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Abstract: Dramatic urban land expansion and its internal sub-fraction change during 2000–2020
have taken place in Africa; however, the investigation of their spatial heterogeneity and dynamic
change monitoring at the continental scale are rarely reported. Taking the whole of Africa as
a study area, the synergic approach of normalized settlement density index and random forest
was applied to assess urban land and its sub-land fractions (i.e., impervious surface area and
vegetation space) in Africa, through time series of remotely sensed images on a cloud computing
platform. The generated 30-m resolution urban land/sub-land products displayed good accuracy,
with comprehensive accuracy of over 90%. During 2000–2020, the evaluated urban land throughout
Africa increased from 1.93 × 104 km2 to 4.18 × 104 km2, with a total expansion rate of 116.49%, and
the expanded urban area of the top six countries accounted for more than half of the total increments,
meaning that the urban expansion was concentrated in several major countries. A turning green
Africa was observed, with a continuously increasing ratio of vegetation space to built-up area and
a faster increment of vegetation space than impervious surface area (i.e., 134.43% vs., 108.88%)
within urban regions. A better living environment was also found in different urbanized regions, as
the newly expanded urban area was characterized by lower impervious surface area fraction and
higher vegetation fraction compared with the original urban area. Similarly, the humid/semi-humid
regions also displayed a better living environment than arid/semi-arid regions. The relationship
between socioeconomic development factors (i.e., gross domestic product and urban population)
and impervious surface area was investigated and both passed the significance test (p < 0.05), with a
higher fit value in the former than the latter. Overall, urban land and its fractional land cover change
in Africa during 2000–2020 promoted the well-being of human settlements, indicating the positive
effect on environments.

Keywords: urban land mapping; remotely sensed images; impervious surface area fraction; vegeta-
tion space fraction; the whole Africa
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1. Introduction

In recent decades, the rapid economic development and technological progress made
great changes in the way of human life, such as the continuously improving infrastruc-
ture [1,2] and medical service [3,4] in urban regions. However, the increasing requirements
of human development on consumption resources led to the hazards of local/regional
environments [5], and further made the global eco-environmental problems more obvi-
ous [6]. The caused issues of climate warming [7], soil erosion [8], extreme rainfall and
drought [9,10], carbon emission [11], and public health events [12,13] in the human develop-
ment not only affected the sustainable development of social economy, but also threatened
the well-being of human life [14]. Land use evolution played an irreplaceable basic role in
monitoring these globally ecological environments and made the fast response to global
changes [15,16]. As one of the main global land use change types, urban land area has been
showing a continuous and violent expansion process [17,18], and its area by 2030 will be
three times greater than that of 2000 [19]. In particular, the highly spatial mosaic of land use
types, such as impervious surface area and vegetation space inside the cities, displayed the
surprisingly rapid evolution in the process of urban land expansion [20]. The large-scale
assessment and dynamic detection of urban land and its internal land cover changes were
conducive to explore their potential impact on the globally eco-environmental issues, such
as climate, hydrological system, biodiversity, and biogeochemistry, in the evolution of
land use.

Urban land and its internal land cover changes displayed greatly regional differences
in the land expansion speed, dimension, spatial form, and internal structure [21]. Cur-
rently, most countries in the European continent, North America, and South America
have completed the rapid urbanization process and formed a relatively stable urban land
pattern [21,22]. The land covers within the cities on these continents were mainly charac-
terized by low-density impervious surface area and high-density vegetation space [22]. A
large number of vegetation spaces within the cities showed a good regulatory ecosystem
service and urban thermal environment, and, thus, it improved the well-being of human
settlements [23]. Meanwhile, most countries on the Asian continent, such as China and
India, are experiencing a rapid urbanization process [21]. Urban regions continue to expand
outward, along with the complex and dramatic land changes in both newly expanded and
original urban regions [24]. An impervious surface area usually had a higher density and
vegetation, with lower density in urban regions of Asia compared with that of America and
African continents, indicating that the residential vegetation space environment needs to be
improved [22,25]. The environmental effect of urban land changes in these continents was
also investigated from the perspective of bio-geophysical and bio-geochemical cycles [26].
At present, the urbanization process has become the focus and was investigated in much
of the previous literature on a continental scale [22,25,26], but the detection of land and
its sub-land changes in urban regions of the whole African continent was often ignored.
Especially since 2000, rapid economic growth and large-scale population increases in the
African continent may bring about drastic changes in land cover structure within the cities
that need to be revealed.

Remotely sensed satellites have become an important data source for land cover
mapping at the local, regional, and global scales due to their advantages of time series
and spatial coverages [27,28]. High-resolution satellite images, such as quickbird, ikonos,
and Gao Fen, can usually depict a clearer pattern of land spatial heterogeneity [29,30], but
the automatic extraction technology was difficult to obtain good accuracy considering the
“same object with different spectrums” and the “same spectrum with different objects”
phenomenon [31]. When using a high-resolution satellite to carry out large-scale land
mapping, the purchase cost and data processing capacity also need to be considered.
Medium-resolution land resources satellites featuring free availability and good spectral
applicability were always used in land mapping [31,32]. Among them, one of the typical
satellites, Landsat, with good time continuity since 1972 and the properly local 30-m
spatial resolution, was widely applied to monitor land use and related changes at the
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local and regional scales [18,33]. With the development of computer technology and big
data processing, land use from Landsat images achieved large-scale or global-scale 30-m
resolution mapping on a cloud computing platform [25,34]. The African continent was
very large [25,35]. Urban land mapping in such a large area required the use of a big data
processing platform, such as Google Earth Engine.

In this study, urban land and its fractional covers throughout the African continent
were surveyed. The aims of our research were as follows: (1) to generate 30-m resolution
urban land and its fractional sub-land types (i.e., impervious surface area and vegetation
space) data in urban regions of the whole of Africa in 2000, 2010, and 2020, using time
series of remotely sensed images and big data Google Earth Engine platform; (2) to monitor
urban land size and expansion rate in different stages of 2000–2020 throughout Africa
and in different regions and, further, to compare the differences in spatial evolution of the
fractional impervious surface area and fractional vegetation space in sub-Africa regions
and in different urbanization level regions (i.e., newly expanded urban region during 2000–
2020 and original urban region in 2000); and (3) to explore the relationship between urban
land/fractional sub-land changes and the climatic/socioeconomic regions to reveal the
quantitative relationship among them. At length, we also discussed the different vegetation
space and urbanization processes in Africa and other continents, and further discussed the
relationship between urban land change and other potential variables.

2. Methods
2.1. Study Area

Africa is located in the western part of the Eastern Hemisphere, south of Europe
and west of Asia (Figure 1). The border of the African continent extends to Cape Hafeng
(51◦24′E, 10◦27′N) in the east, Cape Ogalas (20◦02′E, 34◦51′S) in the south, Cape Verde
(17◦33′W, 14◦45′N) in the west, and Cape Giran (9◦50′E, 37◦21′N) in the north. It covers
an area of about 30.2 million km2, accounting for 20.4% of the total land area in the world
and becoming the second largest continent in the world (Asia is the largest continent
in the world, with an area of 44.5 million km2) [25]. From the perspective of regional
differentiation, Africa is divided into North Africa and sub-Saharan Africa (i.e., Middle
Africa, East Africa, South Africa, and West Africa). It had a population of about 1.29 billion
on January 2021 and ranks the second in the world after Asia.

The generally social, economic, political, and historical factors usually have an impact
on the urban land change in Africa and, here, we give a brief description in the study area
section. Africa’s social culture is various, such as the languages and religions. African
language culture mainly belongs to four language families, namely, Semito–Hamitic lan-
guages/Afroasiatic languages, Nilo–Saharan languages, Niger–Congo languages, and
Khoisan family [36]. There are three main religious cultures in Africa, including traditional
religion, Islam, and Christianity. Traditional religion is inherent to the native people, with a
long history and broad social foundation. Islam and Christianity were later introduced into
Africa from other regions [37]. The GDP of the whole of Africa is about USD 0.65 × 108,
USD 1.91 × 108, and USD 2.38 × 108 in the years of 2000, 2010, and 2020, along with
the total growth of about USD 1.73 × 108 during 2000–2020. Africa is also a civilized
continent with a long history, along with the historical development process of ancient,
middle ages, modern, and contemporary. In particular, the Nile Valley is one of the cradles
of ancient civilization and Egypt in the lower reaches of the Nile River is one of the four
ancient civilizations in the world [38]. Multiple political systems coexist in Africa. After
independence, most African countries are influenced by colonial countries and follow
the capitalist system [39,40]. Taking the whole African continent as the research area, we
produce urban expansion and intra-urban component data product, which may serve as
natural background carrier data for other scholars to conduct joint research between this
dataset and Africa’s unique culture, economy, political system, religion, and so on.
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Figure 1. Geographic information map of Africa. Notes: the yellow and green in the upper right corner of the location
diagram represent climatic regions of Africa. The main map represents elevation and administrative divisions of Africa.

2.2. Data Source Acquisition

The data source used in this study was composed of basic geographic information
data, remotely sensed data, and socioeconomic data. Specifically, the basic geographic
information data covered African boundary, national border, urban location, and global con-
tinental distribution. The remotely sensed data mainly contained the medium-resolution
Landsat TM/ETM+/OLI8 images, HJ-1A/1B satellite, high-resolution Google satellites,
night-time light image from DMSP/OLS and VIIRS-DNB, digital elevation model, and
the Köppen–Geiger climate map of the world. The socioeconomic data included urban
population and gross domestic product. A detailed description of these data are provided
in the following table (Table 1).
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Table 1. The detailed description of the main data used in the research of the whole of Africa.

Data
Type

Data
Name

Resolution
/Format

Data
Source

Basic
Geographic
data

African boundary vector http://www.openstreetmap.org/
(accessed on 16 September 2021)

National border vector http://www.openstreetmap.org/
(accessed on 16 September 2021)

Urban location vector http://www.openstreetmap.org/
(accessed on 16 September 2021)

Global continental distribution vector http://www.openstreetmap.org/
(accessed on 16 September 2021)

Köppen–Geiger climate map of the world 0.1 degree
https://people.eng.unimelb.edu.
au/mpeel/koppen.html (accessed
on 16 September 2021)

Remotely
Sensed
data

Night-time light image (NTL) 1000-m

https://www.ngdc.noaa.gov/
eog/dmsp/downloadV4
composites.html (accessed on 16
September 2021)

Night-time light image (NTL) 500-m
https://earthobservatory.nasa.
gov/features/NightLights
(accessed on 16 September 2021)

Landsat Thematic Mapper (TM) 30-m https://glovis.usgs.gov/
(accessed on 16 September 2021)

Enhanced Thematic Mapper Plus (ETM+) 30-m https://glovis.usgs.gov/
(accessed on 16 September 2021)

Operational Land Imager (OLI) 30-m https://glovis.usgs.gov/
(accessed on 16 September 2021)

Huan Jing satellite (HJ-1A and HJ-1B) 30-m http://www.cresda.com/CN/
(accessed on 16 September 2021)

Google images 2-m http://www.91weitu.com/
(accessed on 16 September 2021)

Digital elevation model (DEM) 30-m http://srtm.csi.cgiar.org/
(accessed on 16 September 2021)

Socio
economic data

Gross Domestic Product (GDP) Statistics

https:
//www.kylc.com/stats/global/
yearly_overview/g_gdp.html
(accessed on 16 September 2021)
https://data.imf.org/ (accessed
on 16 September 2021)

Urban population Statistics

http://un.org/en/development/
(accessed on 16 September 2021)
https://data.imf.org/ (accessed
on 16 September 2021)

2.3. The Establishment of Urban LAND Boundary

For the large-scale urban land mapping, the normalized settlement density index
(NSDI) that mainly integrates the NTL and normalized difference vegetation index (NDVI)
became an effective method and achieved good results [31], but it showed relatively low
accuracy in arid regions compared with humid regions [31,41]. Africa has a vast land area,
making it pass through multiple climatic regions. We combined these climatic regions
into the humid/semi-humid regions and the arid/semi-arid regions from the perspective
of arid and humid characteristics of the climate using a Köppen–Geiger climate map of
the world [42] to obtain better urban land mapping under different climate backgrounds.
Considering the complex surface environment of Africa, we combined the NSDI and the
LSDI (i.e., low albedo and soil difference index) to weaken the interference of bare soil
on urban land boundary extraction on the Google Earth Engine platform (GEE) using the
NTL and NDVI from time series of Landsat images [28,31,41]. Then, urban land data that
covered the whole of Africa in the years of 2000, 2010, and 2020 were downloaded to the
local desktops.

Due to the Landsat’s 16-day visit cycle and uncertain spatial interference, such as the
rains and shelter from clouds, there were still bad pixels in annual Landsat image extraction
(i.e., the image date from 1 January to 31 December), which affected the extraction of urban

http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://www.openstreetmap.org/
https://people.eng.unimelb.edu.au/mpeel/koppen.html
https://people.eng.unimelb.edu.au/mpeel/koppen.html
https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://earthobservatory.nasa.gov/features/NightLights
https://earthobservatory.nasa.gov/features/NightLights
https://glovis.usgs.gov/
https://glovis.usgs.gov/
https://glovis.usgs.gov/
http://www.cresda.com/CN/
http://www.91weitu.com/
http://srtm.csi.cgiar.org/
https://www.kylc.com/stats/global/yearly_overview/g_gdp.html
https://www.kylc.com/stats/global/yearly_overview/g_gdp.html
https://www.kylc.com/stats/global/yearly_overview/g_gdp.html
https://data.imf.org/
http://un.org/en/development/
https://data.imf.org/
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land. In addition, a high spatial mosaic of different land use types, such as the mosaic
of urban parks and their internal roads, in urban regions was also a factor that cannot be
ignored, because the urban land extraction from NSDI was carried out according to the
density of human settlements [28,31]. A large area of vegetation spaces in urban regions,
such as urban parks, was often excluded from urban land because of their super low
human settlement density. In fact, the complete urban boundary should include a variety
of land covers that are displayed in Equations (1) and (2) [28]. In view of these two issues,
namely the uncertain quality of remotely sensed images and the possible lack of a region of
urban boundaries, we filtered all urban land boundary results through visualization. The
vector urban boundary was superimposed on the false color image of Landsat to correct the
regions where urban boundary may be inaccurate in each studied year, using professional
geo-science interpretation knowledge. Then, urban land boundary throughout Africa in
2000, 2010, and 2020 was generated.

Urban land boundary = ISA∪Veg∪Others (1)

ISAp+Vegp+ Othersp = 100% (2)

LSDI = fLOW − fSoil (3)

where, in Equation (1), the ISA, Veg, and Others represent the intra-urban land cover of
impervious surface area, vegetation space, and other land use types; in Equation (2), the
ISAp, Vegp, and Othersp represent the fractional/compositional land of impervious surface
area, vegetation space, and other land use types within urban regions, respectively; and,
in Equation (3), the fLow and fSoil represent the fractional/compositional images of low
albedo and soil. The training samples of fractional/compositional low albedo objects were
from shadows of buildings and water bodies, and that of soil was from bare soil. Both were
calculated through the random forest of GEE platform.

2.4. Production of the Fractional Lands of Intra-Urban Impervious Surface Area and Intra-Urban
Vegetation Space
2.4.1. Selection of Training Samples

The acquisition of training samples of impervious surface area and vegetation space
in intra-urban regions was a very important parameter in the random forest model of the
Google cloud computing platform, which may directly affect the classification accuracy.
Considering the spatiotemporal complexity of land use types and the heterogeneity of
remotely sensed pixels in urban regions, as well as the superposition effect of different
climatic backgrounds, the selection of training samples needs to be scientifically designed
according to the actual land surface situation. We obtained the sampling points consistent
with the area of different climatic zones (i.e., the arid and humid regions). The 10% intervals
of impervious surface area fractions and vegetation fractions were designed so as to reduce
the underlying interference of uneven distribution of land surface. To obtain more accurate
sampling point types, the spatial distribution location of sampling points also included all
land coverage types as much as possible. Specifically, the impervious surface area samples
included roads, square roofs, etc. The vegetation space samples covered the concentrated
distribution of forest land, grassland and parks, and the scattered distribution of vegetation
space in roads and residential areas. Other lands within the urban regions were also
collected. A visual human–computer interaction scheme was used to obtain the fraction of
impervious surface area and vegetation using 2-m resolution Google satellite images, and
all sampling points were then obtained. These sampling points were input into a random
forest model to obtain the fraction of impervious surface area and vegetation space in the
years 2000, 2010, and 2020, respectively.

2.4.2. Retrieval of the Sub-Lands within Urban Regions Using the Random Forest Model

Random forest was proved to be a better land use classification approach compared
with other methods, such as SVMs and ANNs, in previous literature [28,43]. Advantage
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characteristics of random forest were the great ability in dealing with high-dimensional
datasets and obtaining good classification accuracy, such as the 30-m resolution impervious
surface area mapping on a global scale [28,44]. In this study, random forest was applied
to obtain the fraction of impervious surface area and vegetation space through the input
parameters, such as the trained sample points from Section 2.4.1 from this study, the time
series of Landsat images from 1 January to 31 December of each studied year, and the
low-albedo and soil difference index (LSDI, Equation (3) [45]) that was used to distinguish
impervious surface area from bare soil in arid and semi-arid regions due to their similar
optical bands [18]. A detailed description of the produced land fraction process by random
forest was provided in Kuang’s study [28], and thus it was not repeated here. As a result,
the 30-m resolution land fractions of impervious surface area and bare soil throughout
Africa was generated using random forest in the years of 2000, 2010, and 2020, respectively.
After that, these data were downloaded in frames with a 1◦ × 1◦ interval and were cut by
spatial superposition data from the urban land boundary. We visually checked the blank
land regions that were affected by uncertain quality of Landsat images. All missing data
regions were filled using the images that were adjacent to one studied year in the random
forest model. After that, the obtained impervious surface area was masked by a water
body. Finally, the fractional land of impervious surface area and vegetation space within
urban regions was generated in 2000, 2010, and 2020, respectively.

2.5. Accuracy Evaluation of Urban Land and Its Sub-Land Scheme

Two-scale accuracy verification was performed using high-resolution Google satellite
images, because this study assessed the dynamic changes of urban land and its sub-
fractions in Africa from 2000–2020. For the urban land scale (i.e., the verification of pixel
level), we randomly distributed 1500 sample points in each studied year of 2000, 2010, and
2020, with a total of 4500 samples, to guide the verification work through the indicators
of reference pixels, classified pixels, number correct, producer’s accuracy, user’s accuracy,
overall classification accuracy, and kappa coefficient.

For the urban sub-land scale (i.e., the fractional verification of land cover), in order
to reduce the potentially spatial position matching error of remotely sensed images, a
moving window approach with the size of 3 × 3 pixels (i.e., 90 m × 90 m; a pixel size was
30 m × 30 m on the Landsat image scale), the fractional land assessment was performed.
We randomly generated 1000 such windows in each studied year using the stratified
random sample method. Each window was regarded as a sampling point. We obtained
the faction of land cover type in each window through human–computer interaction
interpretation and professional geoscience knowledge. In order to further improve the
accuracy of data evaluation, the fraction of the evaluated impervious surface area and
vegetation space data was reclassified into 10 categories, with 10% fraction increment in
each category. The fitting coefficient (R2) and mean square error (RMSE) were performed
to evaluate the accuracy of the actual values and the verified values in each studied year,
respectively.

2.6. Geographical Division of Africa

Africa was a vast territory with different natural environments, which may lead to
a regionally spatial difference in urban expansion. We divided Africa into five regions
according to the traditionally geographical reference to present the regionally differen-
tiated patterns of urban expansion in Africa from 2000 to 2020. These five regions con-
tained Middle Africa, Eastern Africa, Southern Africa, Northern Africa, and Western
Africa. Specifically, Middle Africa consisted of Chad, Central Africa, Cameroon, Equatorial
Guinea, Gabon, Congo, D.R. Congo, and São Tomé and Príncipe. Eastern Africa contained
Ethiopia, Eritrea, Somalia, Djibouti, Kenya, Tanzania, Uganda, Seychelles, South Sudan,
Rwanda, and Burundi. Southern Africa covered Botswana, Namibia, Angola, South Africa,
Swaziland, Lesotho, Madagascar, Malawi, Comoros, Mauritius, Mozambique, Zambia, and
Zimbabwe. Northern Africa had the countries of Egypt, Sudan, Libya, Tunisia, Algeria,
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and Morocco. Western Africa included Mauritania, Senegal, Gambia, Mali, Burkina Faso,
Guinea, Guinea-Bissau, Cape Verde, Sierra Leone, Liberia, Côte d’Ivoire, Ghana, Togo,
Benin, Niger, and Nigeria.

3. Results
3.1. Accuracy Assessment for Urban Land and Its Fractional Sub-Structures

As we know, the area ratio of built-up land to the whole continent was always very
small. This led to the issue of uneven distribution of random verification points, namely,
most of the verification points were distributed in nonurban areas, while there were few
verification points in built-up land regions. Less verification points in urban regions were
not conducive to accuracy evaluation. In order to solve this problem, we tested the buffer
zone outside the boundary of each built-up area to balance the verification points in urban
land and nonurban land regions. Then, buffer zones with a radius of 100 km were created
outside each built-up land boundary, and, thus, the verified regions consisted of urban
land and buffer zone (Figure 2).

Figure 2. Examples of the verified points for the fractional land covers within urban regions through-
out Africa in 2020. Note: the density levels from 1 to 10 represent the fractions of impervious surface
area or vegetation space at 10% intervals from 0.01% to 100%, separately. The buffer region represents
an outward buffer distance radius of 100 km from the edge of each city.

We carried out the accuracy verification on two scales, including urban land and
fractional land cover structure. In the urban land scale, the 4500 randomly distributed
sampling points (i.e., the 1500 sampling points in each studied year) were superimposed
on the 2-m resolution Google image to obtain the quantitative accuracy. The indicators,
such as reference pixels, classified pixels, number correct, producer’s accuracy, and user’s
accuracy, were calculated (Table 2). We collected the total right number of 1351 points, 1359
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points, and 1366 points in years of 2000, 2010, and 2020. Overall classification accuracy
displayed with high accuracy of 90.07%, 90.60%, and 91.07%, with kappa coefficient values
of 0.82, 0.84, and 0.84 (Table 2), respectively. For the urban fractional land cover structure
scale, the density levels from 1 to 10 that represented the fractions of impervious surface
area or vegetation space at 10% intervals from 0.01% to 100% were executed to ensure that
each density level had a certain number of verification points (Figure 2). The accuracy of
fractional impervious surface area obtained the R2 and RMSE (%) values of 0.9118 and 13%,
with the corresponding vegetation values of 0.9264 and 12%, respectively.

Table 2. Accuracy evaluation matrix of urban land in Africa in 2000, 2010, and 2020, respectively.

Ground Truth Pixels Reference Classified Number Producer’s User’s

Land Cover Urban Nonurban Pixels Pixels Correct Accuracy Accuracy

Urban 721 78 792 799 721 91.04 90.24
Nonurban 71 630 708 701 630 88.98 89.87

Year: 2000, Overall Classification Accuracy = 90.07% (i.e., 1351/1500), Kappa Statistics = 0.82

Urban 764 69 836 833 764 91.39 91.72
Nonurban 72 595 664 667 595 89.61 89.21

Year: 2010, Overall Classification Accuracy = 90.60% (i.e., 1359/1500), Kappa Statistics = 0.84

Urban 834 63 905 897 834 92.15 92.98
Nonurban 71 532 595 603 532 89.41 88.23

Year: 2020, Overall Classification Accuracy = 91.40% (i.e., 1366/1500), Kappa Statistics = 0.84

3.2. Analysis of Urban Expansion and Regional Urban Land Differences in Africa during
2000–2020

Throughout Africa, the assessed total urban area was 1.93 × 104 km2 in the year 2000,
which was then increased to 3.09 × 104 km2 in the year 2010 and 4.18 × 104 km2 in the
year 2020, respectively (Figure 3 and Table 3). This means that the urban area throughout
the African continent expanded by 116.49% (total area increment: 2.25 × 104 km2, average
annual urban expansion rate: 0.113 × 104 km2/year) during 2000–2020, compared with
that in 2000, implying a rapid urbanization process. However, our evaluation data showed
that the urbanization process in Africa was not uniform and stable. The total urban
expansion area increased by 1.16 × 104 km2 during 2000–2010 and by 1.09 × 104 km2

during 2010–2010, and, thus, the urban expansion was faster during 2000–2010. Moreover,
the proportion of urban area occupying the whole area of Africa was assessed, with the
values of 0.065% in 2000, 0.103% in 2010, and 0.140% in 2020, indicating a total increase
proportion of 0.075% during 2000–2020.

Table 3. Statistical analysis of urban land and its expansion change in sub-Africa regions during
2000–2020 (unit: km2).

Time
(Year)

Sub-Africa Regions

Northern
Africa

Eastern
Africa

Western
Africa

Middle
Africa

Southern
Africa

Sum
(Km2)

2000 5690.10 1273.65 4646.40 1048.91 6668.45 19327.50
2010 7574.32 2448.04 7877.30 1998.85 11020.84 30919.36
2020 10270.49 3342.59 9804.58 2915.41 15508.76 41841.83

2000–2010 1884.22 1174.39 3230.90 949.94 4352.39 11591.86
2010–2020 2696.17 894.55 1927.28 916.56 4487.91 10922.47
2000–2020 4580.39 2068.94 5158.18 1866.50 8840.31 22514.33

In different regions, the urban area changes of Middle Africa (MA), Eastern Africa
(EA), Southern Africa (SA), Northern Africa (NA), and Western Africa (WA) were counted
according to the traditionally regional geographical division of the African continent
(Figure 3a,b and Table 3). In 2000, SA had the highest urban land area (6668.45 km2),
followed by NA (5690.10 km2) and WA (4646.40 km2). EA and MA had the least urban land
area, with 1273.65 km2 and 1048.91 km2, respectively. During 2000–2020, all regions have
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experienced rapid urban expansion, with the expanded urban land areas of 8840.31 km2

(SA), 5158.18 km2 (WA), 4580.39 km2 (NA), 2068.94 km2 (EA), and 1866.50 km2 (MA). At
length, SA still had the highest urban land area in 2020, followed by NA, WA, EA, and MA,
which displayed the same order with that of 2000. However, these regions have experienced
a different trend of urban expansion during 2000–2010 and 2010–2020. Specifically, urban
expansion in most regions has experienced the process of accelerating expansion first, and
then slowing down, which was consistent with the trend of urban expansion in the whole
of Africa. Only NA showed a continuous and accelerated urban expansion, with areas of
1884.22 km2 during 2000–2010 and 2696.17 km2 during 2010–2020, separately.

Figure 3. Spatial distribution and statistical map of urban expansion in Africa during 2000–2020. (a) Urban land distribution
in 2020 (dark yellow) in sub-Africa regions of Middle Africa, Eastern Africa, Southern Africa, Northern Africa, and Western
Africa; and the urban land statistics at the national scale in years 2000, 2010, and 2020, respectively. (b) The sample cities of
urban expansion in Cairo ((b1), Egypt), Abuja ((b2), Nigeria), and Bangui ((b3), Central Africa). (c) Total urban expansion
changes at the national scale from 2000 to 2020, and we only marked the number when a total urban expansion area was
more than 1000 km2 in each country throughout the studied period.

At the country level, only 11.11% (i.e., six countries) of the total countries in the
whole of Africa expanded the urban land more than 1000 km2 during 2000–2020, and most
countries (i.e., 55.56% of the total number) expanded between 100 km2 and 1000 km2; the
other 33.33% countries were lower than 100 km2. Thus, the expansion of urban land at the
national scale was quite different. Furthermore, the expanded urban area of the top six
countries (i.e., South Africa, Nigeria, Angola, Botswana, Egypt, and Sudan) accounted for
more than half (50.67%) of the total urban expansion in Africa during 2000–2020 (Figure 3c).
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This means that urban expansion on the African continent was concentrated in several
major countries.

3.3. Assessment of the Fractional Intra-Urban Impervious Surface Area and the Fractional
Intra-urban Vegetation Space Change in Africa during 2000–2020
3.3.1. Intra-Urban Land Structure Analysis and Its Differentiated Characteristics in
Different Urban Level Areas in Africa

Intra-urban land structure (i.e., impervious surface area, urban vegetation space, and
urban other lands) changes very quickly throughout the Africa during 2000–2020. Specifi-
cally, total impervious surface area expanded violently with the covers from 1.12 × 104 km2

to 1.76 × 104 km2 and 2.34 × 104 km2 in the years of 2000, 2010, and 2020 (Figures 4 and 5),
indicating an overall growth rate of 108.93%. However, in the same period of 2000–2010
and 2010–2020, the change in impervious surface area is not stable, accompanied by the
total area increment in these two periods of 0.63 × 104 km2 and 0.59 × 104 km2. Interest-
ingly, urban vegetation space showed a continuous increasing trend in these two periods
(increments: 0.40× 104 km2 and 0.47× 104 km2), which showed that the total area of urban
vegetation space in Africa has increased by 134.43%. This change in urban vegetation space
was conducive to adjust the climate of urban areas and to increase the comfort of human
settlements.

Figure 4. Spatial statistics of the fractional urban land structure in Africa during 2000–2020.
(a–c) Show the average density of the fractional intra-urban impervious surface area (UISA), the
fractional intra-urban vegetation space (UVS), and the fractional intra-urban other land-cover (UOL)
at the country scale in 2000, 2010, and 2020, respectively, and the size of the circle represents the
total area of urban land on a national scale. (d) Statistics of the changes in average density of the
fractional UISA, UVS, and UOL in sub-African regions of Middle Africa, Eastern Africa, Southern
Africa, Northern Africa, and Western Africa in 2000, 2010, and 2020, respectively.
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Figure 5. Regional examples of impervious surface area fractions and vegetation space fractions in
Tanzania (i.e., the first line) and Egypt (i.e., the second line) of Africa. In each line, we provide 2-m
Google images, 30-m Landsat images, 30-m fractional impervious surface area, and vegetation space,
respectively. Notes: the regional example in the first line is located in humid/semi-humid areas and
the regional example in the second line is located in arid/semi-arid areas.

In regions with different urbanization levels (i.e., the original urban region (OUR)
in 2000 and the newly expanded urban region (NEUR) during 2000–2020), the change
process of impervious surface area and urban vegetation space displayed the different
characteristics. Average density of the fractional impervious surface area was 58.02% in
2000 and 61.14% in 2020 in OUR, while the value of that was 50.77% in NEUR. This means
that the impervious surface area facilities, such as houses, squares, and roads, in OUR
have been improved, while low-density impervious surface area was expanding in NEUR.
The change in another intra-urban land factor (i.e., urban vegetation space) can explain
the reason for such low-density impervious surface expansion. Average density of the
fractional urban vegetation space was 29.05% in 2000 and 28.35% in 2020 in OUR, which
showed a basically constant vegetation cover. However, the value of this in NEUR was
as high as 40.13%. Therefore, the expansion of newly expanded urban areas was mainly
characterized by relatively low impervious density and relatively high vegetation density
compared with the corresponding values in OUR. Other intra-urban land covers displayed
a decreasing density trend over the studied period.

3.3.2. Differences in Spatial Evolution of the Fractional Intra-Urban Impervious Surface
Area and Vegetation Space in Sub-Africa Regions

During 2000–2020, the expansion of impervious surface area in sub-Africa regions
(Figure 4d) followed the order of Southern Africa (SA, +4908.93 km2), Western Africa (WA,
+2748.24 km2), Northern Africa (NA, +2401.64 km2), Eastern Africa (EA, +1126.89 km2),
and Middle Africa (MA, +1040.66 km2), which resulted in impervious surface covers of
8796.70 km2 (SA), 1650.54 km2 (MA), 5442.83 km2 (WA), 1866.95 km2 (EA), and 5661.85 km2

(NA) in the year 2020. However, a high impervious surface expansion does not mean a
high expansion rate, considering the background area of the initial 2000. Our assessment
showed that the impervious surface expansion rate was 170.63% (MA), 152.27% (EA),
126.27% (SA), 101.99% (WA), and 73.67% (NA), respectively. Moreover, we found that
the area increments of urban vegetation space in each region displayed the same order
as that of the impervious surface area, namely, +3461.58 km2 (SA), +2003.78 km2 (WA),
+1620.16 km2 (NA), +751.49 km2 (EA), and +714.01 km2 (MA), and the two regions with
the highest urban vegetation space expansion rate appeared in MA (+213.46%) and EA
(+199.41%), which still showed the same trend as the impervious expansion rate.
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Average density of the fractional impervious surface area in all sub-Africa regions has
a decreasing trend, with the maximum change in WA (−2.48%) and the minimum change
in MA (−1.53%), due to the increment of impervious density in the original urban region
being lower than that in the new urban expansion region. In contrast, average density
of the fractional urban vegetation space displayed an increasing trend, with the largest
increment occurring in WA. Generally speaking, the mosaic land construction of urban
impervious surface and vegetation space (mainly in new urban expansion areas) in the
process of urbanization from 2000 to 2020 was formed.

3.4. Analysis of the Fractional Urban Land Change under Climate and Socioeconomic
Environments

In order to explore the difference of fractional urban land evolution under different
climate environments in Africa during 2000–2020, we combined the climate maps into two
type regions, including the humid and semi-humid regions (HSH) and the arid and semi-
arid regions (ASA), according to the Köppen–Geiger climate map of the world (Figure 1 and
Table 4). The urban land expanded from 7957.69 km2 in 2000 to 19095.28 km2 in 2020, with a
total growth rate of 139.96% in the HSH region, which was higher than that (100.06%) in the
ASA region. The HSH climatic environments provided a more suitable living environment
for human beings, which promoted the faster development of urbanization compared
with the ASA climatic environments in Africa. At the same time, the average value of the
fractional ISA was 54.91% in the HSH region, but 58.13% in the ASA region (Table 4). In
contrast, the average coverage of fractional vegetation space was 36.40% in the HSH region,
but only 29.84% in the ASA region. The data displayed that the fractional impervious
surface area and vegetation space provided a better living environment in HSH than ASA
regions. As for the neglected intra-urban other lands (in fact, most of them were bare soil
according to our investigation), its average fraction was only 8.70% in the HSH region,
but 12.04% in the ASA region; this showed that its fractional coverage was consistent
with the climate backgrounds in Africa during 2000–2020. Therefore, the different climatic
environments (i.e., arid or humid backgrounds) affected the proportion of intra-urban land
cover types in Africa.

Table 4. Statistical analysis of the intra-urban land change and its sub-land fractions under different climatic regions.

Evaluated Indicators Humid and Semi-Humid Regions Arid and Semi-Arid Regions

Urban land expansion rate from 2000–2020 139.96% 100.06%
Average fraction of UISA in 2020 54.91% 58.13%
Average fraction of UVS in 2020 36.40% 29.84%
Average fraction of UOL in 2020 8.70% 12.04%

Abbreviations: UISA, urban impervious surface area; UVS, urban vegetation space; UOL, urban other lands.

The relationship between urban land change and socioeconomic conditions (i.e., gross
domestic product and urban population) was analyzed (Figure 6). We made the cluster
analysis of the dynamic of impervious surface area and gross domestic product using the
methods of ordinary least square and geographically weighted regression. In the ordinary
least square method, the linear fitting function passed the significance test (p < 0.05) and
obtained the best fit value (R2 = 0.7226). This indicated that part of the cost of Africa’s
gross domestic product was spent on improving infrastructure in urban impervious surface
areas, such as roads, squares, houses, and buildings. The relationship between the dynamic
of impervious surface area and urban population was also evaluated, which passed the
significance test (p < 0.05) and the fitting value was 0.6944 (R2). Population growth has,
to some extent, contributed to the expansion of impervious surface area. Further, the
geographically weighted regression (GWR) method that is located on the modeling spatial
relationships module on the ArcGIS platform was used to display the related dynamic
changes in Africa. We obtained better statistical results, with R2 values of 0.9489 and
0.9262, and the corresponding values were only 0.7226 and 0.6944 in the linear fitting
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function. Therefore, both the gross domestic product and urban population promoted the
development of impervious surface area, and our study showed their quantitative values
of Africa during 2000–2020.

Figure 6. Statistics of the functional relationship values between the urban impervious surface area and gross domestic
product, and between urban impervious surface area and urban population in Africa during 2000–2020. Notes: “∆”
represents the words “dynamic change”, ISA: impervious surface area, GDP: gross domestic product.

4. Discussion
4.1. A Turning Green Africa Is Taking Place in Its Intra-Urban Regions since 2000

Our research first reported the estimation of the urban land expansion and its sub-land
change (i.e., impervious surface area, vegetation space, and other lands) in the whole of
Africa from 2000 to 2020 according to the Google cloud computing platform and time series
of remotely sensed images. We found that a turning green Africa happened in its urban
land region (Figure 4), with the average fraction of urban vegetation space increasing from
29.05% in 2000 to 34.21% in 2020. The increased vegetation space of urban regions was
more significant for the human settlement feelings in Africa, because Africa was dominated
by tropical climate, with a high temperature throughout the whole year [46,47]. This means
that the urban vegetation space acted as an essential role in regulating local urban climate
of the whole of Africa all year round.

We further compared the differences in urban vegetation space in different climatic
regions of Africa and found that the average fraction of urban vegetation space increased in
both arid and humid regions (Figure 4 and Table 4). In particular, a higher increment of veg-
etation space fraction was evaluated in the arid region than that of the humid region during
2000–2020 (Table 4), indicating a stronger demand for urban living environment regulation
in the hot arid region of Africa. We also searched the previous literature [18,21,22], which
also showed that the urban vegetation existed in the arid region of China and the arid
region of “The Belt and Road (i.e., Eurasian continent)” during 2000–2015. However, the
climate regulation of urban vegetation was mainly concentrated in summer and autumn
in these arid regions because the urban vegetation withered and was covered with snows
when the cold weather appeared in winter and spring in the regions, such as arid areas
of China [18]. In contrast, the African continent was not controlled by cold and polar
climate (Figure 1), and the local climate regulation demand for vegetation in urban areas
occurred in any season in Africa [48–50]. This means that the increase in vegetation fraction
in Africa, especially in its arid areas, was more meaningful to the improvement of urban
living environment.

The construction of a newly expanded urban region in Africa during 2000–2020 paid
more attention to the design of vegetation space compared with that of the original urban
region in 2000 (Table 4), as we found the average fraction of grace space was 40.13% in the
new urban region, and, in the original urban region, the average value was only 29.05%
in 2000 and 28.35% in 2020. The vegetation space of the new urban region was ahead of
the old urban region. Further, we found a lower fraction of impervious surface area in
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new than old urban regions. A higher fraction of vegetation space and a lower fraction of
impervious surface area, along with the very low bare soil cover in the new urban region
(Table 4), indicate that urban vegetation construction in Africa is taking place, which is
conducive to improving the thermal comfort and ecosystem service in the urban regions of
Africa [21].

4.2. Comparison of the Urban Expansion Process between Africa and Other Regions

The urbanization process in different regions of the world always displayed the
regional differences due to socioeconomic and natural conditions [51,52]. On a continental
scale, we analyzed the urban land expansion and its sub-land change throughout Africa
from 2000 to 2020 (Figure 2). The ratio of urban land to total area of Africa was 0.065% in
2000, 0.103% in 2010, and 0.140% in 2020 according to our assessment (Figure 2), which
was much lower than the value of Asia in the same period when the ratio of urban land
to total area of Asia was already 0.59% in the year of 2010 [53]. This means that the ratio
of urban land to the continent was 3.93 times higher in Asia than Africa in 2010. Because,
in Asia, there were many developed countries, and these developed countries always
had a higher ratio (i.e., urban land to national area), such as Singapore (36.73%), South
Korea (8.26%), and Japan (5.75%) [53], this increased the average ratio of urban land to
continents on the Asian scale. In contrast, the African continent was basically composed of
the developing countries, and the top value of urban land to national area was only 3.72%
(i.e., Mauritius). Furthermore, the total GDP in Asia increased by USD 22.07 × 1012 during
2000–2020, and this increase was over 12 times greater than that of the whole of Africa in
the same period, and the total population growth in Asia was also 1.74 times higher than
that of Africa according to the published data of International Monetary Fund. A greater
wealth increment and faster population growth in Asia during 2000–2020 may promote the
more drastic urban land expansion to a certain extent.

At the regional scale, the urban land expansion rate in humid and semi-humid areas
was faster than that in arid and semi-arid areas in Africa during 2000–2020 (i.e., 120.66%
vs. 83.97%, Table 4). Both regions showed a rapid process of urban expansion, along
with the design of urban environmental livability (i.e., high fraction of vegetation space
and low-density impervious surface area) in the newly expanded urban area. A higher
fraction of vegetation space and a lower fraction of impervious surface area appeared in
humid and semi-humid areas compared with the arid and semi-arid areas (i.e., vegetation
fraction: 36.40% vs. 29.84%, impervious surface area fraction: 54.91% vs. 58.13%), and it,
thus, promoted the faster urban land expansion in the humid climate zone. In addition to
comparing the different urbanization processes in different climatic regions of Africa, we
also searched urban land expansion in other areas, such as the arid region of China [18,22].
The urban expansion rate was 50.37% during 2000–2014, with an average annual growth
rate of 3.60% in the arid region of China, which showed a low growth rate compared with
the arid region of Africa (i.e., the average annual growth rate of 4.20%). Further, we also
compared the different countries’ wealth and population density between Asia and Africa.
During 2000–2020, most Asian countries experienced faster economic growth than African
countries. Specifically, the top three countries in Asia were China, India, and South Korea,
with the total increment of about USD 13.51 × 1012, USD 2.15 × 1012, and USD 1.05 × 1012,
respectively. In contrast, the top three countries in Africa were Nigeria, Egypt, and South
Africa, with the corresponding values of only USD 0.36 × 1012, USD 0.26 × 1012, and USD
0.17 × 1012 in the same period from the IMF database. The population density of these
countries was also in the front of Asia or Africa considering the changes of population size
and urban land during 2000–2020. In particular, in the global population ranking in 2020,
China, India, Nigeria, and Egypt were in the first, second, seventh, and fourteenth from the
IMF database. Meanwhile, the high density of China’s urban population was mainly due
to the control of urban space development [54]. Although China had a large land area, the
suitable cultivated land resources were limited [55]. The urban development plan in China
may help to ensure sufficient cultivated land to ensure national food security [56], while, in
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South Korea, it was mainly due to the limited national boundary scope [57]. In Africa, the
high population density in Nigeria and Egypt was probably due to a faster urbanization
process compared with other African countries.

4.3. Potential Environmental Effects of Intra-Urban Land Change in Africa during 2000–2020

From 2000–2020, the intra-urban land in Africa experienced a rapid evolution, and the
potential environmental effects of intra-urban land (i.e., impervious surface area, vegetation
space, and other lands (mainly bare soil)) may include the following aspects. The first
was the change in surface radiation energy balance. In humid and semi-humid regions,
the change in bare soil was relatively small, and the expansion of impervious surface area
and loss of vegetation space were the main land change, which brought about an increase
in land surface temperature and was easy to form urban heat island phenomena [58,59]
due to the perceived energy change by the human body from impervious surface area
to vegetation space. In contrast, in arid and semi-arid regions, the type of land change
within the urban areas was dominated by both the expansion of impervious surface area
and vegetation space and the loss of bare soil. The cover of vegetation space to bare soil
led to surface cold regulation. This energy regulation was easy to be perceived by the
human body. Meanwhile, the energy discrepancy, such as the land surface temperature,
between impervious surface area and bare soil was difficult to distinguish through human
perception [60,61]. In fact, when the land cover changed from impervious surface area to
bare soil, the higher land surface albedo of impervious surface area compared with that of
bare soil brought about more energy reflection from the land surface to the atmosphere [61],
leading to a reduction in energy storage, and thus forming a low land surface temperature
(i.e., surface cold regulation phenomenon) [60,61]. The intra-urban land change in Africa
formed land surface thermal regulation in humid regions and land surface cold regulation
in arid regions. In the future, the energy impact of land structure change within cities on
the whole African continent should be evaluated by the means of remotely sensed data,
actual observation, and model simulation.

Another environmental effect of land change within the cities was the impact on
terrestrial ecosystem carbon [62]. During 2000–2020, we found that the cities in Africa were
turning to vegetation. A considerable part of the newly expanded urban vegetation space
was from previous bare soil, especially in arid and semi-arid urban regions, along with
the migration of low-density soil carbon (~5.55 kg C m−2) to medium-density vegetation
(~8.08 kg C m−2) [63–66]. Meanwhile, the land change from bare soil to the impervious
surface area during the urban expansion is also a process from carbon source to carbon
sink, indicating a carbon sink process [63]. Furthermore, the sustainable greening of
urban regions can offset part of carbon emissions through photosynthesis in the urbanized
region [67,68], which is conducive to achieving the goal of “carbon neutrality [69–71]” in
the African continent.

4.4. A Preliminary Discussion between Urban Land Change and Other Potential Variables

In addition to the three discussions of a turning green Africa, the comparison of the
urban expansion process between Africa and other regions and the potential environmental
effects of intra-urban land change in Africa during 2000–2020, the relationship between
urban land change and other potential variables, such as the evolution of the total pop-
ulation, the changes in urban population and in gross wealth, and the impact of recent
cultural, social, and historical processes, was preliminarily analyzed to provide a wide
and complex way for the potential application prospects of the data produced in this
study. Firstly, according to the published data from International Monetary Fund (IMF,
https://data.imf.org/ (accessed on 16 September 2021)), the total population throughout
the African continent increased by 5.01 × 108 during 2000–2020, and the evolution of the
total population per country experienced a population expansion process during the same
period, with the largest increment occurring in Nigeria (+0.84 × 108 persons) and the
smallest increment in Seychelles (+0.00019× 108 persons). The gap in population growth at

https://data.imf.org/
https://data.imf.org/
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the national level was obvious, although all the countries experienced population growth.
We explored the relationship between population growth and impervious surface area
change at the national scale and obtained the fitting value of 0.6944 (R2) and p < 0.05
during 2000–2020 (Figure 6). The population growth of each country may promote the
expansion of local urban land due to the impervious surface area being the main carrier
of human activities inside the cities. Secondly, urban population weight in relation to
the total population may affect the urban land change in Africa. From the perspective of
population, urbanization rate referred to the changing process of agricultural population
into nonagricultural population, which was an indirect indicator to measure the change in
urban population weight in relation to the total population per country in the same period.
The continuous and rapid process of urbanization in Africa was mainly from the beginning
of independence [72], and the urbanization rate was 39% in 2003 and was expected to reach
54% in 2050 [73]. In the context of urbanization throughout the African continent, each
country experienced different urbanization, such as the urbanization rate of 42.6% in Egypt,
with the corresponding value of 49.8% in 2010 based on the statistics from the world devel-
opment indicator database of World Bank (https://databank.worldbank.org/home.aspx
(accessed on 16 September 2021)). Egypt was at the forefront of urbanization on the African
continent. Our remote sensing monitoring also showed that urban land expansion in Egypt
was also very big, with a total area of over 5 × 103 km2 during 2000–2020. Thirdly, the
change in gross wealth per country was also a significant factor. During 2000–2020, the total
GDP of the whole African continent increased by USD 1.73 × 1012, and we investigated the
change in GDP and impervious surface area at the country level and obtained the fitting
value of 0.7226 (R2) and p < 0.05 during 2000–2020 (Figure 6). The growth of wealth pro-
moted the expansion of urban land to a certain extent. Lastly, other variables, such as the
cultural and social processes (i.e., religious, political issues, conflicts, etc. [74–76]), and the
former historical processes (i.e., colonial traditions, international commercial agreements,
international integration, etc. [77,78]) may have an impact on the change of urban land,
and these variables may bring the complex change in urban spatial heterogeneity on a
local scale. Due to the difficulty in obtaining these accurate materials at the urban scale,
spatial-scale superposition analysis/quantitatively statistical analysis using the urban data
generated from the study was difficult to carry out. In the next plan, we will consider the
combination of qualitative and quantitative ways to investigate the relationship between
cultural, social, and historical processes and urban land change, through establishing
extensive scientific research co-operation with local universities and official institutions
from Africa. Furthermore, considering the wide application of the data generated from this
study, a more in-depth discussion should be applied to make this research more relevant to
geographers, historians, sociologists, and urban research scholars in the future.

5. Conclusions

In this study, we assessed and monitored the dynamic change in urban land and its
fractional sub-lands throughout the whole African continent from 2000 to 2020, using time
series of remotely sensed images and the Google cloud computing platform. The generated
30-m resolution urban land and sub-land fractions in the African continent showed good
accuracy. The assessed total urban area was 1.93 × 104 km2 in 2000 and 4.18 × 104 km2

in 2020, with an expansion rate of 116.49%. All sub-African regions experienced rapid
urban expansion during 2000–2020, and the expanded urban area of the top six countries
accounted for more than half of the total increments, meaning the urban expansion was
concentrated in several major countries. For the lands within urban regions, a turning
green Africa was taking place, with a faster increment appearing in vegetation space
than impervious surface area (134.43% vs. 108.88%) over the studied period. In different
urbanization levels, we found the newly expanded urban areas were characterized by lower
impervious surface area fraction and higher vegetation fraction compared with the original
urban areas, showing the improvement of urban living environments during urbanization.
In different climatic regions, the fractional impervious surface area and vegetation space

https://databank.worldbank.org/home.aspx
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provided a better living environment in HSH than ASA regions (fractional ISA: 54.91%
in HSH vs. 58.13% in ASA; fractional vegetation space: 36.40% in HSH vs. 29.84% in
ASA). The relationship between impervious surface change and socioeconomic conditions
also displayed that both the gross domestic product and urban population passed the
significance test, and we obtained a higher fit value in the former than the latter. Overall,
the urbanization process in Africa has improved the quality of human settlements.
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