summarized in Table 1.
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Table 1. UAS parameters and basic data related to image processing.

UAS DJI Phantom 4 Pro

Satellite Positioning Systems GPS/GLONASS

Sensor 1′′ CMOS, effective pixels: 20 M

Photo Format JPEG

Flight Altitude 120

Front/Side Overlap 80%/70%

Percentage of Calibrated Images 64%

Georeferencing (mean RMS error of 6 GCP) 1.1 cm

Ground Control Points RMS error (m) X = 0.7 cm, Y = 0.5 cm, Z = 2.3 cm

Coverage Area 0.109 km2

Number of Photos 111

The low-level data processing of the acquired images was performed in the PIX4D
Mapper, a piece of software dedicated to this type of data. The preprocessing of the data was
performed to obtain products such as an automatically classified dense point cloud, which
was further processed. Georeferencing was performed based on the points measured with
the GNSS–RTK (Global Navigation Satellite Systems–Real Time Kinematic) receiver, and the
obtained errors are shown in Table 1. A further processing step was performed in the Global
Mapper software, in which a qualitative assessment of the automatic photogrammetric
classification of the point cloud was carried out and a manual classification was performed.

In order to obtain bathymetric data, a Hydrograf XXI survey boat was used. This
vessel, with a shallow draft, is dedicated to shallow water measurements, especially in
inland waters. In the first stage, 79 survey lines were set at a distance of 5 m from one
another within the designated survey area. The average depth in the area was 2.74 m.

The survey setup consisted of a Kongsberg EA400 single-beam echo sounder operating
at two frequencies, 33 kHz and 200 kHz, with the second frequency used to generate a
numerical bottom model from the acquired depths. A Trimble R6 GNSS receiver operating
with RTK corrections derived from the VRSNET base station was used as the positioning
system. Additionally, in order to eliminate the effects of weather conditions and wave
movement, the IMU (Inertial Measurement Unit) SMC-108 motion sensor was used for roll,
pitch and heave motion correction. The parameters of the measuring equipment (Table 2)
allowed for a total measurement accuracy within the special category defined by the IHO
(International Hydrographic Organization) in specification S-44 [39]. All data integration
and acquisition was performed in the Hypack hydrographic software. Data processing
was performed in the SBMAX64 module. First, after the data were imported, navigational
data representing the boat’s movements through the survey profiles were analyzed. In
the next step, the motion sensor data were subjected to verification. The main focus of
the analysis was the depth data. Incorrect readings were eliminated using manual data
processing. In most cases where the correct depth reading was uncertain, raw data from
digital echograms were used. Before exporting to the ASCII file, the XYZ dataset was
corrected via the vertical correction of water level, employing the water level gauge in
Szczecin harbor.

The spatial distribution of the UAS and SBES data after processing and their statistical
information are illustrated in Figure 2. On the left, points obtained with the SBES are
shown in blue. On the right, points acquired with the UAS are shown in orange. The
final sonar dataset contains 1,019,276 measurement points, and the UAS dataset contains
101,035 points. Negative values of UAS data in the study area have resulted from local
depressions (there are water ditches near the dike from the land side).
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Table 2. SBES parameters and basic data associated with bathymetric data processing.

SBE Model Kongsberg EA 400

Frequency 33/200 kHz

Satellite Positioning System Trimble R6 GPS/GLONASS

GNSS Positioning Accuracy H: 8 mm + 0.5 ppm RMS | V: 15 mm + 0.5 ppm RMS

Motion Sensor IMU SMC—108

Roll and Pitch/Heave Accuracy 0.03◦ RMS/5 cm or 5%

Coverage Area 160,166 m2
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3. Methods

The input data for this study were two sets of measurement data acquired with a
single-beam echosounder and using an UAS, as described in Section 2 (study area and
materials). After processing the measurement data, their reduction was carried out, and
the result was 39 sets of points with different scales of reduction for data acquired using
SBES and UAS separately.

The data in this form were further processed by adding an additional set representing
the shoreline to each set of points. This set was created by generating shoreline points at
1 m intervals in the vector data. The purpose of modifying the datasets was to take into
account the natural constraint of the modeled surface, which was the shoreline. Modeling
was not carried out on combined bathymetric and topographic datasets because, in the
shoreline area, point search algorithms can create mixed datasets from which the value
at a grid node is calculated. In this case, the height of the topographic area or the depth
of the bathymetric area can be calculated from topographic and bathymetric points. This
distorts the plasticity of the model, which is different for the bottom and the terrain. The
creation of separate models ensures that the shape of the topographic surface is created
from the topographic points, while the shape of the bottom surface is created only from the
bathymetric points. The shoreline in this case is a natural link between the models.

In the next step, surfaces were created in the GRID structure with 1 m resolution.
The authors used the following interpolation methods: triangulation (referred to as TRI),
natural neighbor (referred to as NAN), nearest neighbor (referred to as NEN), inverse
distance weighted to a power (referred to as IDW), kriging (referred to as KRI), the radial
basis function method (referred to as RBF), and minimum curvature (referred to as MIC).
In addition, in regard to searching in the interpolation process, two basic methods were
investigated: sectorless and four-sector. The sectorless method consists of searching for the
measurement points used for interpolation from the nearest neighborhood of a grid node.
The selection of points is based on the calculated distance between a measurement point
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and a grid node. In the case of, for example, interpolation from the 16 nearest measurement
points, those with the shortest distances between them are selected. The four-sector method
works in a similar way, except that the selection of points takes place separately in each
sector. The method used in this study divides the space around a grid node into four
sectors. Geometrically, this is achieved by drawing two perpendicular lines intersecting at
the grid node. In this way, it is possible to force a search for points in each sector. If, for
example, we use a sector search, indicating four points per sector, the search algorithm
will search for four points in each sector. In total, we will derive an interpolation from
16 measurement points, but these will be evenly distributed around the interpolated point.
In the case of a sectorless search, the distribution of measurement points can vary, which
can affect the quality of the modeled surface. In both cases, in order to ensure that the
desired number of points is searched, the search radius was set at 150 m. In the first stage
of the research, the selection of interpolation variants was made on the basis of the quality
analysis. Then, the obtained results were subjected to a visual evaluation of the shape of the
modeled surface. This approach made it possible to exclude those options that prevented
the correct reconstruction of the surface and to determine the final variants of the study
related to the interpolation methods.

In the second stage, the final study options were determined. Qualitative and quanti-
tative analyses were conducted for each modeled surface. For the quantitative analysis,
errors were calculated using test points, which constituted an independent set of mea-
surements. Test points were acquired using the GNSS–RTK technology. In the case of the
whole water area, a test point was selected from the main bathymetric measurement set,
while in the water area with missing data and the land part, measurements were made
using a GNSS–RTK geodetic receiver. These points provided the reference measurements
for calculating the deviations from the modeled surfaces, from which the absolute values
of the mean and maximum errors were calculated. For the bottom models, errors were
analyzed for the whole area using SBES data with 19 test points (mean value: −2.70 m;
minimum: −3.70 m; maximum: −1.16 m) and for the area with no data using 14 test points
(mean value: −0.70 m; minimum: −0.96 m; maximum: −0.40 m). In the UAS data, there
were nine test points (mean value: 1.05 m, minimum: −0.27 m, maximum: 2.09 m).

In the third stage of the research, different methods of combining models based
on raster data mosaicking techniques—bathymetric and topographic—were analyzed.
These analyses provided our final conclusions. The research methodology is presented
schematically in Figure 3.
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Data with different spatial distributions and point densities were used for this study.
Bathymetric data were characterized by a regular spatial distribution, which resulted from
the methods we used for their acquisition from the planned survey profiles. The UAS
datasets were generated from aerial photographs as a point cloud. A characteristic of the
data used is their dispersed spatial distribution, which makes the surface interpolation
process more difficult [17]. In addition, smaller areas with missing points belonging to
land cover (high and medium levels vegetation) were created through data processing
after filtering out points belonging to land cover. The lack of ground data in areas of dense
vegetation is related to the specifics of obtaining these data; a dense point cloud is created
on the basis of photographs, so there is no possibility of obtaining height information
about parts of the ground that are not visible on the images (under dense vegetation,
buildings). Data were also lacking in a narrow strip near the shoreline. An important area
in the interpolation process was the shallow-water area. These shallow depths made it
impossible to take measurements with a hydrographic vessel; as such, here, the data had to
be interpolated based on extreme measurement points, which comprised shoreline points
and bathymetric data. In addition, the surface characteristic elements were analyzed. For
the bathymetric model, these were the slope of the bottom surface and the depression, and
for the topographic model, these were the floodwall and the areas of medium and low
vegetation. All the mentioned datasets and surface elements are presented in Figure 4.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 29 
 

 

 
Figure 4. Analyzed test areas. 

The datasets used during the study were reduced using the Reduce Point Density 
method, which is implemented in ArcGIS software. This reduces the number of points in 
the sets depending on the Nominal Start Thinning Radius (R) parameter and the method 
of selecting individual points. The first parameter specifies the radius of the circle within 
which a particular point will be selected. The remaining points are reduced. The second 
parameter is the selection method. Two variants were used in this research: MAX and 
MIN. In the first, the reduction is based on retaining the data with maximum values (MAX 
variant), while in the second, the minimum values are retained (MIN variant). Geodata in 
the form of points can be transformed via the following algorithms [40]: 
• Aggregation—combining more points into one; 
• Simplification—removing objects in order to properly present those remaining; 
• Typography—retaining the predominant source symbolization of point objects while 

removing points; 
• Regionalization—drawing a boundary around a group of point objects and creating 

a new surface object from it; 
• Selective omission—selecting objects that are more significant while omitting objects 

of lesser significance. 
The used method can be classified as selective omission. In this case, points in a 

certain area (circle) with the smallest or largest Z values were selected. The data were 
reduced over a range of R parameter values, from 0.2 m to 4 m, with an interval of 0.1 m. 
This gave a total of 39 sets of points, with different scales of reduction for data acquired 
using SBES and UAS for the two variants MIN and MAX. In total, 156 reduced datasets 
were obtained for further analysis. Figure 5 shows an example of reduction for data 
acquired using SBES. 

 
(a) 

Figure 4. Analyzed test areas.

The datasets used during the study were reduced using the Reduce Point Density
method, which is implemented in ArcGIS software. This reduces the number of points in
the sets depending on the Nominal Start Thinning Radius (R) parameter and the method
of selecting individual points. The first parameter specifies the radius of the circle within
which a particular point will be selected. The remaining points are reduced. The second
parameter is the selection method. Two variants were used in this research: MAX and
MIN. In the first, the reduction is based on retaining the data with maximum values (MAX
variant), while in the second, the minimum values are retained (MIN variant). Geodata in
the form of points can be transformed via the following algorithms [40]:

• Aggregation—combining more points into one;
• Simplification—removing objects in order to properly present those remaining;
• Typography—retaining the predominant source symbolization of point objects while

removing points;
• Regionalization—drawing a boundary around a group of point objects and creating a

new surface object from it;
• Selective omission—selecting objects that are more significant while omitting objects

of lesser significance.
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The used method can be classified as selective omission. In this case, points in a certain
area (circle) with the smallest or largest Z values were selected. The data were reduced
over a range of R parameter values, from 0.2 m to 4 m, with an interval of 0.1 m. This gave
a total of 39 sets of points, with different scales of reduction for data acquired using SBES
and UAS for the two variants MIN and MAX. In total, 156 reduced datasets were obtained
for further analysis. Figure 5 shows an example of reduction for data acquired using SBES.
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Figure 5. Example of reduced sets of SBES data: (a) raw SBES data, (b) reduced datasets with
R = 0.2 m, (c) reduced datasets with R = 1 m, (d) reduced datasets with R = 2 m, (e) reduced datasets
with R = 4 m.

The figure above shows the spatial distribution of the input data and the reduced
sets with radius values (0.2 m, 1 m, 2 m, and 4 m) specifically selected for retaining the
minimum values. The initial set contains 101,035 points, with a minimum depth of−3.83 m,
a maximum depth of −0.87 m, and an average depth of −2.79 m. The reduction results for
the SBES data with the main characteristics are shown in Table 3.

Table 3. The reduction results for SBES data.

Raw Data R = 0.2 m R = 1 m R = 2 m R = 4 m

Number of points 101,035 94,151 27,544 14,339 7245

Minimum depth (m) −3.83 −3.83 −3.83 −3.83 −3.83

Maximum depth (m) −0.87 −0.87 −0.88 −0.88 −0.89

Average depth (m) −2.79 −2.81 −2.84 −2.85 −2.86

Figure 6 shows an example of reduced data acquired with the UAS system. The
example uses the same parameters as Figure 5.
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Figure 6. Example of reduced sets of UAS data: (a) raw UAS data, (b) reduced datasets with
R = 0.2 m, (c) reduced datasets with R = 1 m, (d) reduced datasets with R = 2 m, (e) reduced datasets
with R = 4 m.

The initial set contains 1,019,276 points, wherein the minimum height is −0.59 m, the
maximum height is 2.39 m, and the average height is 0.32 m. The reduction results for the
UAS data along with their characteristics are shown in Table 4.

Table 4. The reduction results for UAS data.

Raw Data R = 0.2 m R = 1 m R = 2 m R = 4 m

Number of points 1,019,276 405,624 27,472 9107 3000

Minimum hight (m) −0.59 −0.59 −0.59 −0.59 −0.59

Maximum hight (m) 2.39 2.39 2.38 2.21 2.12

Average hight (m) 0.32 0.29 0.32 0.32 0.28

A total of 156 reduced datasets were obtained for further analysis. Different surface
interpolation methods were selected for the study. These included parameter-free, param-
eter setting, local, and global surface interpolation methods. For methods interpolating
the surface locally, the effect of the search method was also investigated. Automated
interpolation was performed using the Surfer 20 software with a scripting language. The
methods, along with a brief description and the parameters chosen here, are summarized
in Table 5.
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Table 5. Interpolation methods used in the research.

Method

Interpolation
Type

Point Search Type for
Local Methods

Total Number of Points
Used for Interpolation Method Parameters Used Number of Models Developed

Including All Options

Global Local Sector Less 4 Sectors

TRI * - - - All - 156

NAN * - - - All - 156

NEN * - - - All - 156

IDW - * * * 8, 16, 24, 32, 40, 48, 56, 64, 72 Weighting Power: 2 2808

KRI - * * * 8, 16, 24, 32, 40, 48, 56, 64, 72
Semivariogram Model: Linear

Kriging Type: Point, Polynomial Drift Order: 0
(Ordinary Kriging)

2808

RBF - * * * 8, 16, 24, 32, 40, 48, 56, 64, 72
Basis Kernel Type: Multiquadric, Shape Factor (R2)

calculated according to the formula: (length of diagonal of
the data extent)2/(25 * number of data points)

2808

MIC * - - - ALL
Maximum Residual: 0.004 (SBES), 0.003 (UAS). Maximum
Iteration: 100,000. Internal Tension: 0. Boundary Tension: 0.

Relaxation Factor: 1.
2808

* type of interpolation and interpolation options of of reaearched methods.
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4. Research

In the first stage of the research, all modeled surfaces were analyzed. Preliminary
qualitative analysis, consisting of the assessment of the correctness of the modeled surface,
allowed us to reject some of the options. In this respect, the locally interpolating methods
(IDW, kriging, RBF) without data search sectors were found to have low usefulness. The
reason for this is the poor surface representation in areas with few data, which manifested
in the form of artifacts. A comparison of models used in the area without bathymetric data
is shown in Figure 7. A color-coded depth scale is used for each height within the model. As
can be seen, in the center of the area without bathymetric data, the surface is characterized
by a clear lack of continuity. The next step was to determine the number of points used
in the local interpolation. In this respect, the plasticity of the terrain representation was
used as a criterion of correctness. While the number of points was found to have less
influence on the surface reconstruction in the area with data, the number of points was
important in areas with no data. Based on a visual assessment, 12 points per sector was
selected as the correct number of points, resulting in an interpolation of 48 survey points in
total. Following visual comparative analysis, it is also possible to estimate the qualitative
differences in surface modeling using sectorless and sector search points. In the case of
sector searching, the surface in the no-data area is characterized by continuity, i.e., there
are no artifacts representing sudden depth changes.
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Figure 7. Comparison of surface modeling in the area with a lack of data using sectorless and sector
search options.

In interesting cases, problems with complete surface modeling via the natural neigh-
borhood method were noted. For the UAS data with a very small degree of data reduction
(level 0.2–1.0), pixels were found in the surface with missing data (Figure 8). In this case,
we also used a color-coded depth scale for each height in the model. The lack of data
was particularly evident on the flood embankment as well as in the upper part of the
area. Therefore, this method was not considered further in the study. Other methods
that were not qualified for further study were the minimum curvature method and the
nearest neighbor method. These methods generated artifacts in the area with no SBES data
(Figure 8).
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natural neighborhood method (marked in pink), (b) artifacts in the area missing bathymetric data
under the minimum curvature method, (c) artifacts under the nearest neighbor method.

In summary, after the first stage of research, the analysis of interpolation options
using sectorless point search and natural neighborhood, nearest neighbor and minimum
curvature methods was abandoned. The triangulation, kriging, RBF, and IDW methods
were qualified for the next stage of research. Of the rejected methods, natural neighborhood
can also be considered, as no deficiencies were seen in this method’s modeled surface, and
it showed a higher degree of data reduction. However, this requires additional qualitative
analyses of the modeled surface in terms of the data gaps present.

The second stage of the research involved quantitative and qualitative analysis. The
quantitative analysis was based on a comparison of mean and maximum errors related
to the four methods. Basing on the graphs for all the samples, in the final stage, the
quantitative results of four levels of data reduction—0.2, 1, 2, 3, and 4—were compiled. The
choice of these levels was preceded by the analysis of errors via graphs constructed for all
the samples, which allowed us to select representative results reflecting the characteristic
relations between method and level of data reduction. The errors are summarized in
Figures 9–11.

Analyzing the SBES data, it can be concluded that the errors increase with data
reduction for both MIN and MAX methods. The errors have smaller values under the
MIN reduction method. The mean and maximum errors both differ depending on the
interpolation method. The highest values are derived from the inverse distance method,
followed by triangulation, kriging, and the RBF method. It should be mentioned here that
the errors for each variant differ within the range of about 1 cm, which may be a negligible
value when choosing a method. Greater differences become apparent in the case of the
maximum errors, which take much smaller values under the MIN reduction method. The
mean values for all trials are 47% smaller (2 cm). Under the MIN method, on the other hand,
the mean errors are 17% (0.01 cm) smaller, which in principle could also be a negligible
value. Another observation is that, under the MIN method, the maximum errors derived
by the kriging and RBF methods change slightly from 1 cm to 3 cm as the level of data
reduction increases. According to the quantitative criterion, the RBF and kriging methods
perform best.
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For UAS data, a linear increase in the mean and maximum error values can be observed
under the MAX reduction method. The relationship is slightly different for data reduction
via the MIN method. In this case, a decrease in error values up to a reduction rate of
2 can be observed, followed by an increase. This applies to the values of both mean
and maximum errors. Comparing the errors for the MAX and MIN methods, a similar
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relationship can be observed as in the SBES data—the errors are smaller under the MIN
reduction method. In regard to the MAX reduction method, the best results can be achieved
using the triangulation and kriging methods, while for the MIN reduction method, the
RBF and kriging methods are best. By far the worst results are obtained with the inverse
distance method, especially for the MIN method. Smaller errors can be obtained with the
MIN reduction method, with the average errors reduced by 27% (6 cm) and maximum
errors reduced by 29% (22 cm).

For the area of the water body with no data, the results for all levels of reduction are
similar, meaning its influence is practically negligible. It can also be seen that the average
errors for all samples are much larger than for the area with data, at 42 cm. In contrast, for
the SBES data in the area with data, this value is 1 cm, while for the UAS data, it is 17 cm.
It can be concluded that the best results can be achieved using the triangulation method,
followed by kriging and RBF (comparable results) and then the inverse distance method.
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The next step during the research was a qualitative analysis of the previously selected
models. The modeled surfaces are shown in Figures 12–19. DBM is the Digital Bottom
Model, DTM is the Digital Terrain Model, MIN and MAX denote the data reduction
methods, the numbers next to MIN and MAX denote parameter of reduction (R), and a
colored depth scale is applied to the surface models. Figure 12 shows the surfaces created
from the SBES data using the triangulation method. Each of the created models presents a
smooth surface with correct terrain plasticity. However, some of the areas exhibit profile
lines related to the source data, which make the perception and interpretation of the created
models easier. The terrain slopes are modeled correctly. In the area lacking data, a surface
was created based on elevation values derived from polygon vertices. Due to the lack of
available data in this area, the correctness of the created surface cannot be assessed, but the
visual appearance of the model is acceptable. The impact of reduction for this model and
this type of data is negligible.
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Figure 13 shows surfaces created from photogrammetric data derived from UAS using
the triangulation method. First, it is worth noticing that both the type of reduction (MIN,
MAX) and its level (0.2, 1.0, 2.0, 4.0) have a significant impact on the final surface obtained.
The level of reduction has a significant impact on the visual perception and generalizability
of the final model. The type of reduction has an influence on elevation modeling, especially
in the area with vegetation cover (low and medium). Models obtained with the MIN
method are rougher. It is also important to note the modeling of the embankment, which
becomes increasingly fractured as the input data decreases. Areas of high vegetation, i.e.,
small number of ground points, were modeled slightly differently on each of the analyzed
models, with the most correct modeling offered by the MAX 4.0 method. All models
obtained with this method are plastic and interpretable; the models lack artifacts and
other deformations.
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Figure 14 shows the surfaces created from the SBES data using the inverse distance
method. Qualitative analysis was performed on models with four-sector interpolation
using 12 points per sector. The overall plasticity of the terrain is correct but becomes
worse as the level of reduction increases; at the highest reduction, and especially at points
of depression, small artifacts (short horizontal lines) are visible, making interpretation
difficult. The representation of the area with missing data varies with the level of reduction.
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The higher the degree, the smoother the area of missing data. Under the MIN method, the
nearshore area (near the line of missing data) is rougher.
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Figure 14. Comparison of DBMs for IDW.

Figure 15 shows the surfaces created from the UAS-derived data using the IDW
method. A qualitative analysis was performed on models with four-sector interpolation
using 12 points per sector. The effect of the level of data reduction on the results obtained
is significant. High reduction eliminates characteristic terrain forms. The MIN method
with a reduction level of 4.0 causes significant terrain deformations, which make correct
interpretation of the surface impossible. The results obtained with the MAX method for
the same degree of reduction are significantly better, although the representation of the
dike is also incorrect in this case. For small levels of reduction, the terrain plasticity values
are correct—smoother for the MAX method, rougher for the MIN method.
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Figure 15. Comparison of DTMs for IDW method.

Figure 16 shows the surfaces created from the SBES data using kriging methods. The
qualitative analysis was performed on models with four-sector interpolation, 12 points
per sector. The MIN and MAX methods produce very similar results when modeling
surfaces from the profile data. The modeling is also very similar when performed on
data with different levels of reduction. The obtained models are plastic and allow for
good interpretation.
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Figure 18 shows the surfaces created from SBES-derived data using the RBF method. 
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Figure 16. Comparison of DBMs under the kriging method.

Figure 17 shows surfaces created from the UAS data using the kriging method. Qual-
itative analysis was performed on models with four-sector interpolation, 12 points per
sector. The main difference between the MIN and MAX methods is the occurrence of
greater terrain roughness in coastal areas and average vegetation in the MIN method; the
MAX method produces a smoother surface. There is a considerable loss of terrain detail at
a high reduction level, which is most visible in the embankment area. The overall plasticity
of the modeling is correct.
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Figure 17. Comparison of DTMs under the kriging method.

Figure 18 shows the surfaces created from SBES-derived data using the RBF method.
There is little difference between the MIN and MAX reduction methods; the most noticeable
differences appear at the high reduction level (4) in the area bordering the missing data
area; there is greater roughness under the MAX method. At a lower level of reduction, the
changes between MIN and MAX are unnoticeable. The lack of reduction has the greatest
effect on the modeling of the area with missing data and the boundary area. The plasticity
of the area is correct.
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Figure 18. Comparison of DBMs under the RBF method.

Figure 19 shows the surfaces created from the UAS data using the RBF method. The
qualitative analysis was performed on models with four-sector interpolation with 12 points
per sector. This method provides very similar results to the kriging method for this dataset.
The main difference between the MIN and MAX methods is the presence of greater terrain
roughness in the coastal areas and medium levels of vegetation in the MIN method; the
MAX method also provides a smoother surface. The plasticity of the modeling is correct;
there is a loss of details with the increase in data reduction. The area lacking data is
modeled correctly—a smoother surface is obtained with a higher level of data reduction.
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The qualitative analysis considering the topographic surface elements is summarized
in Appendix A (Qualitative analysis for surfaces created from SBES data) and B (Qualitative
analysis for surfaces created from UAV data). Based on the qualitative analysis, it can
be concluded that the modeling of SBES data is achieved comparably well between the
triangulation, kriging, and RBF methods. Only the models obtained via the IDW method
give slightly worse results, which is reflected in the formation of artifacts at the higher
levels of data reduction on the higher parts of the bottom’s slope. In the case of triangula-
tion, a tendency toward the slight mapping of profiles was noted, perhaps related to the
interpolation technique’s preserving of the source survey points in the structure. Similar
conclusions can be drawn from the UAS data. All the methods—triangulation, kriging, RBF,
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and IDW with sector searching—provided visually correct surfaces. However, it should be
noted that the IDW method again performed the worst with the given level of reduction
(above the second degree can result in a significant loss of detail in terrain microforms).
The triangulation method, on the other hand, performed less well in terms of creating a
uniform surface in the area lacking UAS data. The MIN reduction type produced a rougher
surface. Based on the qualitative analysis, it can be concluded that the methods produce
comparable qualitative surfaces, but artifacts can be identified, as is well demonstrated
by the IDW method. This method tends to produce artifacts and lose significant detail
at higher levels of data reduction. In conclusion, visual analysis should be supported
by results obtained from quantitative analysis, and the choice of the appropriate method
should be made accordingly.

Combining Models

Models were developed separately for bathymetric and topographic data, and, there-
fore, did not overlap. The option of combining models in overlapping areas was omitted in
this case; therefore, the effectiveness of three resampling methods was evaluated: nearest
neighbor, bilinear interpolation, and cubic convolution. Here, the merging line was not
recognizable, which qualifies all the methods for resampling this type of raster. Interpo-
lation within the boundaries of the area is important in this case, and this was achieved
by inputting the corresponding shapefile. In this case, the area outside the polygon had
the status of “No Data”. A 2D illustration of the combination of models using the kriging
method (four-sector search, 12 points per sector, minimum reduction method at the 2 m
level) is given in Figure 20, and a 3D view is given in Figure 21.
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5. Discussion

The aim of the study was to develop a combined bathymetric and topographic model.
As can be seen, the choice of interpolation method and the degree of data reduction are
not straightforward. As far as interpolation methods are concerned, various studies can be
found identifying the best. However, it is important to realize that each data type has a
different density and may have a different spatial distribution, and so a different method
may be required in each case. The research conducted in this paper exemplifies this. For
the SBES data, the differences in the errors obtained are so insignificant that practically any
method can be used. In the case of UAS data, the best results can be obtained using the
RBF and kriging methods, while in the case of a body of water without bathymetric data,
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the triangulation method is favored. Quite clearly, the IDW method can be abandoned,
as it gives larger errors and is more prone to artifacts and significant losses of detail with
greater degrees of data reduction. Based on these observations, the question can be raised
as to whether there is really a universal method. Certainly, the choice of such a method will
entail some compromises. Therefore, a qualitative analysis was performed to evaluate the
methods, seeking to determine the best method via the correctness of the plasticity of the
reconstructed surface. An incorrectly created surface can lead to misleading conclusions
or the qualification of artifacts created by the method as surface microforms. Given the
final results, the authors decided not to choose a universal interpolation method, and they
selected a method on the basis of the results of the modeling process. This is particularly
relevant given the results derived using the MIN reduction method for UAS data. In this
case, as the reduction increased, the errors started to decrease up to the 2 m reduction level
and then started to increase. Would such a relationship occur in a similar but different
dataset? It is difficult to answer this question, and so it is reasonable to employ automated
data processing and the automated selection of an appropriate method and degree of data
reduction. Such a process can be implemented using scripting programming languages.
As can be seen in the results of the study, such a process should be carried out separately
for bathymetric and topographic data, due to the different levels of reduction that can
minimize the errors obtained by specific interpolation methods.

The proposed method was developed for data obtained from a small area, which
typically resulted from the operational limitations of the measuring vehicles used. How-
ever, taking into account the similar structure of data obtained by modern remote sensors,
such as topobathymetric LIDAR, i.e., high-density sets with a regular or scattered spatial
distribution, it is possible to use the method for other types of areas, including those with
a larger size. The proposed calculation algorithm includes a qualitative and quantitative
assessment module; hence, when testing the method on other areas with different topo-
graphic features, it is possible to determine whether the method can be used to develop
numerical height models. The only limitations are the test points, the measurement of
which in the case of larger areas may be problematic and, therefore, may exclude the
application of the proposed solution.

6. Conclusions

Based on the results obtained, the authors propose an automated surface modeling
method, which they have called the Spatial Interpolation Method based on Data Reduction
(SIMDR). Based on their analysis, the number of samples can be reduced using three
interpolation methods—triangulation, kriging, and RBF. If it is necessary to preserve the
survey data in the structure of the elevation model, the triangulation method should be
chosen. In the process of surface modeling, the datasets should be prepared for a reduction
level from 0.2 to 4 m using the MIN method, with an interval of 1, starting from the value
of 0.2. The proposed method also allows for the precise selection of the data reduction level
or intervals. The proposed process is presented below in the form of three steps:

Step 1—Preparation of the datasets

1. Reduce data by MIN method at 1 m interval from 0.2 to n, where the proposed starting
value is 4;

2. Add the shoreline points with height values at the 1 m interval to the SBES and UAS
datasets prepared in step 1.

Step 2—Modeling

1. Perform modeling process via three methods, triangulation, kriging, and RBF;
2. Create 3D surface models and relief drawings for each option (needed for

qualitative analysis);
3. Calculate mean and maximum errors on the test dataset (needed for

quantitative analysis).
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Step 3—Analysis and development of the final model

1. Select the reduction level and the bathymetric surface model for which quantitative
and qualitative errors are the smallest;

2. Select the reduction level and the topographic surface model for which quantitative
and qualitative errors are the smallest;

3. Merge the selected models.

On the basis of the research carried out, it can also be concluded that almost no method
can provide certainty about the correctness of the construction in areas without data. There
will be no problem in the case of planar surfaces, but for the area of a body of water with no
data, where there is a change in the shape of the surface due to shallowing, relatively large
errors were obtained in comparison with the errors in an area assessed via bathymetric
data. The elevation data in such an area should certainly be regarded as uncertain, and
the only way to create a correct model is to measure the real values. It should also be
realized that this will not always be possible. The reason for this may be the presence of
aquatic vegetation (submerged or partially submerged), which precludes measurement
via unmanned units such as ASVs (Autonomous Surface Vehicles) or UASs. The above
method can be used practically for modeling combined surfaces in coastal zones, using
data of different types, characterized by different spatial distributions or data densities. It
is also possible to obtain smaller errors via the reduction of data, which may be important
in cases related to the development of high-accuracy models. The research also points to
three specific methods (triangulation, kriging, and RBF) that can be used in the process of
geographic surface reconstruction, which significantly reduces the number of analyses to
be performed and the choices regarding the method that gives the best results.
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Appendix A

Table A1. Qualitative analysis for surfaces created from ABES data.

Interpolation Surface
Plasticity

Roughness/Smoothness Artifacts,
Deformations

Shape on Profiles Slope Depression Interpolation in the Area of
Lack of Data

The Change Rate as
the Reduction

Increases

TRI MIN good 4 none slightly visible
profiles

correct correct correct by visual evaluation,
sharp edges

unnoticeable

TRI MAX good 4 none slightly visible
profiles

correct correct correct by visual evaluation,
sharp edges

unnoticeable

IDW MIN good 3 visible at high
reduction rate on

high-slope
surfaces

nearly invisible
profile

correct correct, but with a
high degree of

reduction, there
are small artifacts

correct,
impact of sectoral search,

number of points in search,
and level of reduction

noticeable, most
significantly in

high-slope areas

IDW MAX good 4 visible at high
reduction rate on

high-slope
surfaces

nearly invisible
profile

correct correct, but with a
high degree of

reduction, there
are small artifacts

correct,
impact of sectoral search,

number of points in search,
and level of reduction

noticeable, most
significantly in

high-slope areas

KRI MIN good 4 none nearly invisible
profile

correct correct correct,
impact of sectoral search,

number of points in search,
and level of reduction

unnoticeable

KRI MAX good 4 none nearly invisible
profile

correct correct correct,
impact of sectoral search,

number of points in search,
and level of reduction

unnoticeable

RBF MIN good 4 none nearly invisible
profile

correct correct correct,
impact of sectoral search,

number of points in search,
and level of reduction

unnoticeable

RBF MAX good 4 none nearly invisible
profile

correct correct correct,
impact of sectoral search,

number of points in search,
and level of reduction

slightly noticeable,
in the boundary

area water–no data
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Appendix B

Table A2. Qualitative analysis for surfaces created from UAV data.

Interpolation Surface
Plasticity

Roughness/Smoothness Artifacts,
Deformations

Slope (from the
Shoreline to the

Points)

Dike Plasticity Area of Low and
Medium Vegetation

Interpolation in the Area of
Lack of Data

The Change Rate as
the Reduction

Increases

TRI MIN good 3 (roughness in the area
of medium vegetation)

none correct, sharp edges
present

generally correct,
worsens slightly as

data reduction
increases

rougher in areas of
medium vegetation

no surface smoothness significant; increase in
surface roughness

TRI MAX good 4 none correct, sharp edges
present

generally correct,
worsens slightly as

data reduction
increases

in areas of medium
vegetation, smoother

than with the MIN
option

no surface smoothness significant; increased
surface smoothness

IDW MIN good, only up to
a specified level
of data reduction

(2)

3 (roughness in the area
of medium vegetation)

none correct good, only up to a
specified level of
data reduction (2)

rougher in areas of
medium vegetation

correct, mainly dependent on
sector search selection and

number of points per sector

significant, the highest
levels of reduction

making it impossible
to interpret correctly

IDW MAX good, only up to
a specified level
of data reduction

(2)

4 none correct good, only up to a
specified level of
data reduction (2)

in areas of medium
vegetation, smoother

than with the MIN
option

correct, mainly dependent on
sector search selection and

number of points per sector

significant, the highest
levels of reduction

making it impossible
to interpret correctly

KRI MIN good 3 (roughness in the area
of medium vegetation)

none correct at high reduction
level, too much loss

of detail

rougher in areas of
medium vegetation

correct, mainly dependent on
sector search selection and

number of points per sector

high degradation of
small terrain details

KRI MAX good 4 none correct at high reduction
level, too much loss

of detail

in areas of medium
vegetation, smoother

than with the MIN
option

correct, mainly dependent on
sector search selection and

number of points per sector

high degradation of
small terrain details

RBF MIN good 3 (roughness in the area
of medium vegetation)

none correct at high reduction
level, single loss of
continuity, slightly
worse than MAX

method

rougher in areas of
medium vegetation

correct, mainly dependent on
sector search selection and

number of points per sector

loss of model detail,
blurring of land–water

lines

RBF MAX good 4 none correct at high reduction
rate, single loss of
continuity, slightly

better than MIN

in areas of medium
vegetation, smoother

than with the MIN
option

correct, mainly dependent on
sector search selection and

number of points per sector

loss of model detail,
blurring of land–water

lines
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