

  remotesensing-13-04413




remotesensing-13-04413







Remote Sens. 2021, 13(21), 4413; doi:10.3390/rs13214413




Article



A New Approach to Identify On-Ground Lamp Types from Night-Time ISS Images



Natalia Rybnikova 1,2,3,*, Alejandro Sánchez de Miguel 4,5, Sviatoslav Rybnikov 6,7 and Anna Brook 8[image: Orcid]





1



Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK






2



Department of Natural Resources and Environmental Management, University of Haifa, Haifa 3498838, Israel






3



Department of Geography and Environmental Studies, University of Haifa, Haifa 3498838, Israel






4



Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK






5



Department Física de la Tierra y Astrofísica, Instituto de Física de Partículas y del COSMOS (IPARCOS), Universidad Complutense de Madrid, 28040 Madrid, Spain






6



Institute of Evolution, University of Haifa, Haifa 3498838, Israel






7



Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel






8



Center for Spatial Analysis Research (UHCSISR), Spectroscopy & Remote Sensing Laboratory, Department of Geography and Environmental Studies, University of Haifa, Haifa 3498838, Israel









*



Correspondence: nrybhiko@campus.haifa.ac.il; Tel.: +972-54-551-4755







Academic Editors: Lin Li, Mengjun Kang and Min Weng



Received: 30 September 2021 / Accepted: 30 October 2021 / Published: 2 November 2021



Abstract

:

Artificial night-time light (NTL), emitted by various on-ground human activities, has become intensive in many regions worldwide. Its adverse effects on human and ecosystem health crucially depend on the light spectrum, making the remote discrimination between different lamp types a highly important task. However, such studies remain extremely limited, and none of them exploit freely available satellite imagery. In the present analysis, the possibility to remotely assess the relative contribution of different lamp types into outdoor lighting is tested. For this sake, we match two data sources: (i) the radiometrically calibrated RGB image provided by the ISS (coarse spectral resolution data), and (ii) a set of in situ measurements with detailed spectral signatures conducted by ourselves (fine spectral resolution data). First, we analyze the fine spectral resolution data: using spectral signatures of standard lamp types from the LICA UCM library as endmembers, we perform an unmixing analysis upon NTL in situ measurements; by this, we obtain the estimates for relative contributions of the standard lamp types in each examined in situ measurement. Afterward, we focus on the coarse spectral resolution data: by using various types of statistical models, we predict the estimated relative contributions of each lamp type via RGB characteristics of spatially corresponding pixels of the ISS image. The built models predict sufficiently well (with R2 reaching ~0.87) the contributions of two standard lamp types: high-pressure sodium (HPS) and metal-halide (MH) lamps, the most widespread lamp types in the study area (Haifa, Israel). The restored map for HPS allocation demonstrates high concordance with the network of municipal roads, while that for MH shows notable coincidence with the industrial facilities and the airport.
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1. Introduction


Artificial night-time light (NTL), emitted by various on-ground human activities, becomes further intensive in many countries, making the world brighter [1,2,3]. At that, there exist vast inequalities in the spatial distribution of NTL intensities: Thus, night light flux per capita in the USA on average is three times more than in Europe; across US counties, there exists a 16,000-fold difference between the most and the least light-polluted ones [4]. On the global scale, the most polluted countries (in terms of the populations living under polluted skies) are Saudi Arabia, South Korea, Argentina, Canada, Spain, the US, Brazil, Russia, Japan, and Italy [3]. Dynamics of NTL levels might be used for monitoring globalization and urbanization processes, in addition to previously used GDP, CO2 emissions, and total and urban population data [5].



At the same time, a huge amount of empirical evidence has been accumulated for the adverse effects of NTL on both humans [6,7,8,9] and ecosystems [10,11,12,13]. An especially serious concern is the long-term cumulative effects of NTL, which remain almost unexplored [14]. Moreover, NTL also frustrates professional astronomical observations [15,16,17]. With respect to the above-mentioned challenges, the necessity to regulate light pollution becomes furthermore recognized [18,19,20]. The adverse effects of NTL are known to depend crucially on the light spectrum [21,22]. For instance, the short-wavelength light stronger suppresses melatonin production and distorts circadian rhythms in mammals [9,23,24], while the long-wavelength light more strongly disrupts the magnetic orientation of migratory birds [25]. To date, the detailed spectral signatures are available for the majority of common lighting sources (see, for example, the LICA-UCM database [26]). Discriminating between different lamp types based on satellite imagery would allow for a more fine-tuned analysis of adverse health effects associated with NTL. In turn, this would contribute to elaborating more precise policies for diminishing light pollution.



In the meantime, studies aiming to discriminate between different lamp types remain extremely limited. In two of them, the authors tested the principal possibility to identify lamp type, proceeding from corresponding spectral signature, either detailed or aggregated. In the first study, Elvidge with co-authors analyzed spectral signatures of 43 different lamps representing nine the most widespread lamp types, using ASD spectroradiometer, implying measuring the signatures from 400 to 2500 nm with 10 nm bandwidth [27]. They showed that discriminant analysis correctly classified all lamp types when based on their detailed spectra. The authors also succeeded to find a minimum set of broad bands ensuring sufficient classification quality: under blue, green, red, and NIR bands (a slightly modified set represented on the Landsat Thematic Mapper), only 4.7% of the lamp types were classified incorrectly. In the second study by Sánchez de Miguel and co-authors, it was demonstrated that main lamp types can often be separated using color–color diagrams with G/R and B/G ratios as the two coordinates [28]. Accordingly, the RGB bands corresponded to Nikon D3s camera sensors, used by astronauts in the ISS. However, in both mentioned studies, the proposed lamp-type discriminating methods, although being based on spectral bands of existing satellites, were not tested on real imagery [27,28].



Puschnig with co-authors reported on spectroscopic observations of night sky spectra over Vienna, which were performed from the North Dome of the Vienna University Observatory [29]. The authors used an 80 cm Cassegrain telescope, a DSS-7 spectrograph, and a ST-7 CCD camera with a wavelength coverage of ~450–850 nm. As revealed, the strongest spectral line was due to the most common type of residential lighting type (i.e., a fluorescent lamp) and was located at 546 nm; the second-strongest line at 611 nm was revealed as a composition of fluorescent and high-pressure sodium lamps, used to illuminate main streets.



To the best of our knowledge, the only explicit test of such a kind was performed by Hale with co-authors for Birmingham, UK [30]. The authors analyzed a one-meter aerial image of the city and a layer reporting location and type of lamp. They succeeded in classifying four main lamp types with high accuracy (7.5% error), based on three focal statistics: B and G/R ratio for pixels up to 1 m from the lamp center and the maximum averaged RGB level for pixels between 2 and 4 m from the lamp center. At that, RGB bands corresponded to those of the Nikon D2X digital camera. This study, however, benefits from high-resolution aerial images available only for limited sites and are typically costly.



In the present study, we test for the possibility to identify on-ground lamp types from freely available satellite imagery of relatively coarse spatial and spectral resolution. For the study area of Haifa, Israel, we match two NTL data sources: (i) the radiometrically calibrated RGB image provided by the ISS (coarse spectral resolution data), and (ii) a set of in situ measurements with detailed spectral signatures conducted by ourselves (fine spectral resolution data). Since the ISS image is of ~20-m spatial resolution, each pixel may represent a mixture of lamps. Thus, as the first step, we analyzed fine spectral resolution data: in situ measurements were subjected to unmixing analysis, with spectral signatures of the standard lamp types (from the freely available LICA UCM library [26]) used as endmembers. The unmixing analysis allowed us to estimate the relative contribution of different lamp types in each examined in situ measurement. Afterward, we switched to the analysis of the coarse resolution data: using various types of statistical models, we predicted the estimated relative contributions of each lamp type via RGB characteristics of spatially corresponding pixels of the ISS image. Finally, we applied the built models to restore the maps of the relative contribution of certain lamp types into outdoor lighting in the study area.




2. Materials and Methods


The study design comprises four main stages: (i) matching ISS RGB image with the in situ measurements—to select the representative ground truth observations; (ii) unmixing upon detailed spectral signatures of the selected representative in situ observations—to estimate the relative contributions of the standard lamp types; (iii) building statistical models—to predict the relative contributions via RGB characteristics of the corresponding pixels from the ISS image; and (iv) applying the models to all the pixels from the ISS RGB image—to restore the allocation of major lamp types in the study area. The methodological scheme of the study is reported in Figure 1 and described in detail in subsections below.



2.1. Data Sources


In the present analysis, two NTL data sources were used: (i) the radiometrically calibrated RGB image provided by the ISS (coarse spectral resolution data), and (ii) a set of in situ measurements with detailed spectral signatures conducted by ourselves (fine spectral resolution data).



The ISS-produced NTL image of Haifa (ISS045-E-148262) was taken on 29 November 2015, with the Nikon D4 DSLR camera [31]. The image was georeferenced and radiometrically calibrated by SAVESTARS Consulting SL [32] according to the procedure reported in [33].



In situ NTL measurements were performed in March 2015 with the Konica Minolta CL-500A spectrometer. Each of the 610 measurements reports spectral irradiance (w/m2) at a 1-nm pitch from 360 to 780 nm [34]. Figure 2 reports the original and the radiometrically calibrated RGB images from the ISS, overlaid with the in situ measurements localities.



Additionally, for unmixing analysis, we used spectral signatures of standard lamp types, taken from the freely available LICA UCM library [26]. We examined spectral signatures of 81 lamps representing seven (out of nine reported by Elvidge et al. [27]) of the most popular lamp types: fluorescent (FL), metal-halide (MH), high-pressure sodium (HPS), low-pressure sodium (LPS), incandescent and halogen (I&H), mercury-vapor (MV), and light-emitting diodes (LED). Two other widespread lighting types—liquid-fuel, and pressurized-fuel lamps—were omitted due to data unavailability.




2.2. Selection of the Representative Ground Truth Observations


Proceeding from the available data on the relatively coarse spatial resolution of ISS image, with each pixel reporting emissions from multiple light sources, and simultaneously given the sporadic point-wise available in situ NTL measurements, we selected among 610 observations only those which in some sense coincided with corresponding pixels in the ISS image. Since each pixel might be characterized by RGB radiances only, we first simulated the radiances of synthetic RGB bands of in situ measurements as if they would appear on the ISS sensors of Nikon D4 DSLR camera and then chose the observations with similar to the corresponding ISS imagery pixel (in terms of Euclidian distance in the coordinate system, represented by B/G and G/R ratios) RGB characteristics.



To simulate the radiance R (of either red, green, or blue band), we used the augmented equation reported by Sanchez de Miguel et al. [28]:


  R =    ∫ 0 ∞  ϕ  ( λ )  T  ( λ )  A  ( λ )  d λ    ∫ 0 ∞   ϕ  A B    ( λ )  T  ( λ )  A  ( λ )  d λ   ,  



(1)




where




	
ϕ(λ) = spectrum of the lamp under analysis;



	
T(λ) = spectral sensitivity of the synthetic band (in the present analysis, we used spectral responses of Nikon D4 Electronic Still Camera—the one that produced the image under analysis,—reported in [28])—see Figure 3a;



	
A(λ) = atmospheric transmittance (in the present analysis, we applied the MODTRAN® computer code [35] for the simulation of atmospheric transmittance of light emissions through the atmosphere over the study area at the time when in situ measurements were performed. MODTRAN code addresses the following issues: the effects of molecular and particulate absorption/emission and scattering, surface reflections and emission, solar/lunar illumination, and spherical refraction [35])—see Figure 3b;



	
ϕAB(λ) = reference spectrum of AB magnitude system, defined for a source of constant spectral density flux of 3631 Janskys across the spectral range of the band [28]—see Figure 3c.








As a measure of similarity between RGB radiances, reported by pixels of calibrated ISS image, and corresponding in situ measurements, we used Euclidian distance in the coordinate system, represented by B/G and G/R ratios. Given the variance of such a distance (dmax = 2.00), we settled the threshold of d < 0.2.




2.3. Estimation of the Relative Contributions of the Standard Lamp Types into Spectral Signatures of the in Situ Observations


The detailed spectral signatures of the representative in situ measurements (see Section 2.2) were subjected to unmixing analysis. As the endmembers (i.e., spectra of pure ‘materials’—see [36]), we used the detailed spectral signatures of the standard lamps from the LICA-UCM library. The end-members’ signatures are shown in Figure 4. For unmixing analysis, we used the FNNLS algorithm [37], implemented in MATLAB v.R2020b. The algorithm returned the percentages of all endmember lamps in each of the pre-selected in situ measurements. The obtained percentages were then aggregated within lamp types, and the sums were normalized to the unit. The obtained estimates are hereafter referred to as relative contributions.




2.4. Prediction of the Relative Contributions via RGB Characteristics of the Corresponding Pixels from the ISS Image


The relative contribution of each lamp type, obtained in the unmixing analysis (Section 2.2), served as the dependent variable in a set of statistical models. As the explanatory variables, we tried different characteristics of the pixels of the calibrated ISS image: (i) radiance in the red, green, and blue bands per se; (ii) their ratios (G/R and B/G, or GG/RB ratio), and an additional derivative characteristic describing the pixel’s ‘proximity’ to the lamp type in question. This distance was included in the models since we found that different lamps within each of the lamp types tend to lie along straight lines in the G/R, B/G coordinate plane (see Figure 5). We tried several formalizations of such a distance: (i) the ratio between B/G and G/R of the pixel, as a measure of the line’s slope; (ii) Euclidean distance from the pixel to the line representing the lamp type in question; and (iii) Mahalanobis distance from the pixel to the cloud representing the lamp type in question, which accounts for both the center of mass and the direction of the cloud [38].



We examined statistical models of several classes: multiple least-square linear regression, neural network (perceptron), and random forest. The general idea behind the multiple least-squares linear regression is fitting the observations (each represented by a point in N-dimensional space with (N-1) number of predictors and one dependent variable) by a linear relationship, represented by an (N-1)-dimensional linear surface, or hyperplane, by minimizing the sum of squared errors between the actual and estimated over this hyperplane levels of the dependent variable. In addition to the linear approach, a multi-layer neural network (perceptron)—a hierarchical model consisting of input, output, and several hidden layers of neurons, weighting, and summarizing the inputs from the previous layer and passing them to the neurons of the next layer—was treated. We also tested the random forest approach [39], which implies building an ensemble of decision trees, each ‘voting’ for a certain class or level of the dependent variable, with subsequent averaging of the estimates across all the decision trees.



All models were run in ORANGE v.3.28 with the default settings. Specifically, linear regression was applied with intercept and without regularization. Like a neural network, we used a multi-layer perceptron with backpropagation; the model parameters were the following: number of neurons in the hidden layer is 100, number of hidden layers is 1, the activation function is ReLu, solver for weight optimization is a stochastic gradient-based optimizer, L2 penalty parameter is 0.0001, and the maximal number of iterations is 200. In random forest models, the number of trees was settled to 10, an arbitrary set of attributes and limit depth of individual trees were left unchecked, and subsets smaller than 5 were required not to be split. We conducted a five-fold cross-validation procedure, which implies: (i) splitting the data into five nearly equal subsets, (ii) using each of them as the testing set while using the other four as a training set, and (iii) averaging the performance scores from these five iterations separately across training and testing sets. The input database used in the analysis is available from the authors upon request.




2.5. Restoring the Allocation of Major Lamp Types in the Haifa Area (Israel)


Finally, the best-performing models (Section 2.4) were applied to the radiometrically calibrated ISS image (see Section 2.1), and estimates for different lamp type relative contribution into light emissions from the study area were obtained and depicted.





3. Results


Among all initially available in situ measurements, we chose only the set of representative measurements—those deviating from the corresponding pixels of the radiometrically calibrated ISS image by less than 0.2 in terms of the Euclidian distance in the G/R, B/G coordinate plane (see Section 2.2). Overall, we obtained 196 measurements; their main characteristics are reported in Figure 6.



The detailed spectral signatures of the obtained 196 representative in situ measurements were then subjected to unmixing analysis (see Section 2.2). The results of the unmixing, i.e., the relative contributions of the seven endmember lamp types, are reported in Appendix A Table A1. In the table, we also report, for each in situ measurement, the highest correlation between its detailed spectral signature and the signatures of the lamps from the LICA-UCM library. As one can see from the table, the measurements with the predominant relative contribution of a certain lamp type (marked grey) simultaneously demonstrated a high correlation with this lamp type. Overall, HPS lamps were the most widespread in Haifa in 2015 (with an average relative contribution of 32.8%), followed by MH lamps (22.0%), while LED lamps were considerably less frequent (15.6%).



Table 1 reports the performance of three alternative statistical models (linear regression, neural network, and random forest) developed to explain the variance of each lamp type relative contribution, under various sets of predictors, for the training and the testing sets (see Section 2.4). As can be seen from the table, the performance is higher for the models with G/R and B/G ratios as predictors, compared to those with R, G, and B bands per se. We suppose that color ratios work better for predicting the relative contribution of a certain lamp type since it has a certain spectral signature. That is, the lamp of a certain type might be brighter or darker, and thus its aggregated R, G, and B levels per se will differ, but the ratios between those bands will remain the same. Indeed, in the considered set of observations, the variability of R, G, and B levels per se is much higher than the variability of their ratios (coefficients of variation for RGB channels are 0.72, 0.75, and 0.90, respectively, while for G/R and B/G ratios the corresponding numbers are 0.31 and 0.35). For all dependent variables and all predictor sets, random forest models perform generally better than either linear regression or neural network models. For three lamp types (HPS, MH, and MV), random forest models containing G/R and B/G ratios as predictors demonstrate high performance both for the training and the testing sets: R2 > 0.43 (see Table 1, predictor sets 2nd–4th).



Since models with the predictor sets 2nd–4th demonstrate similar performance, and proceeding from consideration of calculation simplicity, we run random forest models, built upon the whole set of observations, with G/R, B/G, and GG/RB ratios as predictors upon all pixels of the calibrated ISS image (see Figure 1b). Figure 7 reports resulting maps for two of the most frequent lamp types (HPS and MH) prevalent in Haifa. As can be seen from the figure, relatively higher contribution of HPS lamps in the outdoor lighting in Haifa coincide with the spatial pattern of municipal roads (see Figure 7a), while the pattern for MH lamps is more local and site-specific (see Figure 7b). In some regions of interest, HPS and MH lamps contribute to the outdoor lighting reversely. For example, in the Haifa Bay area, the impact of HPS lamps is pronounced, while MH lamps are absent (see Figure 7c); in contrast, in the areas hosting Khof Shemen industrial zone and Haifa airport, MH lamps are widely used while HPS lamps are absent (see Figure 7d).




4. Discussion


In the present study, we tested for the possibility to identify on-ground lamp types from freely available satellite imagery of relatively coarse spatial and spectral resolution. To this end, we conducted a series of in situ NTL measurements in Haifa, Israel and combined these data with a radiometrically calibrated NTL image of the city taken from the ISS. Since the ISS image is of ~20-m resolution, each pixel likely represents light emission from a mixture of lamps. By applying unmixing analysis to the detailed spectral signatures of in situ NTL measurements, we estimated the relative contributions of different lamp types in each analyzed observation. Then, we tried to train statistical models to predict these relative contributions based exclusively on the ISS image, which represents RGB bands.



As our analysis indicates, contributions of two of the most widespread lamp types in the region, HPS and MH lamps, could be successfully predicted by random forest models. Using them, we restored HPS and MH lamps relative contribution to outdoor lighting of the whole Haifa area. The obtained HPS map demonstrated high concordance with the network of municipal roads (confirming the result obtained by Puschnig with co-authors for Vienna [29]), while the MH map showed notable coincidence with industrial facilities and the airport (see Figure 7).



In the developed models, we used three explanatory variables. Two of them, G/R and B/G ratios, are similar to those previously used by Sánchez de Miguel [28]. An additional informative predictor described a ‘proximity’ of the analyzed pixel of the ISS image to the lamp type in question. Interestingly, it turned out that lamps of the same type form clear-cut line segment-shaped loci in the G/R, B/G coordinate plane (see Figure 5). In this respect, we tried three alternative formalizations for the above-mentioned proximity: GG/RB ratio of the pixel, its Euclidean distance to the line, and its Mahalanobis distance to the locus. Without this additional explanatory variable, the models’ performance was somewhat worse (with adjusted ΔR2 up to −0.1, depending on the model type).



It should be mentioned that both Elvidge et al. [27] and Hale et al. [30] reached remarkably high classification accuracy (with errors of 4.7% and 7.5%, respectively), presumably due to either laboratory measurements [27] or high-resolution aerial imagery [30], incompatible with mixed pixels and used in the present analysis. However, their results cannot be directly compared with those presented here since we solved regression rather than classification problem, implying continuous rather than binary dependent variable. Yet, it seems reasonable to expect a better performance of our models if they were based on an image of better spectral (like in [27]) and/or spatial (like in [30]) resolution. Again, as mentioned above, we used the ISS image intentionally—given its free availability for many geographical sites. We think that our results argue for the principal possibility to assess the lamp type composition of outdoor lighting from the color satellite imagery.



Some limitations and perspectives of the study should be mentioned. First, proceeding from the available data, we did not succeed to obtain a reasonable spatial pattern for LED lamps’ relative contribution in the outdoor lighting in Haifa. A trivial reason may be the insufficiency of the used data (small sample size, low prevalence of LEDs in the studied region in 2015). It also seems possible that the ISS imagery does not allow one to discriminate between LEDs due to their high spectral variability and, therefore, overlap with some other lamp types occurs (which becomes even more pronounced after considering the reflectance of the ground), such as MH lamps, in the B/G, G/R space [28]. It should be mentioned that Elvidge et al. [27] successfully discriminated between LED lamps from other types since they used almost non-overlapping red, green, blue, and NIR bands. Nowadays, LEDs’ popularity is growing rapidly, mainly due to their versatility and energy-saving potential [27,28,43], and some precedents of total LED-based street lighting already exist [28,44]. At the same time, LEDs’ primary emission peak, ~450–460 nm [27], radically distorts circadian rhythms and suppresses melatonin production in humans, contributing to sleep disorders [45], obesity [7], hormone-dependent cancers [9], and other diseases. Thus, further analysis is needed to explore the possibility to identify LED lamps from the ISS-provided imagery. It seems promising to exploit, in addition to ISS imagery, VIIRS-provided panchromatic data, which covers also NIR diapason on night-time light. To obtain spatially upscaled panchromatic data, it seems rational first to teach some models (such as linear regressions, non-linear kernel regressions, random forest models, etc.) to associate between downscaled (to the resolution of ~742 m) ISS-provided RGB data and actual panchromatic data, and afterward to apply the best-performing model to predict panchromatic lights from the levels of actual RGB data (of ~20 m resolution). Alternatively, or in addition to, land-use data of fine spatial resolution, obtained from aerial imagery and LiDAR data (see for example [46,47,48]), might be used as an additional predictor for better discriminating between different lamp types. It is important to note that, given the good-performing models for all lamp types, a detailed spectrum might be easily restored for each pixel for the whole study area: for this sake, we should sum up the spectra of corresponding lamp types, weighted for their relative contributions. By this, we would be able to predict night-time hyperspectral information, which is currently not available from any of the existing satellites.



Second, the acquisition time of the used ISS-provided image and the in situ NTL measurements do not coincide perfectly, which may cause some inaccuracy in the herein obtained estimates. However, weather conditions in Israel are rather similar in March (when the in situ measurements were conducted) and in November (when the ISS image was taken): the average low-temperatures are ~11 °C in March and ~14 °C in November; the average sunshine is ~7 h for both months; and it is raining on average for 8.6 in March and 8 days in November [49]. Additionally, our sample did not include observations from residential areas, in which brightness may vary during the night [50]; instead, it included observations along major roads, entertainment areas, hospitals, and high-tech enterprises—that is, represented by streetlights of nearly-constant brightness during the night.



Finally, further testing of the proposed approach is required. For this sake, other ISS-provided images, which underwent radiometric calibration procedure [32,33], might be used. Given that cities might substantially differ in terms of building typologies and relationships between building heights and street widths [51], further research is needed to test the applicability of the obtained models to other geographical regions.
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Table A1. Unmixing results: The relative contribution of each lamp type into the detailed spectral signature of in situ observation (see text for explanation).






Table A1. Unmixing results: The relative contribution of each lamp type into the detailed spectral signature of in situ observation (see text for explanation).





	
In Situ Obs. Number

	
Relative Contribution into In Situ Observation Detailed Spectral Signature of Standard Type Lamps

	
Max Correlation between Detailed Signatures of In Situ Obs. and Lamps




	
CFL

	
MH

	
HPS

	
LPS

	
Incand

	
MV

	
LED

	
Correlation

	
Lamp Type






	
504

	
0.085

	
0.659

	
0.067

	
0.060

	
0.014

	
0.000

	
0.114

	
0.720

	
LED




	
185

	
0.197

	
0.176

	
0.305

	
0.080

	
0.030

	
0.000

	
0.213

	
0.911

	
LED




	
566

	
0.022

	
0.058

	
0.201

	
0.044

	
0.568

	
0.009

	
0.097

	
0.957

	
Incand




	
467

	
0.000

	
0.024

	
0.772

	
0.054

	
0.000

	
0.000

	
0.150

	
0.945

	
HPS




	
238

	
0.194

	
0.072

	
0.323

	
0.000

	
0.008

	
0.307

	
0.095

	
0.634

	
MV




	
231

	
0.195

	
0.058

	
0.265

	
0.000

	
0.000

	
0.389

	
0.093

	
0.654

	
MV




	
97

	
0.000

	
0.065

	
0.664

	
0.169

	
0.000

	
0.000

	
0.101

	
0.937

	
HPS




	
465

	
0.000

	
0.024

	
0.760

	
0.103

	
0.000

	
0.000

	
0.113

	
0.930

	
HPS




	
286

	
0.083

	
0.465

	
0.336

	
0.000

	
0.000

	
0.000

	
0.116

	
0.747

	
LED




	
570

	
0.097

	
0.287

	
0.052

	
0.059

	
0.049

	
0.000

	
0.456

	
0.946

	
LED




	
112

	
0.040

	
0.305

	
0.372

	
0.243

	
0.013

	
0.000

	
0.026

	
0.806

	
HPS




	
565

	
0.000

	
0.019

	
0.151

	
0.027

	
0.638

	
0.002

	
0.164

	
0.979

	
Incand




	
431

	
0.000

	
0.056

	
0.671

	
0.151

	
0.036

	
0.000

	
0.087

	
0.889

	
HPS




	
466

	
0.000

	
0.024

	
0.755

	
0.100

	
0.000

	
0.000

	
0.121

	
0.932

	
HPS




	
433

	
0.000

	
0.085

	
0.629

	
0.119

	
0.000

	
0.000

	
0.166

	
0.913

	
LED




	
107

	
0.000

	
0.076

	
0.595

	
0.298

	
0.000

	
0.000

	
0.031

	
0.891

	
HPS




	
451

	
0.074

	
0.543

	
0.272

	
0.046

	
0.000

	
0.000

	
0.066

	
0.777

	
MH




	
1

	
0.247

	
0.098

	
0.161

	
0.000

	
0.000

	
0.386

	
0.108

	
0.670

	
MV




	
250

	
0.237

	
0.042

	
0.141

	
0.000

	
0.002

	
0.480

	
0.098

	
0.663

	
MV




	
432

	
0.000

	
0.068

	
0.608

	
0.075

	
0.062

	
0.000

	
0.187

	
0.936

	
LED




	
430

	
0.016

	
0.007

	
0.729

	
0.000

	
0.052

	
0.000

	
0.195

	
0.938

	
HPS




	
103

	
0.000

	
0.084

	
0.658

	
0.204

	
0.000

	
0.000

	
0.054

	
0.922

	
HPS




	
68

	
0.008

	
0.327

	
0.412

	
0.162

	
0.000

	
0.000

	
0.091

	
0.782

	
HPS




	
36

	
0.000

	
0.157

	
0.646

	
0.104

	
0.000

	
0.000

	
0.093

	
0.935

	
HPS




	
453

	
0.077

	
0.555

	
0.279

	
0.025

	
0.000

	
0.000

	
0.065

	
0.776

	
MH




	
168

	
0.025

	
0.358

	
0.478

	
0.045

	
0.000

	
0.000

	
0.094

	
0.849

	
HPS




	
40

	
0.000

	
0.058

	
0.674

	
0.176

	
0.000

	
0.000

	
0.092

	
0.935

	
HPS




	
64

	
0.021

	
0.345

	
0.411

	
0.148

	
0.000

	
0.000

	
0.074

	
0.741

	
HPS




	
440

	
0.007

	
0.184

	
0.584

	
0.107

	
0.000

	
0.000

	
0.118

	
0.898

	
HPS




	
452

	
0.078

	
0.551

	
0.269

	
0.041

	
0.000

	
0.000

	
0.062

	
0.775

	
MH




	
264

	
0.020

	
0.030

	
0.029

	
0.004

	
0.873

	
0.000

	
0.044

	
0.997

	
Incand




	
256

	
0.000

	
0.739

	
0.000

	
0.000

	
0.121

	
0.000

	
0.140

	
0.832

	
MH




	
261

	
0.392

	
0.152

	
0.235

	
0.045

	
0.026

	
0.000

	
0.149

	
0.843

	
LED




	
397

	
0.068

	
0.382

	
0.168

	
0.060

	
0.020

	
0.000

	
0.301

	
0.852

	
LED




	
109

	
0.000

	
0.081

	
0.586

	
0.311

	
0.000

	
0.000

	
0.023

	
0.885

	
HPS




	
445

	
0.036

	
0.511

	
0.294

	
0.116

	
0.008

	
0.000

	
0.035

	
0.803

	
MH




	
38

	
0.020

	
0.092

	
0.604

	
0.134

	
0.000

	
0.000

	
0.150

	
0.928

	
LED




	
450

	
0.076

	
0.570

	
0.266

	
0.010

	
0.000

	
0.000

	
0.079

	
0.762

	
MH




	
528

	
0.124

	
0.154

	
0.384

	
0.068

	
0.000

	
0.155

	
0.116

	
0.725

	
LED




	
104

	
0.000

	
0.086

	
0.614

	
0.268

	
0.000

	
0.000

	
0.032

	
0.900

	
HPS




	
559

	
0.516

	
0.036

	
0.161

	
0.000

	
0.000

	
0.203

	
0.085

	
0.789

	
CFL




	
590

	
0.123

	
0.604

	
0.000

	
0.069

	
0.109

	
0.000

	
0.095

	
0.838

	
MH




	
29

	
0.114

	
0.090

	
0.525

	
0.094

	
0.002

	
0.000

	
0.174

	
0.930

	
LED




	
35

	
0.000

	
0.038

	
0.758

	
0.087

	
0.000

	
0.000

	
0.116

	
0.935

	
HPS




	
608

	
0.088

	
0.552

	
0.000

	
0.020

	
0.092

	
0.000

	
0.248

	
0.881

	
LED




	
187

	
0.004

	
0.123

	
0.574

	
0.151

	
0.008

	
0.000

	
0.140

	
0.927

	
HPS




	
31

	
0.055

	
0.060

	
0.640

	
0.152

	
0.000

	
0.000

	
0.093

	
0.926

	
HPS




	
129

	
0.000

	
0.052

	
0.693

	
0.181

	
0.000

	
0.000

	
0.074

	
0.931

	
HPS




	
508

	
0.409

	
0.409

	
0.044

	
0.000

	
0.000

	
0.025

	
0.112

	
0.714

	
CFL




	
260

	
0.034

	
0.675

	
0.149

	
0.086

	
0.000

	
0.000

	
0.057

	
0.752

	
MH




	
558

	
0.450

	
0.014

	
0.167

	
0.000

	
0.000

	
0.277

	
0.092

	
0.759

	
CFL




	
529

	
0.107

	
0.195

	
0.425

	
0.090

	
0.000

	
0.072

	
0.110

	
0.735

	
LED




	
556

	
0.532

	
0.038

	
0.153

	
0.000

	
0.000

	
0.198

	
0.079

	
0.797

	
CFL




	
564

	
0.000

	
0.045

	
0.239

	
0.060

	
0.455

	
0.000

	
0.202

	
0.934

	
Incand




	
518

	
0.013

	
0.027

	
0.103

	
0.045

	
0.049

	
0.000

	
0.762

	
0.983

	
LED




	
495

	
0.641

	
0.221

	
0.000

	
0.021

	
0.000

	
0.000

	
0.117

	
0.768

	
CFL




	
69

	
0.086

	
0.047

	
0.647

	
0.080

	
0.000

	
0.000

	
0.139

	
0.937

	
LED




	
429

	
0.000

	
0.045

	
0.688

	
0.000

	
0.070

	
0.000

	
0.197

	
0.930

	
HPS




	
101

	
0.000

	
0.071

	
0.643

	
0.179

	
0.000

	
0.000

	
0.106

	
0.934

	
HPS




	
291

	
0.093

	
0.263

	
0.296

	
0.000

	
0.005

	
0.155

	
0.189

	
0.725

	
LED




	
102

	
0.000

	
0.080

	
0.610

	
0.276

	
0.000

	
0.000

	
0.035

	
0.899

	
HPS




	
139

	
0.000

	
0.195

	
0.516

	
0.218

	
0.000

	
0.000

	
0.071

	
0.885

	
HPS




	
138

	
0.000

	
0.139

	
0.554

	
0.245

	
0.000

	
0.000

	
0.061

	
0.890

	
HPS




	
509

	
0.113

	
0.602

	
0.126

	
0.000

	
0.000

	
0.043

	
0.115

	
0.716

	
MH




	
100

	
0.000

	
0.086

	
0.547

	
0.367

	
0.000

	
0.000

	
0.000

	
0.841

	
HPS




	
607

	
0.053

	
0.554

	
0.000

	
0.000

	
0.111

	
0.000

	
0.282

	
0.887

	
LED




	
526

	
0.723

	
0.204

	
0.000

	
0.019

	
0.000

	
0.000

	
0.054

	
0.828

	
CFL




	
449

	
0.063

	
0.524

	
0.266

	
0.112

	
0.000

	
0.000

	
0.035

	
0.824

	
MH




	
517

	
0.038

	
0.184

	
0.492

	
0.219

	
0.000

	
0.000

	
0.067

	
0.840

	
HPS




	
520

	
0.002

	
0.000

	
0.004

	
0.000

	
0.057

	
0.018

	
0.919

	
0.984

	
LED




	
391

	
0.000

	
0.081

	
0.588

	
0.291

	
0.000

	
0.000

	
0.040

	
0.892

	
HPS




	
46

	
0.219

	
0.093

	
0.098

	
0.000

	
0.000

	
0.000

	
0.590

	
0.954

	
LED




	
523

	
0.016

	
0.133

	
0.439

	
0.373

	
0.000

	
0.000

	
0.040

	
0.766

	
HPS




	
519

	
0.028

	
0.002

	
0.009

	
0.000

	
0.060

	
0.021

	
0.880

	
0.984

	
LED




	
84

	
0.077

	
0.091

	
0.665

	
0.000

	
0.023

	
0.000

	
0.144

	
0.949

	
HPS




	
193

	
0.101

	
0.102

	
0.483

	
0.163

	
0.000

	
0.000

	
0.151

	
0.906

	
LED




	
589

	
0.032

	
0.645

	
0.000

	
0.000

	
0.179

	
0.000

	
0.144

	
0.810

	
MH




	
524

	
0.032

	
0.127

	
0.365

	
0.252

	
0.000

	
0.000

	
0.225

	
0.858

	
LED




	
591

	
0.474

	
0.419

	
0.000

	
0.018

	
0.025

	
0.000

	
0.064

	
0.747

	
CFL




	
563

	
0.000

	
0.039

	
0.154

	
0.073

	
0.630

	
0.000

	
0.103

	
0.971

	
Incand




	
474

	
0.062

	
0.465

	
0.270

	
0.138

	
0.000

	
0.000

	
0.065

	
0.756

	
MH




	
16

	
0.028

	
0.013

	
0.189

	
0.021

	
0.028

	
0.019

	
0.701

	
0.977

	
LED




	
41

	
0.000

	
0.012

	
0.777

	
0.085

	
0.000

	
0.000

	
0.126

	
0.942

	
HPS




	
343

	
0.776

	
0.193

	
0.000

	
0.011

	
0.000

	
0.000

	
0.020

	
0.837

	
CFL




	
32

	
0.000

	
0.102

	
0.532

	
0.366

	
0.000

	
0.000

	
0.000

	
0.832

	
HPS




	
273

	
0.015

	
0.334

	
0.470

	
0.055

	
0.000

	
0.000

	
0.126

	
0.880

	
LED




	
208

	
0.005

	
0.108

	
0.344

	
0.150

	
0.032

	
0.000

	
0.361

	
0.965

	
LED




	
98

	
0.086

	
0.112

	
0.505

	
0.248

	
0.000

	
0.000

	
0.049

	
0.881

	
HPS




	
228

	
0.031

	
0.187

	
0.525

	
0.147

	
0.000

	
0.000

	
0.110

	
0.911

	
HPS




	
245

	
0.246

	
0.039

	
0.149

	
0.000

	
0.009

	
0.462

	
0.095

	
0.671

	
MV




	
446

	
0.023

	
0.537

	
0.293

	
0.126

	
0.000

	
0.000

	
0.021

	
0.820

	
MH




	
173

	
0.080

	
0.276

	
0.049

	
0.000

	
0.000

	
0.324

	
0.272

	
0.634

	
MH




	
605

	
0.082

	
0.548

	
0.000

	
0.017

	
0.091

	
0.000

	
0.262

	
0.893

	
LED




	
99

	
0.055

	
0.115

	
0.480

	
0.348

	
0.000

	
0.000

	
0.002

	
0.811

	
HPS




	
601

	
0.768

	
0.169

	
0.000

	
0.000

	
0.000

	
0.000

	
0.063

	
0.859

	
CFL




	
18

	
0.165

	
0.103

	
0.375

	
0.000

	
0.004

	
0.223

	
0.129

	
0.669

	
LED




	
555

	
0.609

	
0.069

	
0.123

	
0.000

	
0.000

	
0.126

	
0.073

	
0.818

	
CFL




	
530

	
0.473

	
0.079

	
0.080

	
0.030

	
0.000

	
0.062

	
0.275

	
0.772

	
LED




	
263

	
0.033

	
0.039

	
0.130

	
0.055

	
0.657

	
0.000

	
0.085

	
0.977

	
Incand




	
327

	
0.000

	
0.776

	
0.000

	
0.074

	
0.000

	
0.000

	
0.150

	
0.812

	
MH




	
600

	
0.767

	
0.165

	
0.000

	
0.000

	
0.000

	
0.000

	
0.068

	
0.856

	
CFL




	
557

	
0.305

	
0.015

	
0.191

	
0.000

	
0.000

	
0.403

	
0.087

	
0.678

	
MV




	
206

	
0.015

	
0.087

	
0.250

	
0.111

	
0.004

	
0.000

	
0.533

	
0.971

	
LED




	
562

	
0.000

	
0.058

	
0.201

	
0.106

	
0.527

	
0.000

	
0.108

	
0.936

	
Incand




	
265

	
0.024

	
0.015

	
0.038

	
0.013

	
0.895

	
0.002

	
0.012

	
0.999

	
Incand




	
372

	
0.093

	
0.076

	
0.160

	
0.039

	
0.525

	
0.000

	
0.106

	
0.957

	
Incand




	
604

	
0.032

	
0.525

	
0.000

	
0.000

	
0.115

	
0.000

	
0.328

	
0.916

	
LED




	
6

	
0.099

	
0.612

	
0.200

	
0.027

	
0.004

	
0.000

	
0.059

	
0.776

	
MH




	
606

	
0.047

	
0.558

	
0.000

	
0.000

	
0.114

	
0.000

	
0.282

	
0.885

	
LED




	
45

	
0.407

	
0.139

	
0.295

	
0.044

	
0.000

	
0.000

	
0.115

	
0.827

	
LED




	
266

	
0.052

	
0.031

	
0.032

	
0.010

	
0.843

	
0.000

	
0.032

	
0.998

	
Incand




	
39

	
0.000

	
0.052

	
0.673

	
0.179

	
0.000

	
0.000

	
0.096

	
0.935

	
HPS




	
15

	
0.019

	
0.014

	
0.089

	
0.013

	
0.037

	
0.022

	
0.805

	
0.976

	
LED




	
51

	
0.085

	
0.184

	
0.423

	
0.007

	
0.000

	
0.102

	
0.199

	
0.775

	
LED




	
583

	
0.094

	
0.573

	
0.217

	
0.000

	
0.000

	
0.000

	
0.115

	
0.729

	
MH




	
584

	
0.098

	
0.617

	
0.206

	
0.000

	
0.000

	
0.000

	
0.078

	
0.776

	
MH




	
42

	
0.002

	
0.197

	
0.620

	
0.060

	
0.000

	
0.000

	
0.121

	
0.893

	
HPS




	
292

	
0.052

	
0.193

	
0.317

	
0.000

	
0.000

	
0.283

	
0.155

	
0.604

	
MV




	
461

	
0.037

	
0.596

	
0.105

	
0.162

	
0.000

	
0.000

	
0.100

	
0.826

	
MH




	
454

	
0.072

	
0.540

	
0.282

	
0.047

	
0.000

	
0.000

	
0.060

	
0.772

	
MH




	
439

	
0.011

	
0.081

	
0.619

	
0.146

	
0.001

	
0.000

	
0.141

	
0.917

	
HPS




	
471

	
0.057

	
0.469

	
0.271

	
0.141

	
0.000

	
0.000

	
0.062

	
0.772

	
MH




	
63

	
0.019

	
0.404

	
0.417

	
0.120

	
0.000

	
0.000

	
0.041

	
0.810

	
HPS




	
207

	
0.019

	
0.091

	
0.238

	
0.104

	
0.034

	
0.000

	
0.514

	
0.975

	
LED




	
468

	
0.000

	
0.031

	
0.743

	
0.091

	
0.000

	
0.000

	
0.136

	
0.933

	
HPS




	
585

	
0.151

	
0.436

	
0.187

	
0.000

	
0.000

	
0.078

	
0.148

	
0.652

	
CFL




	
599

	
0.757

	
0.165

	
0.000

	
0.000

	
0.000

	
0.000

	
0.078

	
0.853

	
CFL




	
197

	
0.114

	
0.138

	
0.415

	
0.210

	
0.000

	
0.000

	
0.123

	
0.887

	
LED




	
571

	
0.032

	
0.450

	
0.116

	
0.118

	
0.085

	
0.000

	
0.198

	
0.891

	
LED




	
434

	
0.000

	
0.080

	
0.687

	
0.131

	
0.000

	
0.000

	
0.101

	
0.928

	
HPS




	
448

	
0.063

	
0.501

	
0.275

	
0.128

	
0.000

	
0.000

	
0.034

	
0.807

	
MH




	
90

	
0.163

	
0.154

	
0.441

	
0.044

	
0.000

	
0.000

	
0.198

	
0.904

	
LED




	
399

	
0.060

	
0.308

	
0.158

	
0.060

	
0.116

	
0.006

	
0.292

	
0.899

	
LED




	
66

	
0.297

	
0.190

	
0.248

	
0.077

	
0.000

	
0.000

	
0.188

	
0.810

	
LED




	
375

	
0.043

	
0.249

	
0.466

	
0.100

	
0.000

	
0.000

	
0.142

	
0.926

	
LED




	
105

	
0.000

	
0.071

	
0.673

	
0.141

	
0.000

	
0.000

	
0.115

	
0.933

	
HPS




	
309

	
0.003

	
0.243

	
0.583

	
0.049

	
0.000

	
0.000

	
0.122

	
0.913

	
HPS




	
349

	
0.392

	
0.181

	
0.110

	
0.000

	
0.001

	
0.000

	
0.315

	
0.815

	
LED




	
198

	
0.010

	
0.119

	
0.535

	
0.310

	
0.000

	
0.000

	
0.026

	
0.867

	
HPS




	
475

	
0.055

	
0.488

	
0.255

	
0.142

	
0.000

	
0.000

	
0.060

	
0.780

	
MH




	
267

	
0.027

	
0.027

	
0.029

	
0.010

	
0.872

	
0.000

	
0.035

	
0.998

	
Incand




	
7

	
0.195

	
0.493

	
0.088

	
0.000

	
0.029

	
0.068

	
0.126

	
0.677

	
LED




	
227

	
0.006

	
0.128

	
0.606

	
0.159

	
0.000

	
0.000

	
0.101

	
0.919

	
HPS




	
199

	
0.003

	
0.111

	
0.549

	
0.312

	
0.000

	
0.000

	
0.025

	
0.871

	
HPS




	
262

	
0.679

	
0.175

	
0.021

	
0.029

	
0.000

	
0.000

	
0.096

	
0.791

	
CFL




	
244

	
0.239

	
0.042

	
0.147

	
0.000

	
0.048

	
0.432

	
0.093

	
0.672

	
MV




	
189

	
0.099

	
0.041

	
0.627

	
0.042

	
0.000

	
0.000

	
0.191

	
0.922

	
LED




	
5

	
0.041

	
0.569

	
0.274

	
0.084

	
0.000

	
0.000

	
0.032

	
0.817

	
MH




	
52

	
0.125

	
0.229

	
0.276

	
0.055

	
0.000

	
0.099

	
0.217

	
0.832

	
LED




	
376

	
0.060

	
0.251

	
0.449

	
0.097

	
0.000

	
0.000

	
0.142

	
0.930

	
LED




	
545

	
0.024

	
0.139

	
0.523

	
0.297

	
0.000

	
0.000

	
0.018

	
0.829

	
HPS




	
527

	
0.170

	
0.167

	
0.400

	
0.132

	
0.000

	
0.000

	
0.131

	
0.839

	
LED




	
405

	
0.063

	
0.541

	
0.162

	
0.131

	
0.000

	
0.000

	
0.102

	
0.774

	
MH




	
351

	
0.127

	
0.065

	
0.656

	
0.004

	
0.000

	
0.000

	
0.147

	
0.941

	
HPS




	
44

	
0.014

	
0.109

	
0.643

	
0.006

	
0.000

	
0.049

	
0.178

	
0.886

	
HPS




	
126

	
0.000

	
0.047

	
0.722

	
0.103

	
0.000

	
0.000

	
0.128

	
0.940

	
HPS




	
209

	
0.153

	
0.115

	
0.436

	
0.195

	
0.000

	
0.000

	
0.100

	
0.884

	
LED




	
398

	
0.061

	
0.321

	
0.159

	
0.057

	
0.079

	
0.000

	
0.323

	
0.890

	
LED




	
350

	
0.581

	
0.189

	
0.138

	
0.000

	
0.000

	
0.000

	
0.092

	
0.770

	
CFL




	
462

	
0.041

	
0.610

	
0.107

	
0.143

	
0.000

	
0.000

	
0.099

	
0.828

	
MH




	
241

	
0.230

	
0.039

	
0.151

	
0.000

	
0.000

	
0.484

	
0.096

	
0.671

	
MV




	
521

	
0.023

	
0.007

	
0.028

	
0.004

	
0.054

	
0.032

	
0.851

	
0.985

	
LED




	
404

	
0.054

	
0.572

	
0.128

	
0.146

	
0.000

	
0.000

	
0.100

	
0.816

	
MH




	
569

	
0.238

	
0.063

	
0.000

	
0.000

	
0.000

	
0.000

	
0.699

	
0.950

	
LED




	
352

	
0.052

	
0.058

	
0.148

	
0.000

	
0.005

	
0.000

	
0.737

	
0.976

	
LED




	
2

	
0.216

	
0.296

	
0.061

	
0.000

	
0.000

	
0.242

	
0.185

	
0.648

	
CFL




	
284

	
0.083

	
0.531

	
0.262

	
0.000

	
0.000

	
0.000

	
0.124

	
0.719

	
MH




	
447

	
0.035

	
0.515

	
0.283

	
0.131

	
0.011

	
0.000

	
0.025

	
0.802

	
MH




	
498

	
0.586

	
0.257

	
0.000

	
0.000

	
0.000

	
0.000

	
0.157

	
0.760

	
CFL




	
108

	
0.000

	
0.058

	
0.642

	
0.141

	
0.000

	
0.000

	
0.159

	
0.928

	
LED




	
196

	
0.064

	
0.098

	
0.577

	
0.132

	
0.000

	
0.000

	
0.129

	
0.925

	
HPS




	
540

	
0.183

	
0.027

	
0.138

	
0.000

	
0.021

	
0.399

	
0.232

	
0.697

	
LED




	
95

	
0.068

	
0.077

	
0.679

	
0.006

	
0.000

	
0.000

	
0.170

	
0.940

	
HPS




	
85

	
0.016

	
0.135

	
0.611

	
0.054

	
0.010

	
0.000

	
0.175

	
0.938

	
LED




	
141

	
0.000

	
0.288

	
0.462

	
0.126

	
0.000

	
0.000

	
0.124

	
0.877

	
HPS




	
113

	
0.041

	
0.482

	
0.234

	
0.189

	
0.025

	
0.000

	
0.028

	
0.838

	
MH




	
307

	
0.020

	
0.396

	
0.381

	
0.091

	
0.037

	
0.000

	
0.075

	
0.861

	
LED




	
37

	
0.186

	
0.106

	
0.458

	
0.146

	
0.000

	
0.000

	
0.104

	
0.733

	
LED




	
477

	
0.133

	
0.025

	
0.193

	
0.000

	
0.000

	
0.555

	
0.095

	
0.689

	
MV




	
476

	
0.133

	
0.026

	
0.200

	
0.000

	
0.000

	
0.549

	
0.091

	
0.686

	
MV




	
13

	
0.147

	
0.444

	
0.152

	
0.174

	
0.047

	
0.000

	
0.037

	
0.886

	
MH




	
143

	
0.036

	
0.091

	
0.600

	
0.233

	
0.000

	
0.000

	
0.040

	
0.878

	
HPS




	
542

	
0.181

	
0.027

	
0.139

	
0.000

	
0.033

	
0.391

	
0.230

	
0.701

	
LED




	
437

	
0.000

	
0.105

	
0.601

	
0.218

	
0.000

	
0.000

	
0.077

	
0.879

	
HPS




	
28

	
0.002

	
0.079

	
0.641

	
0.165

	
0.000

	
0.000

	
0.113

	
0.928

	
HPS




	
578

	
0.117

	
0.549

	
0.049

	
0.010

	
0.072

	
0.000

	
0.203

	
0.850

	
LED




	
580

	
0.092

	
0.583

	
0.162

	
0.000

	
0.022

	
0.000

	
0.143

	
0.806

	
LED




	
582

	
0.111

	
0.549

	
0.178

	
0.000

	
0.000

	
0.018

	
0.145

	
0.684

	
MH




	
541

	
0.174

	
0.029

	
0.127

	
0.000

	
0.035

	
0.371

	
0.264

	
0.755

	
LED




	
200

	
0.000

	
0.114

	
0.607

	
0.169

	
0.000

	
0.000

	
0.109

	
0.922

	
HPS




	
412

	
0.000

	
0.537

	
0.155

	
0.097

	
0.059

	
0.000

	
0.152

	
0.728

	
LED




	
268

	
0.006

	
0.016

	
0.261

	
0.000

	
0.008

	
0.000

	
0.710

	
0.990

	
LED




	
435

	
0.000

	
0.081

	
0.606

	
0.208

	
0.026

	
0.000

	
0.080

	
0.873

	
HPS




	
218

	
0.051

	
0.354

	
0.333

	
0.121

	
0.015

	
0.000

	
0.126

	
0.893

	
LED




	
561

	
0.000

	
0.103

	
0.373

	
0.200

	
0.230

	
0.000

	
0.095

	
0.826

	
LED




	
534

	
0.100

	
0.109

	
0.457

	
0.217

	
0.000

	
0.063

	
0.055

	
0.795

	
HPS




	
Avg.

	
0.111

	
0.220

	
0.328

	
0.088

	
0.052

	
0.044

	
0.156
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Figure 1. Methodological scheme of the study. 
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Figure 2. Georeferenced ISS-produced (taken on 29.11.2015 by Nikon D4 DSLR camera; ID ISS045-E-148262) (a) and radiometrically calibrated (b) night-time image of the Haifa region. In situ measurements (n = 610), performed in March 2015 via Konica Minolta CL-500A spectrometer, are marked by red dots in the right sub-figure. 
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Figure 3. Graphical illustration of the constituents for synthetic bands’ radiance computation: spectral sensitivity of RGB bands of Nikon D4 DSLR camera (a), atmospheric transmittance (b), and reference spectrum of AB magnitude system (c). 
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Figure 4. Spectral signatures of selected representatives of each lamp type used in the analysis. Note: The following lamps’ signatures are depicted: ‘CFL’ = Compact Fluorescent Lamp of 2776K; ‘CMH’ = Ceramic Metal Halide of 2829K; ‘HPS’ = High-Pressure Sodium of 2005K; ‘LPS’ = Low Pressure Sodium of 1701K; ‘Incand’ = Incandescent Tungsten of 2805K; ‘MV’ = Mercury Vapor of 4717K; and ‘LED’ = LED of 3033K. At that, for lamp types under analysis, the temperatures varied in the diapason of 2478-5576K for ‘CFL’; 2378–6075K for ‘MH’; 1732–2176K for ‘HPS’; 2021–2911K for ‘Incand’; 4075–4741K for ‘MV’; and 1833–9089K for ‘LED’. 
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Figure 5. B/G vs. G/R ratios of the simulated synthetic bands: Fluorescent (a), Metal Halide (b), HPS (c), Incandescent (d), Mercury Vapor (e), and LED (f) lamps. Note: LPS lamp, reporting G/R = 0.18 and B/G = 0.02, is the only representative of the type and is not depicted in the figure. 
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Figure 6. Main characteristics of selected representative ground truth measurements: localities (marked as red dots) (a), G/R and B/G ratios (b), and Euclidian distances distribution from the corresponding ISS pixel in G/R, B/G coordinate system (c). 
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Figure 7. Model-anticipated relative contribution of High-Pressure Sodium (a,c) and Metal Halide (b,d) lamps in the outdoor lighting in Haifa area (a,b) and selected ROIs (c,d): “1” = Haifa Bay Area; “2” = Khof Shemen Industrial Zone; “3” = Haifa Airport. Note: Water and vegetation masks (marked, respectively, blue and green) were produced from Landsat 8 OLI/TIRS C2 L2 dataset image (path 174 row 037) acquired on 8 June 2015 [40]. For vegetation mask, normalized difference vegetation index (NDVI) was calculated as NDVI = (Band5 − Band6)/(Band5 + Band6) [41], and levels in 0.22–0.25 and >0.25 diapasons were marked as light and dark green. For the water mask, normalized difference moisture index (NDMI) was calculated as NDMI = (Band5 − Band4)/(Band5 + Band4) [42]. 
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Table 1. The performance of models (in terms of R2) with alternative predictor sets, for the training and the testing sets (dependent variable = relative contribution of a certain lamp type).
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Model

Type

	
Subset

	
Lamp Type




	
HPS

	
MH

	
LED

	
CFL

	
LPS

	
Incand

	
MV






	
Predictor set 1: R, G, B




	
Linear regression

	
Training

	
0.34

	
0.23

	
0.03

	
0.06

	
0.16

	
0.09

	
0.17




	
Testing

	
0.28

	
0.18

	
−0.11

	
0.00

	
0.07

	
0.03

	
0.13




	
Neural network

	
Training

	
0.39

	
0.07

	
−0.44

	
−0.32

	
−0.96

	
−0.32

	
−0.58




	
Testing

	
0.34

	
−0.09

	
−1.27

	
−0.46

	
−1.72

	
−0.48

	
−0.96




	
Random forest

	
Training

	
0.88

	
0.86

	
0.77

	
0.75

	
0.79

	
0.81

	
0.82




	
Testing

	
0.46

	
0.40

	
−0.17

	
0.19

	
0.00

	
0.25

	
0.39




	
Predictor set 2: G/R, B/G, GG/RB




	
Linear regression

	
Training

	
0.52

	
0.33

	
0.02

	
0.11

	
0.21

	
0.09

	
0.22




	
Testing

	
0.50

	
0.29

	
−0.08

	
0.06

	
0.08

	
0.00

	
0.17




	
Neural network

	
Training

	
0.53

	
0.39

	
0.04

	
0.14

	
0.19

	
0.17

	
0.31




	
Testing

	
0.47

	
0.32

	
−0.12

	
0.04

	
−0.02

	
0.02

	
0.21




	
Random forest

	
Training

	
0.87

	
0.84

	
0.74

	
0.72

	
0.80

	
0.68

	
0.83




	
Testing

	
0.55

	
0.47

	
−0.03

	
0.12

	
0.22

	
−0.16

	
0.53




	
Predictor set 3: G/R, B/G, Mahalanobis distance




	
Linear regression

	
Training

	
0.53

	
0.35

	
0.03

	
0.11

	
0.21

	
0.10

	
0.34




	
Testing

	
0.50

	
0.30

	
−0.08

	
0.07

	
0.10

	
−0.04

	
0.30




	
Neural network

	
Training

	
0.24

	
0.40

	
0.05

	
0.13

	
0.13

	
0.13

	
0.27




	
Testing

	
0.19

	
0.32

	
−0.16

	
0.01

	
−0.04

	
−0.05

	
0.20




	
Random forest

	
Training

	
0.87

	
0.85

	
0.74

	
0.75

	
0.78

	
0.81

	
0.84




	
Testing

	
0.53

	
0.47

	
0.13

	
0.20

	
0.19

	
0.38

	
0.43




	
Predictor set 4: G/R, B/G, Euclidean distance to the line




	
Linear regression

	
Training

	
0.52

	
0.34

	
0.05

	
0.11

	
0.21

	
0.11

	
0.29




	
Testing

	
0.50

	
0.29

	
−0.07

	
0.07

	
0.10

	
−0.12

	
0.24




	
Neural network

	
Training

	
0.26

	
0.36

	
0.06

	
0.11

	
0.13

	
0.13

	
0.29




	
Testing

	
0.22

	
0.28

	
−0.25

	
−0.03

	
−0.04

	
−0.10

	
0.22




	
Random forest

	
Training

	
0.86

	
0.84

	
0.73

	
0.75

	
0.78

	
0.81

	
0.85




	
Testing

	
0.49

	
0.45

	
0.06

	
0.19

	
0.19

	
0.38

	
0.53








Note: The lamps are sorted from left to right in descending order of their relative contributions (see results of unmixing analysis, reported in Appendix A Table A1).
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