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Abstract: We present a novel approach to mapping the storage coefficient (Sk) from InSAR-derived
surface deformation and S-wave velocity (Vs). We first constructed a 3D Vs model in the Kumamoto
area, southwest Japan, by applying 3D empirical Bayesian kriging to the 1D Vs profiles estimated by
the surface-wave analysis at 676 measured points. We also used the time series of InSAR deformation
and groundwater-level data at 13 well sites covering April 2016 and December 2018 and estimated the
Sk of the confined aquifer. The Sk estimated from InSAR, and well data ranged from ~0.03 to 2 × 10−3,
with an average of 7.23 × 10−3, values typical for semi-confined and confined conditions. We found
a clear relationship between the Sk and Vs at well locations, indicating that the compressibility
of an aquifer is related to the stiffness or Vs. By applying the relationship to the 3D Vs model,
we succeeded in mapping the Sk in an extensive area. Furthermore, the estimated Sk distribution
correlates well with the hydrogeological setting: semi-confined conditions are predicted in the
Kumamoto alluvial plain with a high Sk. Our approach is thus effective for estimating aquifer storage
properties from Vs, even where limited groundwater-level data are available. Furthermore, we can
estimate groundwater-level variation from the geodetic data.

Keywords: storage coefficient; InSAR-derived deformation; S-wave velocity; microtremor survey

1. Introduction

Groundwater is a vital water resource in arid and remote regions. Given changing
climate and human development, there is an increasing need for groundwater exploration,
monitoring, and management. Effective groundwater management commonly relies on
measurements of hydraulic head and storage properties. Groundwater from deep confined
aquifers offers a viable source of fresh water and a buffer against severe drought conditions.
Estimating hydrogeological properties is therefore important for developing sustainable,
long-term water management strategies. Aquifer characteristics are usually estimated
by analyzing pumping or recovery test data, including measuring water-level variations
at monitoring wells [1–6]. However, the high cost of aquifer testing has restricted the
monitoring of groundwater resources, and knowledge of their spatiotemporal evolution
remains sparse [7].
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Surface displacement due to hydraulic head change has occurred in many areas
worldwide [8–15]. Terzaghi [16] proposed the poroelasticity theory that relates an aquifer
system’s consolidation to its head change. Based on the consolidation curve of soil, when
the hydraulic head of the deep aquifer declines (i.e., the effective stresses increase), com-
paction occurs in both aquifers and aquitards (i.e., consolidation), causing ground sub-
sidence. In contrast, when the groundwater level recovers, the aquifer system expands,
inducing surface uplift. The amount of aquifer deformation caused by changes in ground-
water level is quantified by the skeletal storage coefficient (Sk), a parameter that describes
the skeletal compressibility of the aquifer system [17]. In a confined aquifer, it has been
known that the Sk is linked to matrix compressibility [18]. Therefore, mapping and charac-
terizing the Sk is vital for understanding aquifer site characteristics.

Interferometric synthetic aperture radar (InSAR) time-series analysis can estimate
time-series surface displacement with a high spatial resolution. Previous studies have
used InSAR-derived surface displacement to estimate the Sk of confined aquifers because
the Sk can be derived from the amount of surface displacement for a given groundwater-
level change at the location of a groundwater observation well [17,19–23]. However,
despite the effective InSAR-based approach, estimating the Sk is limited to the location
of the wells where the groundwater level is observed. Therefore, if the distribution of
groundwater wells is scattered or uneven, the spatial distribution of the Sk cannot be
understood sufficiently.

Noninvasive methods through surface-wave analysis are widely used to estimate
shallow S-wave velocity (Vs) structures (e.g., the work of [24]). In the microtremor survey
method, surface waves included in passive seismic data (microtremor) are usually analyzed
for estimating Vs structures [25]. The microtremor survey can be easily applied in various
environments because it does not require active sources (i.e., vibroseis) but uses vibrations
of the earth’s surface from human activities such as transportation or natural phenomena
such as the flow of surface water [25]. Subsurface characterization using microtremor array
measurements has become a powerful tool for detecting hidden faults [26], delineating
fracture zones [27], and identifying soil-rock mixture landslides [28]. In addition, it is
used for estimating site effects and seismic hazards in urban areas [29], detecting buried
faults and structures during exploration for geothermal energy and minerals [30–32] and
assessing liquefaction potential [33,34]. Previous studies further reported body- and surface-
wave analyses to characterize aquifer systems [35–37]. From previous works, Vs is related to
matrix compressibility [38–40], so shallow Vs structures derived from a microtremor survey
could be used to predict properties of groundwater aquifers (e.g., storage coefficients).

This study proposes a novel approach for mapping the Sk with a high spatial resolution
using Vs modeling, time series of surface displacement via InSAR, and groundwater-level
data. In our proposed method, the Vs depth profiles were firstly estimated via observation
using a miniature microtremor array and their 3D distribution using the 3D empirical
Bayesian kriging method. The Sk of the confined aquifer was then estimated at groundwater
well sites from the time series of InSAR displacement and groundwater-level data. An
empirical relationship between the Sk and Vs was subsequently estimated using the data at
the corresponding depth of the well locations. The spatial distribution of the Sk was finally
estimated by applying the estimated Sk–Vs relationship to the 3D Vs model. Therefore, this
approach (i.e., mapping the Sk) facilitates estimating variations in groundwater levels from
InSAR-derived surface displacement data.

We applied the proposed method to the data from 2016 to 2018 in the Kumamoto
area, southwest Japan. In this area, the 2016 Kumamoto earthquake (Mw 7.0) occurred
on 16 April 2016. Previous InSAR data analysis mapped and analyzed detailed surface
displacement after the 2016 Kumamoto earthquake [41,42]. Specifically, Ishitsuka et al. [42]
detected seasonal and transient surface displacements due to groundwater-level variations
associated with the earthquake. Although the previous study has suggested a certain
correlation between surface displacements and changes in groundwater levels through Sk,
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their spatial distribution in the Kumamoto area has not been fully investigated because
limited groundwater-level data were available.

2. Study Area

The Kumamoto area lies in central Kyushu Island, southwestern Japan (Figure 1).
Hossain et al. [43,44] and Hosono et al. [45] reported its geological and hydrogeological
settings and the geochemical processes controlling its groundwater. The eastern part of the
study area is a volcanic area of the Quaternary age covered by pyroclastic-flow deposits
erupted from the Aso volcano and alluvial deposits of the Pleistocene age. The western
portion (especially coastal area) comprises the Kumamoto alluvial plain, consisting of
Holocene Ariake clay [45,46]. The pyroclastic-flow deposits erupted from Mt. Aso over
four periods between 90 and 30 ka and are classified into four types: Aso-4, Aso-3, Aso-2,
and Aso-1. The pyroxene andesite called Togawa lava lies on the Aso-1, and the upper
clacked part connects to the bottom of Aso-3 [46]. Two main faults are distributed in the
study area: the Futagawa fault, which cuts the lava plateau and runs along the boundary
between Cretaceous rocks and the Kumamoto plain, and the Hinagu fault, which runs
from the south next to the alluvial plain toward the north through bedrocks to merge with
the Futagawa fault. The 2016 Kumamoto earthquake sequence (Mw 7.0) along these two
fault systems [47–49] caused widespread damage and disrupted infrastructure (e.g., the
work of [50]).

Water supply in the Kumamoto area mainly relies on its abundant groundwater [51].
The Kumamoto aquifer system is mainly recharged from the western rim of Mount Aso,
three major highland areas (Ueki, Kikuchi, and Takayubaru), and the midstream area of the
Shira River being located in the north next to Takayubaru; its topography leads the ground-
water flow direction to the southwest [52]. The Aso volcanic rock (pyroclastic flow and
Togawa lava) is highly porous and permeable, making it an excellent aquifer (Figure 2) [53].
The unconfined aquifer is composed of recent pyroclastic-flow deposits (uppermost Aso-4)
and partial marine sediments (<50 m deep). The underlying confined/semi-confined
aquifer consists of older pyroclastic deposits and volcanic flow lavas (60–250 m) [45,54].
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Figure 1. (a) Geological map of the study area [55]. (b) Location map of the study area (red rectangle)
created using ArcGIS® software by Esri. The red rectangle indicates the location of panel a.
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3. Data Sets
3.1. InSAR Data

We used InSAR surface displacement data reported by Ishitsuka et al. [42], which
was derived from persistent scatterer interferometry (PSI) analysis of ALOS-2/PALSAR-2
synthetic aperture radar (SAR) images. PSI analysis estimates time-series surface displace-
ments using phase differences at coherent pixels called persistent scatters (PSs) [56,57]. In
addition, PSI analysis has strategies to mitigate nuisance components of the phase differ-
ences attributed to changes in atmospheric states and errors in a digital elevation model.
The accurate phase information at PSs and the mitigation of nuisance phase differences
(phase differences caused by factors other than surface displacement) enable us to estimate
accurate time-series surface displacements.

Ishitsuka et al. [42] used 28 ALOS-2/PALSAR-2 images acquired in a descending
track mode orbit between 18 April 2016 and 10 December 2018. The PSI processing flow
used in Ishitsuka et al. [42] was based on Kampes [57]. First, they selected interferometric
pairs for single reference images. To select PS candidates (PSCs), they used an amplitude
dispersion index [56] of 0.30. Following that, differential interferograms were created at
the PSCs with a single-look. Next, they removed topographic phase components using a
10 m mesh external digital elevation model (DEM) provided by the Geospatial Information
Authority of Japan. The stability of the interferometric phase of PSCs was then assessed
based on phase coherence [56] and selected PSs as pixels above a coherence threshold of
0.80. Subsequently, the residual orbital fringes were removed, and the DEM errors and
the displacement rates were estimated from a least-squares method. Phase unwrapping
was then performed using a minimum cost flow algorithm [58]. Next, they reduced the
atmospheric phase component by smoothing the change in the temporal phase because the
atmospheric phase contribution is generally characterized by a high temporal frequency
(e.g., the work of [56]). They showed that the line-of-sight surface displacements estimated
from the PSI analysis are consistent with global navigation satellite system (GNSS) ob-
servations in the study area [42]. For characterizing the source of surface displacement,
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Ishitsuka et al. [42] created a model of temporal displacement caused by seasonal and
long-term factors using sinusoidal and exponential functions, respectively, as follows:

U(t) = α

{
sin
(

2π

365
t + θ

)
− sin(θ)

}
+ β

{
exp
(
− t

k

)
− 1
}

(1)

where α is the amplitude of the seasonal displacement, and θ represents the phase shift that
indicates the beginning of the seasonal displacement. The factor sin(θ) was used to ensure
that U(0) = 0. Here, β is a coefficient representing the magnitude of the exponential function,
and k is the exponential decay coefficient. From the least-squares method (Equation (1)),
four unknown parameters (i.e., α, θ, β, and k) were estimated. To estimate θ and k, a grid
search algorithm was used with intervals of 5◦ and a search range from −180 to 180◦

for θ and an interval of 10 with search range from 20 to 10,000 for k for determining the
coefficients α and β. The least-squares method was applied during the grid search. After
that, the optimal values of four parameters (α, θ, β, and k) that reduce the error of mean
square between the modeled and PSI time-series displacement were determined.

The estimated displacement maps show transient and seasonal surface displacements
posterior to the 2016 Kumamoto earthquake (Figure 3). Transient displacements around
the central and western part of the study area are attributed to groundwater migration
through new coseismic ruptures (black rectangle in Figure 3a) and sediment compaction
(the coastal area around the Ariake Sea (red rectangle in Figure 3a). Meanwhile, seasonal
surface displacements based on Equation (1) in the northern and central parts are likely
related to changes in groundwater levels, as shown in Figure 3b [42].
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3.2. Piezometric Data

We used the time series of monthly average groundwater levels at 13 well sites
(triangles in Figure 3b) acquired between 17 April 2016 and 10 December 2018. All wells
were located in the northern part of the study area, where seasonal surface displacements
were estimated with a magnitude up to 5 mm (Figure 3b; Ishitsuka et al. [42]), and measured
the groundwater level at the confined aquifer. The upper and lower ends of the strainer
depth for each well are shown in Table 1. For most wells, the strainer depth ranges
from 50 to 170 m (Table 1), corresponding to a single aquifer. Surface displacements
(topographic changes) were induced up to a few meters by the 2016 Kumamoto earthquake.
Each well top height was re-measured after the earthquake (2017) by the leveling, and
post-earthquake groundwater level (m a.s.l.) was adjusted by updated height data.

Table 1. Depth of strainer, Vs, estimated storage coefficient, its standard error, p-value, and correlation coefficient of the
confined aquifer at 13 well sites.

Well Depth of Strainer (m)
(Top, Bottom) Vs (m/s) Sk Estimated

Using InSAR
Standard Error of Sk Estimated

Using InSAR × 10−3 p-Value Correlation
Coefficient

SS-004 (52.0, 107.0) 537 0.012 3.9 0.0569 0.5191

SS-006 (30.3, 88.5) 263 0.011 4.8 0.0432 0.5108

SS-003 (64.0, 130.0) 533 0.002 0.5 0.0075 0.6594

SS-18 (59.0, 89.0) 432 0.003 0.1 0.0148 0.5794

SS-005 (3.5, 17.0) 263 0.030 13.3 0.043 0.5469

SS-17 (100.5, 144.5) 455 0.003 2.6 0.243 0.3843

S-25 (83.5, 94.5) 288 0.005 2.0 0.0162 0.5866

SS-16 Unknown 532 0.003 1.6 0.047 0.503

SS-127 (80.0, 146.0) 295 0.007 5.8 0.027 0.5868

SS-15 (88.0, 170.0) 455 0.004 1.6 0.0228 0.5823

K-K7 (51.5, 91.5) 700 0.006 2.9 0.0197 0.4825

KK-10 (88.0, 98.0) 439 0.002 0.4 0.0011 0.7073

K-K3 (43.0, 70.5) 514 0.006 1.5 6.74 × 10−05 0.7112

3.3. Three-Dimensional S-Wave Velocity Model

To estimate the spatial variation of S-wave velocities in the study area, we used 1D
Vs profiles estimated from microtremors using a miniature seismic array [59] at 676 obser-
vation points by the National Research Institute for Earth Science and Disaster Resilience
(NIED; [60]). The interval between observation points ranged from approximately 100 m
to 1000 m. To collect microtremor data, we conducted microtremor surveys combining a
triangular array (radius: 0.6 m) with one central station and an irregular triangular array
(side ranges from 4 to 10 m or more) at each observation point with a sampling frequency of
200 Hz (Figure 4). The microtremor surveys were conducted using an integrated, portable
housing seismometer, JU410, manufactured by the Hakusan Corporation based on the
cloud microtremor observation system [61].

First, the horizontal/vertical (H/V) spectral ratio and the phase velocity dispersion
curves of Rayleigh waves were estimated from the observed microtremors. Second, the
Vs structure at each observation point was estimated by the joint inversion of the H/V
spectral ratio and dispersion curves using a genetic algorithm inversion [62,63]. Finally,
geostatistical interpolation by Empirical Bayesian Kriging 3D (EBK3D) was applied to
predict the Vs at unsampled points in 3D space. EBK3D is available in ArcGIS Pro software
as a geoprocessing tool. Empirical Bayesian kriging (EBK) [64] is different from other
kriging methods; the EBK-based approach considers standard prediction errors and auto-
matically estimates the semivariogram parameters using restricted maximum likelihood.
EBK involves the following steps:
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1. Estimation of a semivariogram model from the original data;
2. Prediction of data at each of the observed points from the semivariogram;
3. Estimation of a new semivariogram model and its weight from the predicted data;
4. Repeating steps 2 and 3 creates a spectrum of the semivariogram models;
5. Prediction of Vs and their standard errors at unmeasured locations using these weights.
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4. Methodology: Mapping the Skeletal Storage Coefficient

The skeletal storage coefficient, Sk, of a confined aquifer (also called storativity) is
a dimensionless measure of the volume of water released from or taken into storage per
unit surface area of the aquifer per unit change in the hydraulic head [65]. It is defined
as Sk = Ss·b, where Ss is specific storage (L−1), and b is the thickness (L) of the aquifer.
We estimated the Sk of the confined aquifer system from 2016 to 2018 using the following
relationship with surface displacement (∆b, from PSI) and the change in the hydraulic head
(∆h) at the 13 well sites [66,67]:

Sk =
∆b
∆h

(2)

This relationship is valid when the deformation is elastic. Theoretically, the coefficient
is described by the function of aquifer compressibility (Equation (3)), assuming that the
porosity does not change significantly with elastic deformation [68]:

Sk = ρg(cm + ncw)b (3)

where ρ is the pore fluid density, g is the acceleration due to gravity, cm is the matrix com-
pressibility, n is the porosity, cw is the pore fluid compressibility, and b is the thickness (L)
of the aquifer. Thus, the soil’s (matrix) compressibility represents its volume change in
response to the applied pressure [68].

Before estimating Sk using Equation (2), we eliminated multivariate outliers in the
data using Z-score. It is a statistical method to measure the divergence of observed data
points from its mean. Z-score can be computed as follows:
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Z =
Xi − µ

σ
, (4)

where Xi is i th sample point, µ refers to the mean of the data set, and σ is the standard
deviation. Since we analyzed multivariate data (i.e., surface deformation and hydraulic
head), we computed Z-score in 2D space. We define outliers if the Z-score of the data
exceeds the threshold (Figure 5).
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To predict the Sk values where groundwater-level data (i.e., well data) were not
available, we proposed a new approach based on Vs. Previous studies show a relationship
between Vs and aquifer compressibility. For example, Cha et al. [38] noted that shear
stiffness and compressibility could be estimated using Vs, as they reported relationships
between soil compressibility and the small strain parameters used in velocity–stress power
relations. These relationships suggested that cemented dense sediments are characterized
by low compressibility and high Vs and vice versa. Martin et al. [39] investigated a shear
zone formed by an igneous rock to estimate hydraulic conductivity and normal stiffness
using borehole data. They reported that low stress and stiffness regions exhibit high
storage coefficients and hydraulic conductivity. Li et al. [69] derived a formula for rock
compressibility based on soil mechanics concepts [70], indicating the dependence of rock
compressibility on the rigidity of rock minerals. Therefore, the Sk can be linked to Vs.
We thus constructed the Sk–Vs relationship by plotting the Sk and Vs at the water level
depth estimated at each well. Using the Sk–Vs relationship, we then estimated Sk values
from only the Vs. This approach enables us to map the Sk distribution where only Vs data
were available.

5. Results and Interpretation
5.1. Three-Dimensional S-Wave Velocity

Figure 6 shows maps of Vs at different depths. A low-velocity zone observed in
the western coastal area correlated well with the Kumamoto alluvial plain covered by
Holocene Ariake clay. We calculated the average Vs for a depth down to 30 m (Vs30) and
could identify the faulted/fractured zones as low-Vs zones in the map of Vs30 (Figure 7)
that coincided with the Futagawa fault system. We compared surface displacements by
InSAR data analysis with the Vs structure to examine whether surface displacements
are linked to subsurface properties. The low-velocity regions correlated with surface
displacement associated with the 2016 Kumamoto earthquake sequence found by the
InSAR technique [41,42,47]. The rock strength is reduced by faulting and fracturing, and
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such reduction is reflected by a reduction in shear coupling and Vs [71]. Therefore, we
demonstrate the potential of using microtremors to detect faulted/fractured zones.

Based on the Vs model (Figure 6), furthermore, we can evaluate the liquefaction area.
During liquefaction, the effective stress is close to zero because of the increase in pore
pressure. A mechanism of undrained consolidation for soil liquefaction has often been
discussed [72,73] based on the theory of poroelasticity [16] that relates effective stress to
the pressure of the pore fluids. A reduction in effective stress associated with increasing
pore pressure should be reflected by reducing the mechanical strength of sediments that
weakens them, so the Vs is a very important parameter to evaluate liquefaction. The soil in
the southwestern Kumamoto area was classified as soft or stiff in the Vs30 map according
to the classification by the National Earthquake Hazard Reduction Program (NEHRP)and
the American Society of Civil Engineers (ASCE) [74,75] (Figure 7). Velocities down to a
depth of around 20 m were lower than 200 m/s in the western part (Figure 6), representing
an upper limit of the range of velocities in liquefiable soil [76]. The region of low velocity is
consistent with the area affected by liquefaction during the 2016 Kumamoto earthquake.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 17 
 

 

reflected by a reduction in shear coupling and Vs [71]. Therefore, we demonstrate the po-
tential of using microtremors to detect faulted/fractured zones. 

Based on the Vs model (Figure 6), furthermore, we can evaluate the liquefaction area. 
During liquefaction, the effective stress is close to zero because of the increase in pore 
pressure. A mechanism of undrained consolidation for soil liquefaction has often been 
discussed [72,73] based on the theory of poroelasticity [16] that relates effective stress to 
the pressure of the pore fluids. A reduction in effective stress associated with increasing 
pore pressure should be reflected by reducing the mechanical strength of sediments that 
weakens them, so the Vs is a very important parameter to evaluate liquefaction. The soil 
in the southwestern Kumamoto area was classified as soft or stiff in the Vs30 map accord-
ing to the classification by the National Earthquake Hazard Reduction Program 
(NEHRP)and the American Society of Civil Engineers (ASCE) [74,75] (Figure 7). Velocities 
down to a depth of around 20 m were lower than 200 m/s in the western part (Figure 6), 
representing an upper limit of the range of velocities in liquefiable soil [76]. The region of 
low velocity is consistent with the area affected by liquefaction during the 2016 Kuma-
moto earthquake. 

 
Figure 6. S-wave velocity distribution at depths of 10–40 m. Black dots are Vs observation points. Purple lines are linear 
surface ruptures mapped using InSAR by Fujiwara et al. [47], and the green and blue lines refer to Futagawa and Hinagu 
faults [77]. 

Figure 6. S-wave velocity distribution at depths of 10–40 m. Black dots are Vs observation points. Purple lines are
linear surface ruptures mapped using InSAR by Fujiwara et al. [47], and the green and blue lines refer to Futagawa and
Hinagu faults [77].



Remote Sens. 2021, 13, 4391 10 of 17Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 7. The average Vs for the upper 30 m of a soil profile. Black dots are Vs observation points, 
purple lines are linear surface ruptures mapped using InSAR by Fujiwara et al. [47], and the green 
and blue lines refer to Futagawa and Hinagu faults [77]. Background map is from ArcGIS® software 
by Esri. 

5.2. Skeletal Storage Coefficient and S-Waves Velocity Relationship 
We used the time series of InSAR-derived surface deformation and groundwater-

level data to determine the storage properties of the confined aquifer at 13 well sites (Fig-
ure 3b). Table 1 shows that the storage coefficient values at the 13 sites ranged from ~0.03 
to 2 × 10−3, with an average of 7.23 × 10−3 after outlier removal using Z-score. Most of the 
correlations between InSAR displacement and well data are statistically significant based 
on the p-value (<0.05). Since the correlation at SS-17 does not show statistical significance, 
we excluded the estimated Sk in the following analysis. Pearson’s correlation coefficient 
(R) and the standard errors of the Sk estimates are also shown in Table 1. The estimated 
values of Sk correspond to those of semi-confined and confined conditions [78,79]. The 
deep aquifer in the study area is semi-confined to confined due to the discontinuity of the 
impermeable clay layer of lacustrine sediments [45]. 

We then observed a negative correlation between the Sk and Vs (Figure 8). Exponen-
tial curve fitting found the following empirical relationship between Sk and Vs: 𝑆𝑘 = 6.214× Vs−1.166 (5)

Around 83.3% of data points lie within the ±95% confidence interval of the relation-
ship in Equation (5). The relationship between Sk and Vs can be explained by the relation-
ship between compressibility and stiffness (or Vs), as mentioned in the previous sections. 

Figure 7. The average Vs for the upper 30 m of a soil profile. Black dots are Vs observation points,
purple lines are linear surface ruptures mapped using InSAR by Fujiwara et al. [47], and the green
and blue lines refer to Futagawa and Hinagu faults [77]. Background map is from ArcGIS® software
by Esri.

5.2. Skeletal Storage Coefficient and S-Waves Velocity Relationship

We used the time series of InSAR-derived surface deformation and groundwater-level
data to determine the storage properties of the confined aquifer at 13 well sites (Figure 3b).
Table 1 shows that the storage coefficient values at the 13 sites ranged from ~0.03 to
2 × 10−3, with an average of 7.23 × 10−3 after outlier removal using Z-score. Most of the
correlations between InSAR displacement and well data are statistically significant based
on the p-value (<0.05). Since the correlation at SS-17 does not show statistical significance,
we excluded the estimated Sk in the following analysis. Pearson’s correlation coefficient (R)
and the standard errors of the Sk estimates are also shown in Table 1. The estimated
values of Sk correspond to those of semi-confined and confined conditions [78,79]. The
deep aquifer in the study area is semi-confined to confined due to the discontinuity of the
impermeable clay layer of lacustrine sediments [45].

We then observed a negative correlation between the Sk and Vs (Figure 8). Exponential
curve fitting found the following empirical relationship between Sk and Vs:

Sk = 6.214 × Vs−1.166 (5)

Around 83.3% of data points lie within the ±95% confidence interval of the relationship
in Equation (5). The relationship between Sk and Vs can be explained by the relationship
between compressibility and stiffness (or Vs), as mentioned in the previous sections.
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5.3. Mapping of the Skeletal Storage Coefficient to Monitor Groundwater Level from InSAR Data

To map Sk, we applied the Sk–Vs relationship to areas where only Vs were estimated
from the microtremor survey (Figure 9). The estimated Sk (Figure 9) is correlated with the
hydrogeological setting, where the Sk greater than 0.01 in the southwestern part of the
study area reflected semi-confined conditions due to discontinuity of the impermeable clay
layer of lacustrine sediments underlying the deep aquifer [45]. This area is covered by an
alluvial plain and terrace deposits (Figure 1) composed of large amounts of unconsolidated
sediments with high compressibility and low Vs. Wilson and Wöhling [80] found that
vertical transmissivity and storage coefficient decrease significantly with depth due to the
increasing tortuosity of permeable flow pathways in the deeper parts causing groundwater
to flow horizontally through shallow pathways.

6. Discussion

This study demonstrates the feasibility of using Vs, InSAR-derived surface deforma-
tion, and groundwater-level data to map the storage properties of a confined aquifer at high
spatial resolution (Figure 9). Therefore, we can estimate the spatiotemporal variation of
groundwater level based on geodetic data (i.e., surface displacement derived from InSAR
or GNSS). Our approach could offer great potential for improving the groundwater flow
modeling by using the estimated Sk. However, the successful application of the approach
requires consideration of the investigation depth of Vs estimated from microtremor sur-
veys. As the Vs at a water level depth is used to construct a relationship between Sk and
Vs, microtremor surveys need to be designed to cover the depth of the water level in a
study area.
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In general, the uncertainty of Sk occurs for the following reasons.

(1) The Sk is biased if the horizontal displacement is not considered in the Sk calculation [81].
In our study area, horizontal fluid movement occurs over the groundwater system [23].

(2) Monitoring wells observe water from one aquifer in the saturated confined aquifer
system [81]. Hoffmann et al. [23] mentioned that the estimated Sk would be inaccurate
if hydraulic heads at piezometers do not represent the average local condition in the
groundwater system. Most of the wells in this study correspond to a single confined
aquifer based on the strainer depth information. Although there is a possibility that
the temporal variation of the deeper aquifer may generate errors in estimating Sk, we
assume the influence of the shallowest confined aquifer is dominant.

(3) Error in measurements of InSAR displacement is due to atmospheric phase effects.
In this study, temporal filtering was used to mitigate the error of atmospheric contri-
bution. Because PSI displacements were consistent with the F3 solution of GEONET,
GSI, Japan, the error in measurements of InSAR displacement could be minor.

(4) Incomplete removal of the long-term subsidence from the land deformation time
series for case studies of high subsidence rate. To completely separate long-term
trends of subsidence and hydraulic head from their time series, daily or weekly
measurements of InSAR and head time series for several years are required [82].

Although these factors generate uncertainty for the estimated Sk, a part of uncertainty
was suppressed by removing outliers of InSAR displacements and groundwater-level data
using a Z-score.

To validate the Sk–Vs relationship, furthermore, we applied a statistical method called
repeated holdout cross-validation. In this method, the original data are split into two data
sets. One data set is used for testing (validation) of the model, and another is used as
a training data set. Validation and training data sets contain four and nine data points,
respectively. Exponential curve fitting was applied to the training data set, and the resulting
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model was used to evaluate the root mean square error (RMSE) of the testing data set
as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

[
Z(xi)

− Z(yi)

]2
(6)

where Z(xi)
and Z(yi)

are measured and estimated Sk values of the i sampling point, respec-
tively, and N is the total number of observation points. In our case, N corresponds to the
number of validation data sets (N = 3). The method is repeated 20 times (trials) to estimate
the RMSE of each trial (Figure 10). The low RMSE (averaged RMSE = 8.1 × 10−3) indicates
that the constructed equation (i.e., Equation (5)) can estimate Sk values at unmeasured
points with a minor error.
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Thus, if we can validate the parameters used in our model, this approach could
be used to map the Sk and temporal variation of groundwater levels from the surface
deformation (geodetic data) at a lower cost.

7. Conclusions

This study proposes a new approach to map storage coefficients from surface dis-
placements, groundwater-level data, and a high-resolution Vs model. Its main findings are
summarized as follows.

• The zone of low Vs found by the microtremor survey could have coincided with the
Futagawa fault zone;

• Sk of the confined aquifer ranges between ~0.03 and 2 × 10−3, with an average of
7.23 × 10−3, reflecting semi-confined and confined conditions;

• An empirical relationship between the Sk and Vs was found, indicating that aquifer
compressibility is linked to its stiffness and Vs;

• The map of Sk estimated from the empirical relationship correlates with the hy-
drogeological setting and can be used to estimate the spatiotemporal variation of
groundwater-level based on the geodetic data.
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In conclusion, our approach can effectively estimate aquifer storage properties from
S-wave velocities even where limited groundwater level data are available.
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