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Abstract: Hyperspectral remote sensing reveals detailed information about the optical response
of a scene. Self-Organizing Maps (SOMs) can partition a hyperspectral dataset into clusters, both
to enable more analysis on-board the imaging platform and to reduce downlink time. Here, the
expected on-board performance of the SOM algorithm is calculated within two different satellite
operational procedures: one in which the SOM is trained prior to imaging, and another in which
the training is part of the operations. The two procedures are found to have advantages that are
suitable to quite different situations. The computational requirements for SOMs of different sizes
are benchmarked on the target hardware for the HYPSO-1 mission, and dimensionality reduction
(DR) is tested as a way of reducing the SOM network size. We find that SOMs can run on the target
on-board processing hardware, can be trained reasonably well using less than 0.1% of the total pixels
in a scene, are accelerated by DR, and can achieve a relative quantization error of about 1% on scenes
acquired by a previous hyperspectral imaging satellite, HICO. Moreover, if class labels are assigned
to the nodes of the SOM, these networks can classify with a comparable accuracy to support vector
machines, a common benchmark, on a few simple scenes.
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1. Introduction

Hyperspectral imaging, also called imaging spectroscopy, is quickly becoming a
powerful remote sensing tool. Several hyperspectral satellite payloads have already been
launched, such as Hyperion, the Hyperspectral Imager of the Coastal Ocean (HICO), the
Hyperspectral Imaging Suite (HISUI), and PRISMA, while many more are planned [1–6].
By resolving a continuum of spectral bands, often more than 100, hyperspectral data can
be used to resolve spectral features more clearly than multispectral images [7].

Image processing in space is subject to computational constraints that are less appli-
cable on earth, particularly data transmission constraints, constraints on computational
performance, and constraints on storage. The Cubesat standard has enabled a prolif-
eration of small satellites in the past two decades, and these satellites, owing to their
relatively small power budgets, as well as their size and cost limitations, suffer notably
from these constraints [8]. As hyperspectral imagers (HSIs) are passive sensors—unlike
lidar or radar—their power demands are appropriate for a cubesat. However, because any
image processing performed on-board competes with the radio communication system
and the imager itself for resources, the computational budgets can be limited. The first HSI
cubesats, Aalto-1 and Hyperscout, were launched in 2017 and 2018, respectively, and the
latter incorporates on-board processing, validating the concept [9,10].

The HYPSO-1 (HYPer-spectral Smallsat for ocean Observation) CubeSat is being
developed by NTNU Small Satellite Lab and will launch in December 2021 [11]. The
primary goal of the mission is to observe ocean color along the Norwegian coast. It will
target harmful algal blooms, among other phenomena. HYPSO-1 will be the apex of a
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network of autonomous agents monitoring the coastline and will provide the other agents
with a synoptic view of the ocean to aid with their own mission-planning [12].

The computational limitations of the platform present difficulties for the mission. The
radio bandwidth is low relative to the size of the captured HSI data, which means that if
the whole data cube is downlinked, the autonomous agents will be unable to respond to
dynamic phenomena in anything resembling real-time. Lossless compression can reduce
the size of the data by more than a factor of 2 [13], but this reduction is not sufficient to
achieve real-time behavior. Moreover, compressed data are not suitable for further analysis
on board. Clustering can achieve a significant reduction in the size of the data, while
retaining it in a suitable form for further processing in tasks such as target detection or
classification.

1.1. Related Works

Clustering, in the context of hyperspectral imaging, refers to grouping similar pixels
together, without regard for what the pixels represent in the scene. This is unlike classifica-
tion, the more common activity of grouping pixels together with the surface constituent
(e.g., water or land), which led to a particular spectrum, because it does not require informa-
tion about the ground truth, which is often impossible to acquire for hyperspectral images.
However, both aim to assign each input vector in a dataset to one of a finite number of
discrete categories [14,15]. Clustering can even be used as pre-processing for classification,
so that the latter algorithm classifies clusters rather than the pixels themselves. This is often
how clustering algorithms are evaluated and compared.

Centroid-based algorithms represent each cluster by its center. k-means [16], one
of the most popular centroid based clustering methods, is known for its simplicity and
computational efficiency. It has been applied to hyperspectral data with considerable
success in both reducing the time required for classification and increasing its overall
accuracy, both as a pre-processing method for classification by SVMs or combined with
spatial information [17,18].

The self-organizing map (SOM) [19] is closely related to to k-means, with a lattice
placed between the nodes in order to impose a distance metric, although it also has
connections to the gaussian mixture model discussed below [20]. SOMs were originally
developed to model biological neural networks [21], but have been used in hundreds of
different applications [19,22], including compression [23] and regression [24].

Early experiments that applied SOMs to hyperspectral data using small network sizes
showed they were potentially valuable for classification and target detection [25,26].
Starting in 2018, Riese et al demonstrated that SOMs can be used for regression to determine
parameters which vary nonlinearly, with performance comparable to more common ma-
chine learning methods [27,28]. Later, they showed that that SOMs enable the classification
of hyperspectral images with very few labelled pixels and presented their own frame-
work, which accommodates supervised, semi-supervised, and unsupervised learning with
SOMs [29]. At the same time, experiments showed that pre-processing with sufficiently
large SOMs facilitates levels of classification accuracy exceeding Support Vector Machines
(SVMs) [30]. In addition, the ease of visualizing SOMs has encouraged their use in a
number of other tasks related to the analysis of satellite imagery [31–34].

Spectral Clustering (SC) [35] non-linearly transforms data into a lower-dimensional
space before clustering in the lower dimension using another procedure, such as k-means.
As generic spectral clustering has computational requirements that are too demanding
for hyperspectral images, several customized algorithms have been designed, notably
Fast Spectral Clustering with Anchor Graph (FSCAG) and fast spectral clustering (FSC)
[36,37]. These algorithms utilize anchor points, rather than every pixel, when constructing
the affinity matrix, and the latter uses non-negative matrix factorization to simplify the
calculation further [38].

Model-based clustering algorithms partition data by creating a probabilistic model to
describe how the spectra of pixels are generated. Each pixel is considered to be a random
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variable drawn from a distribution that depends on latent, unobserved variables. The
clustering problem is then transformed into an inference problem of estimating the latent
labels from the observed data. For hyperspectral images, this is often based on the gaussian
mixture model (GMM) solved by the Expectation Maximization (EM) algorithm [39]. The
GMM models the image as several multivariate Gaussian distributions, from which the
pixels are drawn. It has been used to cluster hyperspectral images and as preprocessing
for classification [40,41]. An extension of this algorithm for hyperspectral data, called a
Label-dependent Spectral Mixture Model with Markov Random Field (LSMM-MRF), is
proposed in [42].

The on-board processing of hyperspectral images for classification and target detection
often requires algorithms to be adapted, both to achieve a real-time performance [43,44]
and to accommodate the resource-constrained environments that are available on smaller
platforms [45,46]. For example, Du and Nekovei proposed using only a subset of the
pixels at several steps in an algorithm [43], while Thompson et al. demonstrated a way of
accommodating sensor abberations without any algorithm to correct them by applying
a target detection algorithm columnwise [47]. Other research, such as a recent set of
experiments by Alcolea et al., has focused on determining which pre-existing algorithms
are best suited to on-board operation [48].

1.2. Proposed Contributions

In this article, we present a strategy for using Self-Organizing Maps (SOM) to cluster
hyperspectral images on a satellite. The SOM machine-learning technique is chosen because
it has relatively low memory and processor requirements and clearly separates training
and execution so that the algorithm can be split between the ground segment and the
spacecraft (see Appendix A).

We develop and test SOMs on the HYPSO-1 hardware, and use those performance
tests to derive size requirements based on execution time. Two operational procedures for
the use of SOMs are evaluated. In one of the operational procedures, an SOM trained on
one scene is applied to another. In the other, the SOM is trained on a very small subset
of the pixels. Although motivated by the experiments of Riese et al. [29], the second
procedure differs from these experiments because the missing pixels are not available
at all, rather than simply being unlabelled. It is found that SOMs can be executed on
the satellite within the computational time restraints, and the resulting clustering retains
enough information for further image-processing, such as classification. Moreover, SOMs
can be trained from a small portion of the total pixels in an image without a notable increase
in the quantization error.

2. Materials and Methods
2.1. Evaluation Data

Different datasets are used to evaluate the performance of the SOMs with respect to
unsupervised and supervised learning. Unsupervised learning is used to evaluate how
well a SOM can approximate a dataset. Supervised learning, as a classification method, is
used to evaluate how much information is retained in the SOM clustering for subsequent
analysis.

The unlabelled data come from the Hyperspectral Imager of the Coastal Ocean (HICO)
instrument, which was hosted on the International Space Station [1]. The data are used
as L1 Top of atmosphere (TOA) radiance, so that the clustering does not depend on a
particular atmospheric correction. Three different locations are chosen to evaluate the
algorithm (Table 1 and Figure 1). First, the North Sea is chosen because HICO observed
that region many times, and it is relatively close to the HYPSO-1 target region of the
Norwegian coast. Second, the Pacific ocean along the coast of Chile is also chosen because
it is also subject to harmful algal blooms. Third, Lake Erie, along the Canada-USA border,
is chosen because it suffers frequent harmful algal blooms [49] and, in contrast to the first
two locations, is freshwater.
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Figure 1. The four HICO scenes used in the analysis: first North Sea scene (a), second North Sea scene (b), Laguna San
Rafael—Chile (c), Lake Erie—USA/Canada (d).

Table 1. Unlabelled Data, from HICO.

Location Name Latitude Longitude Date

North Sea *—Germany 53.9◦N 7.3◦E 2 September 2014
North Sea—Germany 53.9◦N 8.1◦E 1 May 2013

Laguna San Rafael—Chile 46.7◦S 74.7◦W 13 June 2012
Lake Erie—USA/Canada 41.8◦N 83.1◦W 3 September 2011

* used for initial analysis.

Although these data are initially unlabelled, during this study, one image from the
North Sea is labelled as cloud, land, and water. This labelling is imprecise in order to
approximate the accuracy of the labelling that will be possible during HYPSO satellite
operations, when time is constrained. In other words, amateur operators aided by a map
should be able to distinguish the three categories, except perhaps in a few ambiguous cases
(e.g., foggy swamp). Each image contains ≈ 106 pixels and 86 bands (410–897 nm range,
5.7 nm bandwidth).

The labelled data originate from four hyperspectral datasets commonly used to eval-
uate classification algorithms: Pavia University, Indian Pines, Samson, and Jasper Ridge.
The Pavia University scene was acquired by the ROSIS sensor [50] and the Indian Pines
scene was acquired by the AVIRIS sensor [51], with preprocessing described in [52]. In
each scene, a subset of the pixels is classified into 9 or 16 classes, respectively. The latter
two images, described in [53], each pixel is partitioned into different endmembers. The
class of each pixel is then defined as the endmember with the largest weight.

2.2. The HYPSO-1 Payload

The sensor used in the hyperspectral imager on HYPSO-1 is the Sony IMX249 from
IDS Imaging Development Systems GmbH [54]. The standard cube size on HYPSO-1 is
(h, w, d) = (956, 684, 120), where h is the number of captured frames, w is the number of
rows in each frame while d is the number of binned spectral bands in the cube. Therefore,
there are, in total, n = h× w ≈ 6.5× 105 pixels in a cube.

The On-Board Processing Unit

The HYPSO payload is controlled by a System on Chip (SoC), the Xilinx Zynq-7030.
It consists of the Processing System (PS) and a Kinex-7 based Programmable Logic (PL)
module. The main technical specifications for the PS are listed in Table 2. The PS will
handle the main payload software tasks such as image capturing, image processing, com-
munications, and file transfers. To accelerate the heavy workloads, several algorithms will
be synthesised and programmed to the PL.
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Table 2. On-board Processing Unit technical specifications

Component Specification

Zynq-7030
Processor 32-bit Dual Core ARM Cortex-A9 @ 667 MHz

Architecture Extensions NEON 128b SIMD coprocessor
L1 Cache 32 KB per processor
L2 Cache 512 KB shared

On-Chip Memory 256 KB
Other system memories

SDRAM 1 GB DDR3
QSPI Flash 128 Mb

eMMC 8 GB
SD card 16 GB

The SoC is located on the PicoZed System on Module (SoM). It features 1 GiB of DDR3
SDRAM, which is the main working memory for the pipeline. A custom-designed breakout
board is connected to the PicoZed for IO management. In addition, it contains temperature
sensors and a heat sink.

2.3. Image Processing Pipeline

The on-board processing framework is a software framework that allows for the
processing of hyperspectral cubes in a pipeline. Each module applies an algorithm to
the cube in series. Some modules, such as the smile and keystone correction [55] and
compression [13], modify the cube, as it propagates through the pipeline. Other modules,
such as target detection [56] and classification, analyze the cube.

2.3.1. Dimensionality Reduction

Principal Component Analysis (PCA) is used as the DR because it is a common
DR technique, its only hyperparameter is number of dimensions, and the components it
produces are orthonormal, which enable simple inversion [57,58]. The determination of
the PCA components occurs on the ground, so that only the projection of the image onto
the components to calculate the scores (spatial distribution of weights) must be performed
on the satellite. In this paper, the components are initially computed using the scikit-learn
library [59]. For the SVM classification, the data are normalized by their variance before
performing the PCA transform.

2.3.2. Classification

Support vector machines with a radial basis functon (RBF) kernel are used as the
benchmark to compare to SOM-based classification because they are the state-of-the-art
technique, which, like SOMs, does not incorporate spatial information. They have a
small memory footprint suitable for embedded systems, although they are somewhat
computationally intensive [48,60]. Scikit-learn is used for the accuracy analysis [59] while
speed benchmarking is performed on the target hardware with custom code written in C.

2.4. Operations

Contextualizing an algorithm within an operational procedure can reveal hidden
constraints. Therefore, two operational plans are presented, in which the SOM is used for
clustering (Figure 2). In both, the main purpose of clustering is compression. A secondary
purpose is to pre-process the image for classification into land, cloud, and water, the output
of which can either be sent to autonomous agents for navigational purposes or used in
other algorithms, such as georeferencing.
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(a) The single-stage procedure

(b) The two-stage procedure

Figure 2. The two proposed operational procedures, which use Self-Organizing Maps to compress
HSI data.

The first operational procedure uses a pre-calculated SOM to cluster an image (Table 3).
The difficulty of this plan is that the captured image might not be sufficiently similar to the
image from which the SOM is calculated. The second procedure calculates the SOM from
the captured image (Table 4), by downlinking a random selection of pixels. At the ground
station, the PCA components are calculated and the SOM is trained from the selection of
points. The relevant DR components and the SOM are then uplinked back to the satellite,
before the image is clustered and downlinked.

There are two main difficulties with the latter plan: (1) it is operationally more complex and
(2) an SOM must be trained with only a small selection of pixels. Difficulty (2) is investigated in
this article, while (1) is expected to be overcome with operator training and planning.

Table 3. The single-stage procedure for data clustering.

Action Size (kB) Duration (s)

1. Uplink PCA loadings 1.2 0.24
2. Uplink SOM weights 11.0 3.00
3. Capture image 160,000.0 53.00
4. Projection onto DR components 6500.0 5.00
5. Project onto SOM - 54.00
6. Downlink clustered image 1100.0 11.00
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Table 4. The two-stage procedure for data clustering.

Action Size (kB) Duration (s)

First stage
1. Capture image 160,000.0 53.00
2. Downlink random selection of pixels 250.0 2.00
3. Perform PCA at ground station - -
4. Train SOM at ground station - -

Second stage
5. Uplink PCA loadings 1.2 0.24
6. Uplink SOM weights 11.0 3.00
7. Projection onto DR components 6500.0 5.00
8. Project onto SOM - 54.00
9. Downlink clustered image 1100.0 11.00

The time taken to project onto the SOM is calculated from the timing benchmarks
determined below. The times are calculated assuming a 32× 32× 5 SOM, a selection of
1024 pixels, an uplink bandwidth of 0.4 Mbps, and a downlink bandwidth of 1.0 Mbps. The
SOM-clustered data are assumed to use an unsigned 2-byte integer, although the cluster
labels can be expressed with only 10 bits, because the former is a more common data format.
In both tables, size and memory are both rounded up to two significant figures.

2.5. Self-Organizing Maps

A SOM maps input data to a low-dimensional space, typically consisting of far fewer
datapoints than the original data. This is done by training a lattice of nodes that preserves
the distribution of the input data while also representing the full dataset. While the lattice
can have any structure, the most common is a finite two dimensional rectangular grid.

Each node of the SOM is represented by vector z with the same dimension as the
input data points. The operation of the SOM consists of two parts: training and labelling.
Here, we discuss the training and labelling separately, although we note that they can be
combined so that the SOM is trained on-line. Both parts involve finding the best matching
unit (BMU) for an input vector, or the node which is the closest to the input vector under a
given distance metric, typically Euclidean. In other words,

BMU(xi) = argmin
z∈Z

k(xi, z), (1)

where X =
[
x1 x2 . . . xn

]
, xi ∈ Rd are the input data, Z =

[
z1,1 . . . zm,m

]
, zi ∈ Rd

are the m× m grid of SOM nodes, and k is the distance metric. In the training phase, a
neighborhood function of the BMU is calculated and the nearby nodes are adjusted towards
the input vector, while in the labelling phase, the input vector is labelled with the lattice
coordinates of the BMU (illustrated in Figure 3). Once the map is trained, any two points
that are close (with respect to k) in the input data space are mapped to spatially close nodes
in the SOM grid. Therefore, the grid preserves the topology of the input space.
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Figure 3. Training the SOM on a new input sample (red). The best-matching unit (green) is affected
the most, while the neighboring nodes are less influenced. The distance between the nodes is
proportional to the similarity in the data space.

The training proceeds similarly to gradient descent, although, because an objective
function for the original SOM has not been found, it is not technically gradient descent [61].
Let u∗i = BMU(xi) denote the index on the SOM of the BMU for input vector xi from
Equation (1). The update step s for each SOM node zj is given by

zs+1
j = zs

j + αβ(t, uj, u∗i )k(xi, zs
j ), (2)

where α > 0 is the learning rate for iteration, β(t, uj, u∗i ) > 0 is the neighborhood function,
t denotes the epoch of training, and s denotes the iteration within the epoch.

The learning rate α determines how fast the map adapts to the input data. The neigh-
borhood function β(t, uj, u∗i ) preserves the topology by training nodes that are spatially far
from u∗i with a lower magnitude. It is characterized by an update radius σ(t), which de-
creases as the training progresses in order to initially learn the rough distribution topology
before finetuning local areas of distribution.

2.5.1. Structure

The discussed SOMs are all on a rectangular lattice (e.g., a grid), rather than a hexag-
onal lattice, or some other lattice structure. In addition, all the grids are square in the
sense that they have the same number of nodes on each side. These structural parameters
are chosen so that the focus of the article is how well an SOM can perform within the
two operational procedures, rather than how to optimize an SOM architecture, which has
already been investigated in numerous other studies [19,22].

2.5.2. Initialization

The SOMs are initialized by computing the first two principal components of the
data. The upper-left and lower-right corners are initialized, respectively, with the spectra
of the pixels that have the largest and smallest scores on the first principal component.
The upper-right and lower-left corners are initialized with the spectra of the remaining
pixels that have the largest and smallest scores on the second principal component. This
initialization procedure is similar to the one proposed in [19], but uses the spectra of pixels
in the data rather than directly using the principal components.

2.5.3. Training

All the training is performed using the gaussian neighborhood function. A learning
rate of 0.1 is used throughout, while the update radius varies and is specified in each
individual experiment. The order in which the pixels are input into the SOM is randomized.

2.5.4. Metrics

The main metric which is used to evaluate the performance of the SOMs is the relative
quantization error for a pixel:
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qi =

√√√√
∣∣xi − B(xi)

∣∣2

|xi|2
, (3)

where B() is the function that maps each spectrum to its BMU on the SOM, and qi is the
relative quantization error for a single pixel. The denominator in (3) is included to allow
the metric to be compared between scenes. Without this, using the standard quantization
error from [19], the mean quantization error is strongly influenced by the number of pixels
in a scene which are occupied by clouds because they are so much brighter than the other
types of pixels. When using DR, it is assumed that xi and B are in the original spectral
representation, which is positive definite, in Equation (3). In the section which evaluates
the effect of noise on the SOM, the relative quantization error is called the relative mean
square root error (and B is replaced with the noisy data) because the name quantization is
not relevant in that context.

In the section on classification, the overall accuracy is used:

OA =
NC

NL
, (4)

where NL is the total number of labelled samples and NC is the number correctly labelled
by the classification algorithm.

2.5.5. Node Labels

SOMs on their own are unsupervised networks and are not directly used for classifi-
cation. Instead, the nodes are labelled to perform classification. The procedure used here
for labelling the nodes is inspired by [29]; the stochastic parts of the training have been
removed, although a probabilistic interpretation remains.

First, the SOM nodes are trained using all of the available data, both labelled and
un-labelled, as above. Second, while all the spectra of the nodes are held constant, each
labelled pixel is matched to its BMU. The number of times that any pixel from a class
is assigned to a node is counted. A probability map is then estimated for each class by
multiplying the counts at each node by the neighborhood function, summing them together,
and normalizing them to 1. This procedure expresses the intuition that proximity on the
SOM corresponds to spectral proximity. Finally, the nodes are categorized according to
which class has the greatest probability at a given node, essentially a maximum likelihood
interpretation. The update radius used in the calculation of the probabilities is chosen to be
r ≈

√
z2/(Mπ), where M is the number of labelled samples, so that the area covered by

the neighborhood functions approximates the area of the SOM.

3. Results
3.1. Computational Benchmarks on Target Hardware

The computational time of each algorithm scales with its parameters, e.g., the SVM
scales with the number of support vectors. To find parameters under which the models are
computationally tractable within the constraints, they are tested on the target hardware
(Figure 4). Then, based on the measurements, runtime models are interpolated. They
are interpolated with only the highest-order term in the asymptotic runtime to provide a
simple equation. The runtime analysis is based on the standard cube size of 956 frames,
with 684 pixels, and 120 bands each). The ideal and maximum computational times are 190
and 380 s, respectively, to meet the demands of HYPSO’s power budget.
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Figure 4. Execution time for PCA, SOM and SVM for a standard image with (h, w) = (956, 684). The ideal requirement and
hard requirement on computational time are shown with dashed and solid lines respectively. (a) Execution time for PCA
projection; (b) Execution time for the SOM method; (c) Execution time for SVM.

First, the PCA DR projection is tested. The computational time of projecting a cube is
expected to scale linearly with the number of projected components d. Figure 4a shows
measurements of the computational time versus the number of components, as well as the
interpolation. The resulting expected computational time in seconds is EPCA = 0.8858d, or
about 1.35µs per pixel per component.

The computational time of the SVM is dominated by the RBF kernel calculation,
which is O(dns) where ns is the number of support vectors. From the measurements and
corresponding interpolated model, the expected computational time is ESVM = 0.0235dns.
Figure 4c shows the interpolated model for measurements with d = 10 and d = 120 bands.
The measurements mainly support the linear model; however, there is some deviance for a
large number of support vectors. For the ideal requirement of <190 s of computation and
a cube with full dimension d = 120, the upper limit on the number of support vectors is
about 70, which is typically far below the number of support vectors in a model. Reducing
the dimension to d = 10 gives time for about 750 support vectors.

The SOM method has a quadratic runtime in the dimension z and the driving quadratic
term also scales with the number of bands d. The interpolated model, ESOM = 0.0104 dz2, is
as seen in Figure 4b. Without DR, z must be 11 or less to fit within the target computational
time. Reducing the dimensionality to d = 5 allows z to be about 56.

3.2. Clustering

In this section, the SOMs’ ability to be trained on unlabelled data is evaluated. As the
data acquired in the HYPSO-1 mission are initially unlabelled, this is a critical ability for
SOMs in both operational plans. First, the structure of an SOM trained on the first North
Sea scene without DR is investigated. Second, several SOMs are trained and evaluated on
the first scene with DR. Next, the performance of transfer learning is tested by comparing
SOMs that are trained and applied to different datasets to SOMs that are trained and
applied to a single dataset. Finally, an SOM’s capacity to deal with noisy data is evaluated.

Before the process of optimizing a SOM architecture for the HYPSO-1 mission, the
structure of a single SOM and its application to unlabelled data are explored in depth.
The first SOM is trained using the full 86-band spectrum from the first North Sea HICO
scene (Figure 1a). The SOM consists of 64× 64 nodes and is trained with an update radius
decreasing from 32 to 1 and a constant learning rate of 0.1, in 100 steps of 104 pixels at a
time in a randomized order.

The initial SOM, while too large for on-board processing, because it lacks DR, gives
a benchmark for SOM performance, and is interpretable in the sense that each node of
the SOM can be represented as a spectrum. In Figure 5a, the nodes of the trained SOM
are colored according to the spectrum which each node represents (normalized to the
maximum of each band). The nodes of the upper left corner are white, corresponding to
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cloud pixels, while the nodes of the upper right corner appear red, corresponding to the
large infrared response of land pixels. Along the bottom, the nodes transition from a lighter
blue on the left to a darker blue on the right, which corresponds to different spectra that
water appears to have in the scene.

The U-matrix (Figure 5b) shows the distance of nodes from their neighbors, so that
folds in the SOM appear as dark lines. Two folds are apparent: a vertical one extends
down from the top and separates the nodes associated with clouds on the left from nodes
associated with nodes associated with land, while a horizontal one extends from the right
side and separates the land-pixels from the water pixels. The number of pixels in the
original image that are identified with a particular node are plotted (logarithmically) in
Figure 5c. The counts are distributed fairly uniformly over the SOM, except along the folds
that are visible in the U-matrix, which indicates that the SOM expresses the content of the
scene. The mean and median relative quantization error for the scene are 0.87% and 0.63%,
respectively, which further indicates that the SOM has captured the pixel distribution of
the scene.

Figure 5. The SOM trained on the first North Sea scene. (a) The SOM in false color, represented by
bands 816 nm (red), 684 nm (green) and 467 (blue). (b) The U-matrix shows the curvature of the
surfaces at each node, where darker colors indicate more curvature (arbitrary units). (c) The number
of pixels in the original image which are classified at each node.

The physical interpretation of the SOM is apparent from both the spectra of the nodes
and the spatial distribution of pixel clusters in the scene. In Figure 6, the spectra for the
nodes of the SOM are shown, with the spectra of the nodes in the four corners highlighted.
The clustering of the first North Sea image is shown in Figure 7, with (a) showing the
column number and (b) showing the row number.

The information depicted by the labels corresponds with what can be visually ob-
served in the original color image (Figure 1). First, the regions that are bright in both (a) and
(b) appear to be clouds, which is consistent with the observation that they are most similar
to the black line in Figure 6, which itself has characteristics of the spectrum of a cloud (e.g.,
relatively bright and spectrally smooth). Likewise, the regions dark in (a) but bright in (b)
appear to be land, consistent with the red-colored spectral curve. The regions that are dark
in both seem to be water, which is consistent with the blue- and purple-colored spectra.
Finally, Figure 7c, which depicts the per-pixel relative quantization, shows that the error is
relatively larger on land than on either clouds or water. It is suspected that the SOM learns
the spectra of the land pixels less well because they are more diverse.

Dimensionality reduction is investigated as a way of reducing the computational
requirements of the SOMs. It is first tested by reducing the number of bands used in the
training of the above SOM from 86 to 5. As the evaluation of a SOM is linear in the number
of bands, this corresponds roughly to a speed improvement of about 17×. The relative
quantization error only increases to a mean and median of 1.0% and 0.8%, or by about 20%
relative to using all bands.
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Figure 6. The spectra of every fourth node along each axis. The spectra in the corners are bold and
colored black, red, purple, and blue (clockwise from the top left).

Figure 7. The first North Sea image classified according to the 64× 64× 86 SOM. The (a) column and
(b) row of the BMU index. (c) the relative quantization error.

The performance of DR is further evaluated by considering how SOMs of several
different sizes with varying numbers of dimensions performed on the first North Sea
scene (Figure 8). It is found that, in general, the quantization error decreases with both an
increasing number of dimensions and SOM network size. However, for a given network
size, there is a critical number of dimensions, above which there is no further reduction
in the quantization error. For these reasons, the rest of the paper will work with five PCA
dimensions, unless otherwise noted.
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Figure 8. The mean quantization error for four different SOM sizes, for varying numbers of PCA-
reduced dimensions. The black line depicts the error imposed by DR itself (prior to applying the
SOM), and is thus a lower limit on the error.

The second operational procedure (Table 4) relies on training an SOM with a limited
number of downlinked pixels. Therefore, the ability of a SOM to learn from a small amount
of data is tested. A 32× 32× 5 SOM is trained with an update radii of 8, 2.8 and 1 and a
number of pixels ranging from 24 to 215. The training is performed as it would be during
operations: both the determination of the PCA components and the training of the SOM
are performed with a limited number of samples. Then, the SOM is evaluated on the full
image. The procedure is repeated four times and the averages are presented in Figure 9.

For a given number of samples, the performance does tend to improve as the update
radius is decreased, as is found above. For a given update radius, the performance improves
with an increasing number of samples up to a certain value, n∗, above which it remains
constant. Below n∗, the training data significantly underestimate the error, while above
this, the training data provide a decent estimate of the error. These results validate the
two-stage operational procedure.

The first operational procedure (Table 4) relies on transfer learning, particularly the
application of an SOM trained on one image to a second image. This ability is tested by
applying an SOM trained on the first North Sea image to the other images. It is found that
the quantization error in the clustering of an SOM on a different training image results
in a notable increase (10− 20×) relative to the image that it was originally trained on
(Tables 5 and 6). The different scenes on which the SOM is applied lead to significantly
different quantization errors. In addition, the SOM performed better on the freshwater
scene (Erie) than it did on the same location on which it was trained (North Sea), which
suggests that it is difficult to anticipate how well an SOM will perform on a particular
scene prior to its application.
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Figure 9. The mean quantization error as a function of sample size for PCA-initialized 32 × 32 SOM
(black), or SOMs trained with an update radii of 8 (blue), 2.7 (red), and 1 (orange) as evaluated on
either the reduced sample size (dotted) or full image (solid).

Table 5. Relative quantization error resulting from 64× 64× 86 SOM classification trained by North
Sea 1.

Scene Mean Median

North Sea 1 0.0087 * 0.0063 *
North Sea 2 0.0733 0.0683

Laguna San Rafael 0.1560 0.1372
Lake Erie 0.0614 0.0578

* training scene.

Table 6. Relative quantization error resulting from 32× 32× 5 SOM classification, either trained on
North Sea 1, or from subsampling one scene with 4096 pixels.

Scene Transfer Subsampled

Mean Median Mean Median

North Sea 1 * * 0.0129 0.0096
North Sea 2 0.0766 0.0780 0.0152 0.0119

Chile 0.2209 0.1775 0.0241 0.0186
Erie 0.0710 0.0678 0.0160 0.0132

* used for training in transfer learning test.

The performances of the two operational procedures, in terms of the relative quantiza-
tion error of the resulting datasets, are compared by applying each to the test datasets. A
32× 32× 5 SOM is trained from a random sampling of 4096 pixels on each test image, and
the trained SOM is tested on the same image (Table 5). Then, the SOM trained on the first
North Sea scene is applied to the other scenes.

For all the scenes, the SOM trained on a sub-sampling of pixels resulted in smaller
relative quantization errors 4–10× than when transfer learning is used. The SOM trans-
ferred to the Lake Erie scene shows that while the SOM captures the algal bloom, it does
not resolve the gradations in the chlorophyll content, and has much more relative error
over the whole scene compared to the first North Sea image, particularly over the water
(Figure 10). On the other hand, the SOM trained on a sub-sampling of the Lake Erie pixels
shows the algal bloom quite clearly. The relative quantization error over the bloom is
mostly less than 1%. The Laguna San Rafael scene gives the largest quantization error
for both procedures, perhaps because the scene contains diverse surfaces, including fresh
water, ocean water, mountains, glaciers, swamps, and clouds (Figure 11). While the second
North Sea scene gives a higher quantization error than the Lake Erie scene under transfer
learning, it gives a lower error than the latter when the sub-sampled SOM is applied.
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Figure 10. The HICO Lake Erie scene clustered according to the 32× 32× 5 SOM calculated from the first North Sea scene
(left) or the SOM calculated on itself (right), according to the (a,b) column number and (c,d) row number. (e,f) the relative
quantization error.

Figure 11. The Laguna San Rafael scene (left) and the second North Sea scene (right) clustered according to the SOM
calculated on each, with the (a,b) column number and (c,d) row number. (e,f) the relative quantization error.

One additional concern regarding hyperspectral imaging on cube-satellites is that
their small-form factor limits the size of the imaging optics, which, in turn, limits the
signal-to-noise ratio of the collected data.

The effect of noise on SOMs is investigated by adding noise to the first North Sea
image. The signal-to-noise ratio of the median observation (over all bands and pixels) is
varied from 1 to about 104 by adding noise to the scene, poissonian rather than gaussian in
order to better approximate photon counting statistics. A 32× 32× 5 SOM is initialized
and trained on 105 pixels from each noisy dataset, and is then evaluated on both the noisy
and original datasets (Figures 12 and 13).

Figure 12. The first HICO North Sea scene adjusted to a signal-to-noise ratio of 1 for the median observation value (left).
The same noisy scene after being reconstructed from data clustered by an SOM (right).
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Figure 13. At small signal-to-noise ratios, the SOM-processed data (yellow) are a better estimate of
the scene than the original noisy observations (green). While the SOM provides a good estimate of
the original scene, the reconstruction provides a relatively poor estimate of the noisy scene on which
it is actually trained (blue) because it does not capture the noise well.

It is found that the SOM-processed data better approximate the original, noiseless
scene by a factor of almost 5 compared than the raw noisy observations, although this
effect begins to vanish at signal-to-noise ratios above 1000. This noise reduction seems to
originate from the way that each SOM node gives the average of several pixels, together
with the selection of only five PCA dimensions [58,62]. As the averaging is non-local, it
does not harm the spatial resolution of the scene. Thus the use of SOMs is not inhibited by
noise and, in fact, may even alleviate some of the effects of noise.

3.3. Classification

Operationally, it is advantageous for hyperspectral images to not only be clustered,
but also classified with labels that indicate distinct materials. For example, if the HYPSO-1
satellite could partition images into water, land, and clouds, then it could select only water
pixels to downlink, which could ease the data budget. Similarly, Unmanned Aerial Vehicles
(UAVs) will collaborate with HYPSO-1 by performing hyperspectral imaging under the
clouds, which the satellite cannot observe. If HYPSO-1 downlinks a map of where the
clouds as it images, the map could guide the UAVs to the locations they need to scan.
Therefore, the capacity of SOMs to classify data is tested by labelling the nodes of a SOM
and applying it to the test scenes.

Labels are applied to a few regions of the first North Sea scene, which is, in turn,
used to label the nodes of an SOM that is used to apply labels to the whole scene. The
broad classes of water, land, and cloud are used because distinguishing between those
three components in within the expected skill level of satellite operators, who may not be
experts in remote sensing. The regions of the scene which are selected as representative
of the class are colored in Figure 14a. The pixels of each labelled class are mapped to the
SOM, the counts of which are depicted in Figure 15a. These counts are then converted
into probabilities using the neighborhood function of the SOM (Figure 15b). Finally, the
probabilities are used to label the different nodes of the SOM (Figure 15c). The pixels in
the scene are then classified according to their BMU (Figure 14c). Repeating the procedure
with DR produces similar results (Figure 14e).
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Figure 14. (a) The pixels assigned to the water (blue), land (green), and cloud (red) for the initial determination of labels.
The labels assigned according to (c) the full 86-band SOM or (e) the five-band DR SOM. The DR SOM classification applied
to (b) second North Sea scene, (d) the Chilean scene, and (f) Lake Erie.

Figure 15. (a) The number of pixels assigned to each of the 64 nodes, scaled to the maximum of each
class, for water (blue), land (green), and clouds (red), plotted logarithmically. (b) The estimated
probability that a pixel in a given class is a member of an SOM node, plotted logarithmically with
black = 10−15. (c) The class labels assigned to each node.

Classification fits more naturally with the first operational procedure (Table 3), because,
in that plan, spatial information can be used to assist labelling different regions. Therefore,
the 32× 32× 5 SOM trained on the first North Sea scene is labelled according to the above
procedure. Then, its node labels are used to classify the three other scenes (Figure 14, right
column). The water is identified fairly well in all scenes, although, in the second North
Sea scene, numerous water pixels are classified as land along the coast. In the Luguna San
Rafael scene, the snowy mountainous region is classified as a mixture of water and clouds,
perhaps because there is no snow in the training data. Moreover, in the same scene, clouds
at the leftmost edge of the image are mistakenly classified as land. In the Lake Erie scene,
a number of water pixels are classified as clouds. Thus, it is possible to transfer labelled
SOMs to classify new scenes, but more pixels will be mislabelled than in the original data.

By testing the SOM classification on several common benchmark scenes, the preserva-
tion of the information in a scene is evaluated. The SOMs are benchmarked against support
vector machines (SVMs), which are a state-of-the-art single-pixel classification technique.
While more sophisticated classification techniques could be applied to data clustered by a
SOM, for example, by including information about neighboring pixels, the focus here is on
single-pixel techniques. SOMs and SVMs are compared on four different scenes: Samson,
Jasper, Pavia University, and Indian Pines, with sizes 64× 64× 5 on the first three scenes,
and 128× 128× 5 on the latter.

The training procedure is the same as that which is applied to HICO, shown above.
Each scene is partitioned into a training set consisting of 90% of the pixels and a test set
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consisting of 10% of the pixels. The effect of the size of the training set is the subject of an
additional test. The SOM is trained on all of the pixels in each image, except for the test
set. The labels are then applied using the training data. The same training/test partition is
used to train the SVMs.

The SOMs classify the two simpler scenes, with 3 or 4 classes, about as well as the
SVMs, but their performance relative to the SVMs degrades for the more complex scenes,
with 9 or 16 classes (Table 7). The relative quantization error of the SOM clustering also
increases with the complexity of the scene, with the SOM describing less than half of the
variance on the Indian Pines scene.

Table 7. Performance of several classifiers on different scenes.

Samson Jasper Pavia Pines

Mean Relative Quantization Error 0.0289 0.2909 0.3693 0.5319
SOM-Overall Accuracy 0.9922 0.9690 0.8214 0.6635
SVM-Overall Accuracy 0.9845 0.9900 0.9178 0.8499
SVM-Support vectors 379 370 9354 4280

The effect of the number of labelled pixels on classification is tested on the Jasper
scene, because it is more complex than Samson, but the number of different members are
more balanced than the Indian Pines or Pavia University scenes, so that even a sample size
of 16 pixels can contain all the different classes.

As expected, the overall accuracy of the SOM classification increases with the number
of labelled samples (Figure 16). Whether the SOM is trained with only the labelled samples
or both labelled and unlabelled samples matters little (solid vs. dotted red line). Both
show an overall accuracy above 90% when a few hundred samples are used. For sample
sizes below 100, the SOM and SVM show a similar overall accuracy, while the SVM shows
more improvement with additional samples. Each procedure is repeated four times and
averaged. This is evidence that operational procedure 2, in which the SOM is trained on a
sampling of the raw data, will retain enough information for further image processing and
scientific analysis (Table 4).

Figure 16. The overall accuracy for SVM (blue) and SOM (red) classification, with the classifier
trained on different numbers of samples from the image Jasper. The dotted blue line shows OA for
SVM trained with all 86 bands. The dotted red line shows SOM initialized by unlabelled samples.

On the final two scenes, the performance of the SOM degrades relative to the SVM
classification, although it is also notable that the SVM uses more support vectors than on
the prior scenes, but the SOM does not increase in complexity. The Indian Pines scene
shows the worst performance in both the SOM clustering and classification (Figure 17).
First, the mean relative quantization error is over 0.5, which indicates that the scene itself
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is too complex to describe with an SOM of this size, even accounting for the fact that the
SOM is slightly larger than those used before (128× 128× 5). In light of the very high
relative quantization error, it is notable that the SOM is able to still achieve 66% overall
accuracy in the classification.

Figure 17. (a) The Indian Pines scene ground truth labels. (b) the scene classified by the SVM. (c) The scene classified by the
128× 128× 5 SOM. (d) the class labels on the nodes of the SOM.

4. Discussion

The experiments with SOMs show that they are an appropriate tool for clustering
hyperspectral data on-board a small satellite. The clustering can be used as interpretable
compression, which reduces the size of a dataset by a factor over 100 relative to the raw
data. By decreasing the downlink time, the SOMs can facilitate near-real-time hyperspectral
imaging from small satellites. SOMs similarly increase the total throughput of the data that
can be captured.

Of the two proposed operational procedures, the experiments show that the two-stage
procedure, outlined in Table 4, will typically achieve a much lower relative quantization
error than the single-stage procedure (Table 3). It seems reasonable to train an SOM
with less than 1% total pixels. Still, the second procedure entails a more sophisticated
operational plan, and requires either an operator to perform PCA and train the SOM
between satellite passes, or an automatic procedure to train and assess the SOM before
uplinking. Furthermore, the benefits of having an SOM trained on a random sample of
points from the target image suggests that it may simplify the operations to bring the
whole clustering procedure (including training) on-board the satellite. This would either
require more computational power, perhaps by utilizing the programmable logic that is
already on the satellite or by including a more powerful processing unit on a subsequent
satellite in the HYPSO constellation. It is worth noting that SOMs have been developed for
programmable logic previously [63–65].

Clustering by SOMs retains enough data for subsequent data-processing, as shown by
the experiments with classification. However, it may be worth investigating ways to enable
SOMs to retain specific information, as the SVMs outperformed the SOMs in terms of
classification on more complicated scenes. Different DR techniques could lead to different
information being retained in the SOM nodes.

5. Conclusions

Although simple, SOMs have numerous benefits when used as a clustering technique
where computational power is limited. They are quick to both train and evaluate on
different images, they have a small memory footprint, and their output is interpretable as
nodes, which, for the hyperspectral data discussed here, can be seen as spectra. Moreover,
the clustered scene can be simply reconstructed and, because it does not rely on spatial in-
formation, its output can provide spatially unbiased information to subsequent algorithms,
and they can be trained from a few samples. Both operational procedures have been shown
to be suitable for execution on a cubesat, although they bring different benefits. For these
reasons, SOMs are potentially well-suited to the needs of hyperspectral imaging cubesats.
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DR Dimensionality Reduction
HSI HyperSpectral Imager
HYPSO HYPerspectral Smallsat for ocean Observation
PCA Principal Component Analysis
SOM Self-Organizing Map
SVM Support Vector Machine
TOA Top of Atmosphere

Appendix A. Computational Complexity of Clustering

Both the space and time complexity vary between the types of clustering algorithms
discussed above. The size of hyperspectral datasets and the limited RAM in the onboard
computer led the space constraints to be more limiting. In this appendix, a sketch of the
space complexities of the algorithms are discussed and compared because they are most
relevant to the comparison.

At each iteration of the k-means algorithm, the cluster index of each pixel must be
stored before the new means are calculated. The size of the working memory is then O(cn),
where c is the number of clusters. Even though self-organizing maps separate the training
of the network from its execution, the space complexity is similar in both. At each iteration
of training, the SOM algorithm requires an array of the distances between the input pixel
and the nodes of the network, the neighborhood function evaluated at each node, and the
SOM network itself. The first two arrays are of size O(z2), as they are simply a scalar at
each node. The SOM network itself, on the other hand, is of size O(z2d). During execution,
the second O(z2) array is no longer needed.

The memory requirements for the other clustering algorithms scale less well with the
number of pixels under consideration. The first of them, spectral clustering requires storing
the n× n affinity matrix. Several algorithms tailored to the large hyperspectral datasets
have been developed [36,37]. These variants mitigate the large memory requirement by
approximating the affinity matrix by a n×m matrix, where m, the number of anchor points,
is free to be chosen. The authors of [37] chose to use m ≈ 0.1n. The space complexity of
model-based clustering algorithms which rely on spatial information (e.g., [41,42]) tends
to be dominated by the array which contains information about the relationship between
each pixel in its neighbors which is O(pn), where p is the number of neighbors consid-
ered. When spatial information is ignored, as can be done for gaussian mixture models

www.ehu.eus/ccwintco/index.php/ Hyperspectral_Remote_Sensing_Scenes
http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html
https://opticks.org/display/opticks/Sample+Data
https://opticks.org/display/opticks/Sample+Data
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(e.g., [40]), the situation is similar to SOMs, as identified by [20]. Indeed, the space com-
plexity is a product of the number of clusters and the mean and covariance matrix of the
gaussian distribution which characterizes each, so that the space complexity is O(z2d3).
Because the SOM had the lowest space complexity, being constant with respect to the
number of pixels and having only linear dependence on the number of dimensions, it is
chosen for a more in-depth investigation regarding its feasibility on-board a small satellite.

The time complexities of k-means, gaussian mixture models, and training the SOM
all depend on the number of iterations, t which can be adjusted. For k-means it is O(cdnt)
because the distance from each pixel to each (original) mean is calculated as well as the
new means. For the gaussian mixture model discussed in [42], it is O(cn2t) because of
the energy minimization sub-algorithm which is used. For the SOM, we showed above
the training can be performed on the ground, so the execution time complexity is more
important. Because it depends on the determination of the BMU which involves evaluation
the distance between each pixel and all the nodes, the time complexity of evaluation it
O(nz2d). Note when algorithms require spatial information, as [42] does, the operational
procedures for moving training to the ground no longer work. The most computationally
expensive step of the spectral clustering methods is the computation of the affinity matrix,
which considers the similarity between the anchors and every pixel in the dataset, giving a
complexity of O(dnm). The SOM is the fastest among these, and could possibly be made
even faster by using the spatial ordering of the SOM to reduce the time complexity to
O(dnz) [66].

References
1. Lucke, R.L.; Corson, M.; McGlothlin, N.R.; Butcher, S.D.; Wood, D.L.; Korwan, D.R.; Li, R.R.; Snyder, W.A.; Davis, C.O.; Chen, D.T.

Hyperspectral Imager for the Coastal Ocean: Instrument description and first images. Appl. Opt. 2011, 50, 1501. [CrossRef]
2. Middleton, E.M.; Ungar, S.G.; Mandl, D.J.; Ong, L.; Frye, S.W.; Campbell, P.E.; Landis, D.R.; Young, J.P.; Pollack, N.H. The Earth

Observing One (EO-1) Satellite Mission: Over a Decade in Space. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 243–256.
[CrossRef]

3. Li, X.; Wu, T.; Liu, K.; Li, Y.; Zhang, L. Evaluation of the Chinese Fine Spatial Resolution Hyperspectral Satellite TianGong-1 in
Urban Land-Cover Classification. Remote Sens. 2016, 8, 438. [CrossRef]

4. Transon, J.; D’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of Hyperspectral Earth Observation Applications from Space in
the Sentinel-2 Context. Remote Sens. 2018, 10, 157. [CrossRef]

5. Lopinto, E.; Ananasso, C. The Prisma Hyperspectral Mission. In Proceedings of the 33rd EARSeL Symposium, Matera, Italy, 3–6
June 2020; p. 12.

6. Matsunaga, T.; Iwasaki, A.; Tachikawa, T.; Tanii, J.; Kashimura, O.; Mouri, K.; Inada, H.; Tsuchida, S.; Nakamura, R.; Yamamoto,
H.; et al. Hyperspectral Imager Suite (HISUI): Its Launch and Current Status. In Proceedings of the 2020 IEEE International
Geoscience and Remote Sensing Symposium, Gujarat, India, 2–4 December 2020; pp. 3272–3273. [CrossRef]

7. Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral Remote Sensing Data
Analysis and Future Challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [CrossRef]

8. Toorian, A.; Diaz, K.; Lee, S. The CubeSat Approach to Space Access. In Proceedings of the 2008 IEEE Aerospace Conference, Big
Sky, MT, USA, 1–8 March 2008; IEEE: Big Sky, MT, USA, 2008; pp. 1–14. ISSN: 1095-323X.

9. Esposito, M.; Zuccaro Marchi, A. In-orbit demonstration of the first hyperspectral imager for nanosatellites. In Proceedings of the
International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018; Karafolas, N., Sodnik, Z., Cugny, B.,
Eds.; SPIE: Chania, Greece, 2019; p. 71. [CrossRef]

10. Mughal, M.R.; Praks, J.; Vainio, R.; Janhunen, P.; Envall, J.; Näsilä, A.; Oleynik, P.; Niemelä, P.; Nyman, S.; Slavinskis, A.; et al.
Aalto-1, multi-payload CubeSat: In-orbit results and lessons learned. Acta Astronaut. 2021, 187, 557–568. [CrossRef]

11. Grøtte, M.E.; Birkeland, R.; Honoré-Livermore, E.; Bakken, S.; Garrett, J.L.; Prentice, E.F.; Sigernes, F.; Orlandić, M.; Gravdahl, J.T.;
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