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Abstract: Building change detection has always been an important research focus in production
and urbanization. In recent years, deep learning methods have demonstrated a powerful ability
in the field of detecting remote sensing changes. However, due to the heterogeneity of remote
sensing and the characteristics of buildings, the current methods do not present an effective means
to perceive building changes or the ability to fuse multi-temporal remote sensing features, which
leads to fragmented and incomplete results. In this article, we propose a multi-branched network
structure to fuse the semantic information of the building changes at different levels. In this model,
two accessory branches were used to guide the buildings’ semantic information under different time
sequences, and the main branches can merge the change information. In addition, we also designed
a feature enhancement layer to further strengthen the integration of the main and accessory branch
information. For ablation experiments, we designed experiments on the above optimization process.
For MDEFNET, we designed experiments which compare with typical deep learning model and
recent deep learning change detection methods. Experimentation with the WHU Building Change
Detection Dataset showed that the method in this paper obtained accuracies of 0.8526, 0.9418, and
0.9204 in Intersection over Union (IoU), Recall, and F1 Score, respectively, which could assess building
change areas with complete boundaries and accurate results.

Keywords: remote sensing; building change detection; deep learning; multi-branch; semantic information

1. Introduction

Changes in building detection are one of the most important tasks in the field of
remote sensing, which has been widely used in urban development planning [1], post-
earthquake [2] or flood assessment [3], and so on. However, due to the diversity of buildings
and the heterogeneity of remote sensing data at different times, there are still fundamental
difficulties and challenges involved in building change detections of high-resolution remote
sensing images.

The remote sensing detection of building changes has developed two main research
branches: traditional methods and deep learning methods [4]. According to different
analysis units, the traditional methods are divided into pixel-based change detection
(PBCD) and object-based change detection (OBCD) [5]. The PBCD methods take pixels as
the main analysis units. By detecting and analyzing the spectral characteristics of a single
pixel, such methods can assess the features of change [6]. Typical PBCD methods include
change vector analysis (CVA) [7], principal component analysis (PCA) [8], and feature
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index differencing [9]. However, these methods only consider the spectral information of a
single pixel and assume that the spatial characteristics of adjacent pixels are independent.
When high-resolution images are utilized in practical applications, buildings are more
refined and there are feature dependencies between adjacent pixels. Such methods will
cause fragmentation, blurred boundaries, or the “salt and pepper” effect [10,11]. The OBCD
method uses a homogenous object extracted from the image as the processing unit. It
combines both spectral and spatial information of the object to detect the change, so as to
reduce the detection error caused by the diversity of the features [12]. Representative object-
oriented methods used in eCognition include chessboard segmentation [13], quadtree-
based segmentation [14], multiresolution segmentation [15], etc. However, OBCD methods
regard multi-temporal buildings as homogeneous objects for comparison, which will distort
the distribution of buildings as a result, and the detailed information inside the target object
cannot be effectively used. Meanwhile, the spectral difference between multi-temporal
high-resolution images makes the OBCD methods difficult to apply, which affects the
change detection results [16].

Deep learning technology has also been continuously developed in the field of change
detection [17], due to the large amount of data and rich features in the image processing
process. CNN can optimize the amount of parameters and retain the feature in images
through the convolution process. Simultaneously, it has an end-to-end simple form, which
can automatically learn the non-linear characteristics between image pairs, making it
the mainstream image analysis research method for researchers [18]. Scholars innovated
based on the CNN framework and proposed many networks that exhibit different advan-
tages, such as VGGNet [19], CaffeNet [20], SegNet [21], and U-Net [22,23]. Based on the
framework of these models, deep learning methods can be categorized into single-branch
network methods [24] and multi-branch network methods [25]. Single-branch network
methods use fusion multi-temporal images as inputs to construct non-linear fitting for
the changed feature [26]. For example, Gong et al. [27] used hierarchical Fuzzy C-Means
(FCM) clustering to obtain highly accurate samples for PCANet, which could reduce false
alarms and the speckle noise of SAR images. Wang et al. [28] proposed an end-to-end 2-D
convolutional neural network (GETNET), in order to derive better hyperspectral image
pair information. Peng et al. [29] employed a fusion strategy of multiple side outputs,
which could avoid error accumulation problems in processing final change maps. Multi-
branch network methods process the image information of a certain time phase separately.
Compared with single-branch network processing, such methods can be used to assess the
image pairs information more effectively [30]. In [31,32], dual attentive fully convolutional
Siamese networks (DASNet) and deep Siamese convolutional network (DSCN) were pro-
posed to effectively learn about the complex information between multi-temporal images
by calculating the pairwise Euclidean distance. Chen et al. [33] combined double-branch
networks and LSTM for detecting changes in homogeneous VHR images and heteroge-
neous very-high-resolution (VHR) images. The authors of [34] also discussed the influence
of fusing different features on change detection results, while detecting building changes in
a specific semantic environment; semantic information is important for enhancing change
information. How to use semantic information to guide detections of building changes in a
specific scenario has become a way to improve the accuracy of building change detection.

In this paper, a multi-branch feature-enhanced network is proposed for building
changes under high-resolution image. The network structure is mainly composed of
a main branch and two accessory branches. The main branch is for learning semantic
change information, and the accessory branch is for guiding semantic auxiliary building
information. After each branch is down-sampled, the feature fusion layer is used to
make the network learn the features of the building changes more effectively. In the up-
sampled part, we use skip connections to reduce the loss of detailed information. This
multi-branch network reduces the noise of change detection and detects building changes
more efficiently.
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The rest of this article is organized as follows. In Section 2, we introduce the building
change detection framework, and in Section 3, some details of the dataset and the experi-
mental setup are illustrated. In Section 4, we report on relevant experiments to prove the
effectiveness of this method. We conclude this article in Section 5.

2. Methods
2.1. The Network Structure

In recent years, Siamese networks have been used in the field of change detection [35].
Subsequently, proposed pseudo-Siamese and pseudo-double-branch networks have also
achieved good results. Those methods provide more ideas to improve the feature extraction
of image pairs. Inspired by these concepts, this paper proposes Multi-Dense-Enhanced-
Feature-Net (MDEFNET), a network of a main and accessory branch structure. In order to
attain accurate and integrated results in the field of building change detection, we use dense
blocks to concatenate the entire network and fuse multiple information points through the
proposed feature-enhanced layer. The main branch learns the semantic information of the
change area, and the accessory branch guides the semantic information of the building
change. The MDEFNET model can be used to fully learn the effective feature information
of building changes in multi-temporal images. It can reduce the loss of building change
features, improve the accuracy of building extraction from remote sensing images, and
better detect the integrity of building boundaries.

The network structure is shown in Figure 1. Firstly, in the input part of the network,
different branches perform convolution operations on the dual-phase image. The images
from two periods after one down-sampling are fused as the input of the main branch.
Secondly, the other two accessory branches simultaneously perform down-sampling opera-
tions on a certain phase image. During the down-sampling of the network, dense block
and the transition layer are connected. This operation can release the calculation burden,
which is very important in change detection. In the process of dense layer processing
information, because layers are deeper, the results of non-linear fitting are better for more
complex information. Therefore, we designed a mechanism in which the number of dense
layers grows with the down-sampling process. The number of dense layers in the main
branch grows with two, three, four, and five layers, and the two accessory branches are
down-sampled with two, two, three, and two layers. In this way, through the different
growth rates of the number of layers, higher-level features can be obtained from the main
branch, whereas low-level features of the accessory branches can be used as auxiliary fea-
ture learning. Such network structures and layer designs are to better identify the accuracy
of areas of building changes. After the second, third, or fourth down-sampling, the acces-
sory branch features are added to the main branch through the feature-enhanced module.
The proposed feature-enhanced module integrates the three branch features to form an
extraction focusing on buildings change features, which can guide the semantic building
information. After the fifth down-sampling, the main branch and the accessory branch
are merged, entering the up-sampling process after six dense layers. In the up-sampling
part, skip connection is used in this process. We perform a jump connection between the
main branch information after feature fusion and the information from the up-sampling
process. Additionally, when the main branch is down-sampling for the first time, it is also
skip-connected with the corresponding information of the up-sampling. In this way, the
detailed feature information can be retained during the learning process, and the loss of
low-level information can be also reduced.
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Figure 1. MDEFNET network structure.

2.2. Feature Enhanced Module

High-resolution image information handling is complex. For the detection of building
changes in a special semantic environment, it has caused difficulties in the accuracy and
completeness of assessing the area of building changes. In order to better combine the
features of the accessory branches with the main branch, and enhance the building feature
information, in the down-sampling part, we add the feature-enhanced module to fully learn
the effective information in the multi-temporal image. As Figure 2 shows, in this module,
first, we merge the single-phase information of the accessory branches. The merged feature
information is subsequently put into a convolution layer with a convolution kernel of
3 × 3 and a step size of 1. Then, it combines the extracted features with the main branch
information through the global information enhancement module. This operation allows
the network to obtain more auxiliary information during the down-sampling process, and
thus, it can be used to guide this semantic information to detect changes, which highlights
the building changes of the main branch.
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Most contemporary deep learning models adopt an end-to-end, encoding–decoding
structure. In the down-sampling part, if long time sequence information is input into the
model, it may cause part of the initial information to be lost. In the field of semantic seg-
mentation, as the depth of the network increases, low-level semantic information may not
be learned effectively. Global pooling has been proven to enhance context information [36].
Therefore, we designed the global information enhancement module. As illustrated in
Figure 3, the structure diagram is as follows: this module mainly passes the input in-
formation through a series of operations of global pooling, convolution, relu functions,
and sigmoid activation functions. At the same time, it includes related calculations such
as channel weight multiplication and addition, which changes the input feature weight,
enhances the input of effective information, and can improve the segmentation accuracy.
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3. Dataset and Experiments Settings
3.1. Dataset

In the research of building change detection, the lack of public datasets has made the
research of this method slower. The Building Change Detection Dataset in the WHU Build-
ing Dataset released by Wuhan University in 2019 [37] is a high-quality dataset and meets
the training requirements of deep learning samples. Therefore, this dataset was selected to
validate the proposed model in this study. The time span of this dataset was April 2011 to
2016, depicting aerial data images of two scenes showing the areas of change in the de-
struction and reconstruction of buildings caused by an earthquake. It has 12,796 buildings
in 2012 and 16,077 buildings in 2016. In addition, the public dataset has 1.6-pixel rectified
accuracy, which meets the needs of deep learning methods in change detection. The dataset
consisted of a pair of aerial images measuring 32,507 × 15,354 pixels at a resolution of
0.2 m/pixel, as well as labeled maps corresponding to changes in the buildings. As shown
in Figure 4, this dataset contains many different scenarios for building change detection,
such as, demolition buildings, new construction or reconstruction buildings, changes of
residential buildings or factories.
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In order to make the model more suitable for building change feature extraction and
learning, this experiment divided the aerial image pairs and the corresponding building
change label maps, which were the sample training selection area (blue box in Figure 5) and
the test area (red box in Figure 5). In the training sample selection area, 256 × 256 pixels
and non-overlapping patches were used to cut the two-phase image and the corresponding
label maps of building changes. Due to the seriously imbalanced problem of building
change samples, this study saved the image pairs with positive samples and added the
background data randomly. Finally, the training set of 1662 images and the verification set
of 350 images were formed.
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3.2. Experimental Settings

All experimental settings are shown in Table 1.

Table 1. Experimental Settings.

Experimental Settings Value

Framework TensorFlow

Language Python

Central Processing Unit Intel Core i9 processor 7980XE@2.60 GHz

Graphics Processing Unit NVIDIA GEFORCE GTX 1080 Ti (11 GB)

Optimization Algorithm Adam

Batch Size 12

Base Learning rate 0.001

Train crop size 256 × 256

3.3. Evaluation Metrics

There were few areas of building change compared to the whole picture; therefore,
this studied focused more on the sample area with positive change. Therefore, we chose to
use the following accuracy indicators to evaluate the proposed building change methods:
Recall focuses on the prediction results of positive samples, which predict the ratio of
the number of correct positive pixels to the total number of positive pixels. Precision
represents the correct pixels over the prediction result. F1 Score is the weight average
index of precision and Recall, and indicators to evaluate the corresponding accuracy of the
forecast results is the Intersection over Union (IoU). The above indicators were calculated
based on the statistical indicators in the confusion matrix, for example, TP (True Positive),
FP (False Positive), TN (True Negative), and FN (False Negative). The formula of each
evaluation index is as follows:

precision =
NTP

NTP + NFP
(1)
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IoU =
NTP

NTP + NFP + NFN
(2)

Recall =
NTP

NTP + NFN
(3)

F1 =
2NTP

2NTP + NFN + NFP
(4)

The above indicators were calculated based on the statistical indicators in the confusion
matrix. TP (True Positive): The building change pixels are correct. FP (False Positive):
The no building change pixels are wrongly detected as building change area. TN (True
Negative): The no building change pixels are correct. FN (False Negative): The building
change pixels are wrongly detected as no building change area.

At the same time, for ground features such as buildings, we also focused on patch
changes in change detection applications. Therefore, in deep learning method comparison
experiments, in addition to the abovementioned pixel-based accuracy evaluation index,
we added a change index, missing patch (MP), for the missing building change patch. MP
was based on the number of building polygons in the results.

4. Results and Analysis

In this part, we designed ablation experiments and comparison experiments with
other deep learning methods. In the ablation I and ablation II experiment, we optimized
our method from two aspects: network structure and depth of semantic information. In the
comparison experiment, we chose typical models in the field of deep learning for analysis.
The accuracy evaluation of all experiments is based on all test areas, and the figures are
shown as examples.

4.1. Ablation I Experiments

In this section, we set comparison experiments with single-branch structure and
without feature enhanced module. DenseNet [38] has been shown to be excellent in
semantic segmentation in recent years. Therefore, we chose the dense block to build a
network as the baseline of our ablation experiments. We combined it with Early Fusion
theory to propose the EF-Dense. Meanwhile, we propose Multi-Dense-Net that combines
the advantages of multiple networks in processing multi-temporal complex data. Based
on the above work, in order to reduce the loss of detailed information and effectively
enhanced the semantic information, we propose the feature enhancement module to form
the network of this paper, Multi-Dense-Enhanced-Feature-Net.

As in Table 2, EF-Dense shows great result in evaluation metrics. This shows that
dense block is effective for the extraction of change detection tasks. The recall of MDNet
is 93.37%, but the net is poor in IoU. This may be because the semantic information has
been enhanced but is not well utilized. Our network performed well in every accuracy
evaluation index. For the EF-Dens network that performed well in IoU and F1 Score, our
method improved the accuracy by 11% and 7%, respectively. Meanwhile, our method
also improved the recall of MDNet by about 11%. This is due to the feature enhancement
module we proposed, which can reasonably use semantic information.

Table 2. The evaluation metrics results of ablation I experiments.

IoU Recall F1 Score

EF-Dens 0.7423 0.7870 0.8521
MDNet 0.4572 0.9337 0.6275

Ours 0.8526 0.9418 0.9204

In Figure 6, the single-branch network structure, EF-Dense, had lower accuracy in
identifying changed areas. This may be due to the early fusion operation, which increased
the number of image channels and complicated the change information. Meanwhile, this
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operation also made it impossible to effectively extract features, which caused EF-Dense’s
incorrect extraction of the change results and incomplete change detection. In the first
two pairs of images, the multi-branch network had a more complete result for building
change detection.Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 17 
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4.2. Ablation II Experiments

On the basis of the MDEFNET proposed in this article, we were concerned with the
depth of the feature information fusion for change detection results. Thus, two networks
are proposed, MDEFNET-LL and MDEFNET-HL. Of these two multi-branch networks,
MDEFNET-LL discusses the effect of low-level feature information fusion; MDEFNET-HL
shows the effect of the network on change detection when the high-level information is
fused. MDEFNET-LL is obtained by feature fusion of the main and accessory branches
after the second down-sampling. Additionally, after the fourth down-sampling, we fused
feature information to obtain the MDEFNET-HL.

In the training set and the test set, this study randomly selected several image pairs
of the changing areas with a size of 256 × 256 pixels. Additionally, we output the feature
maps of these image pairs. In the test part, the final output results of each network are
presented at the same time in order to maintain consistent feature information and the
depth of the image information in the down-sampling. This section selected EF-Dense to
output the feature image after four down-sampling cycles. Additionally, we present the
results of MDEFNET-LL, MDEFNET-HL, and our network after the third down-sampling
process and feature fusion of the main branch.

Through the display of the feature heat map in Figure 7, it can be seen that the
multi-branch network was roughly correct for the medium-to-high sensitivity change area.
Through the network of multi-branch structure feature fusion, the building change area
information can basically be learned. However, due to feature fusion at different depths of
the network, it will cause the misidentification of features and loss of information, as shown
in the feature map of MDEFNET-LL, if fusion is performed when the network obtains
low-level feature information. Although the building change area can be learned with high
weight, the other subtle changes on the image pair, such as grass becoming other types
of features, are also highly sensitive. Similarly, to the MDEFNET-HL, after the deep-level
main and accessory branch information is fused, they are extremely sensitive to building
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changes, but this is limited to areas with obvious changes. Under the influence of the same
spectrum of foreign objects, it cannot be better identified.Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 17 
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In the test image results in Figure 8, the above two methods reflect different degrees
of information loss and inaccurate boundary ranges. The method in this paper uses the
feature heat map display and the fusion of the feature information in the middle part
of the network down-sampling, which can accurately learn the features of the building
changes. Although there is a small degree of inaccurate extraction in the detection results,
the accuracy and completeness of the building change detection are greatly improved
compared with the above methods. This is mainly because we chose the right time for
information fusion, so that the accessory branch information could better guide the main
branch to learn about building changes.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 17 

 

 
Figure 7. (a) Before image; (b) After image; (c) MDEFNET-LL; (d) MDEFNET-HL; (e) MDEFNET; (f) Label. 

In the test image results in Figure 8, the above two methods reflect different degrees 
of information loss and inaccurate boundary ranges. The method in this paper uses the 
feature heat map display and the fusion of the feature information in the middle part of 
the network down-sampling, which can accurately learn the features of the building 
changes. Although there is a small degree of inaccurate extraction in the detection results, 
the accuracy and completeness of the building change detection are greatly improved 
compared with the above methods. This is mainly because we chose the right time for 
information fusion, so that the accessory branch information could better guide the main 
branch to learn about building changes. 

 
Figure 8. (a) Before image; (b) After image; (c) Label; (d) the feature heat map of MDEFNET-LL; (e) the result of MDEF-
NET-LL; (f) the feature heat map of MDEFNET-HL; (g) the result of MDEFNET-HL; (h) the feature heat map of Ours; (i) 
the result of Ours. 

After training, we applied the above models to the entire test area and performed 
quantitative analysis on each model. In Table 3, we have listed the accuracy evaluation 
results of the above methods for the entire test area. Among them, the method presented 
in this paper achieved high accuracies of 0.8526, 0.9418, and 0.9204 on the three evaluation 
indexes of IoU, Recall and F1 Score, respectively. For MDEFNET-shallow fusion, which 

Figure 8. (a) Before image; (b) After image; (c) Label; (d) the feature heat map of MDEFNET-LL; (e) the result of MDEFNET-
LL; (f) the feature heat map of MDEFNET-HL; (g) the result of MDEFNET-HL; (h) the feature heat map of Ours; (i) the
result of Ours.



Remote Sens. 2021, 13, 4171 11 of 16

After training, we applied the above models to the entire test area and performed
quantitative analysis on each model. In Table 3, we have listed the accuracy evaluation
results of the above methods for the entire test area. Among them, the method presented
in this paper achieved high accuracies of 0.8526, 0.9418, and 0.9204 on the three evaluation
indexes of IoU, Recall and F1 Score, respectively. For MDEFNET-shallow fusion, which
performed well in Recall, this method improved the accuracy by nearly 15%. Although
the above methods are proposed in the process of ablation experiments in this article, the
method proposed in this article could develop a good correlation with the range of the
building changes in the test area. It can accurately identify the area of building changes,
with fewer omissions in image extraction, which verifies the effectiveness of this method in
detecting building changes.

Table 3. The evaluation metrics results of ablation II experiments.

IoU Recall F1 Score

MDEFNET-LL 0.7182 0.7976 0.8360
MDEFNET-HL 0.7344 0.7786 0.8469

Ours 0.8526 0.9418 0.9204

4.3. Comparison Experiments

In order to verify that our method is effective in detecting building changes in this
dataset, we selected several deep learning models that have been effective in the field of
image recognition for comparison.

SegNet [39]: This network uses VGG16 to extract features of images and connects the
output of the encoder to do a non-linear up-sampling.

FC-EF [30]: Fully Convolutional Early Fusion. It uses early fusion theory to stack
image pairs. The network is single-branch and uses skip connections to connect the
up-sampling and down-sampling.

FC-Siam-conc and FC-Siam-diff [30]: Fully Convolutional Siamese-Concatenation and
Fully Convolutional Siamese-Difference. Based on FC-EF, the two networks use Siamese
structure. The FC-Siam-conc connects the two down-sampling streams and the other
calculates the difference between the feature results.

DASNet [31]: Dual Attentive Fully Convolutional Siamese Network. It includes
channel attention mechanism and spatial attention mechanism and uses WDMC loss
to balance.

STANet [40]: Spatial–Temporal Attention Neural Network. This method uses spatial-
temporal attention module to extract feature of changes.

Table 4, Figures 9 and 10 show the results of each model and the method in the
test area. From Table 4, compared with the more classic SegNet network model in the
field of semantic segmentation, the model in this paper presented nearly 6%, 8% and 4%
improvements in IoU, Recall, and F1 Score metrics, respectively. Compared to FC-EF, FC-
Siam-conc and FC-Siam-diff, which have exhibited good performance in change detection
in recent years, the accuracy of the model in this paper can be improved by 4%, 8% and
3%. For an index that focuses on changes in patches, MP was used. In terms of building
omissions, the method in this article is the same as FC-Siam-conc, better than other methods.
The method presented in this paper performed better than FC-Siam-conc in other indexes.
Meanwhile, we have compared with two recent deep learning change detection methods,
DASNet and STANet. Our method can also achieve better results. Therefore, in general,
the proposed method is superior to other deep learning methods. From a network point of
view, a network suitable for single-phase target extraction usually cannot achieve good
learning features for complex information after the fusion of two image bands. Additionally,
a two-branch network suitable for change detection does not need to perform early fusion
operations. Therefore, it is possible to process the semantic information of certain times
separately. This paper studied the detection of building changes and target segmentation
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in a specific semantic scene. Without the guidance of semantic information in detecting
building changes, the two-phase change information could not be distinguished well.

Table 4. Comparisons between MDEFNET and several typical deep learning models.

IoU Recall F1 Score MP

FC-EF 0.7954 0.8696 0.8861 16
FC-Siam-conc 0.8163 0.8651 0.8988 8
FC-Siam-diff 0.7955 0.8689 0.8861 12

SegNet 0.7263 0.8415 0.8414 11
DASNet 0.7941 0.8582 0.8843 9
STANet 0.7056 0.7333 0.8274 18

Ours 0.8526 0.9418 0.9204 8
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This section also interprets some of the extraction results of each method in the study
area, as shown in Figures 9 and 10. Among them, the part of extraction results of DASNet
and STANet were similar to the model in this paper and could achieve better results.
However, in other parts, the model in this paper still gets better extraction effects. In
Figure 9, it can be seen that in the factory change area, because fewer training samples of
the public dataset were used, the other methods could not learn the change features with
fewer training samples. In the main and accessory branch structure adopted in this article,
the main branch could learn the change feature. The accessory branch superimposed the
buildings in the changed area to the main branch through the feature-enhanced module.
Thereby, the accessory branches can guide the building semantic information to the main
branch. The extraction effect of factory changes in the study area is better. For example, for
the small patch of building changes in the fourth pair of images, the method in this paper
is also superior to other methods for extraction, mainly due to the network structure and
Global Information Enhancement module proposed in this paper. The network structure
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makes the detailed features after feature fusion more abundant, which is better for the
extraction of such small patches. In Figure 10, regarding the boundary accuracies of
the building change areas, whether for residential houses with complex boundaries or
factories with simple boundaries, the method in this paper performed better than other
deep learning methods.

The model in this paper can also identify some small area building changes through
training. As Figure 11 shows, in this public dataset, the researchers omitted a small amount
of building change detection area in the label. Compared with other models these building
changes are not detected or extract well, our model proposed in this paper can still identify
them well.
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5. Discussion

Scholars improve the effect of deep learning in building change detection usually
in two ways: (i) pre-processing of images pairs data; and (ii) the way of model training.
Among the first way, constructing a difference map is an important step in change detection.
Researchers get the effective information by optimizing the features to make it more
distinguishable from the interference information. However, some effective information
will be lost, and error propagation will occur, which greatly affects the accuracy and
reliability of change detection result no matter how well the model works. Therefore, to
retain the information of original image pairs and improve the way of model training, the
end-to-end structure of CNN should be used in the way of improving. The method in this
paper is inspired by the Siamese network. We chose the multi-branch structure to construct
the model for processing the effective features in image pairs separately. The dense block
that has already showed good fitting ability was used to connect the whole network.

In the ablation experiment and the comparison experiment, we made a comparison
with single-branch networks. In Table 2, the results show that our multi-branch structure
is obviously more suitable for change detection tasks. For image pairs learning, a multi-
branch network is more reasonable. As in Figures 7 and 8, the feature heat image shows
that different depth of semantic information influences the effect of the feature enhanced.
For factory changes which have few training samples, we proposed the feature-enhanced
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module, and obtained more complete and accurate results than with other methods. The
main reason is that not only the network can be performed well for non-linear fitting of the
change area, but the semantic information provided by the auxiliary branch enhanced the
feature. Meanwhile, a major problem in the research process of change detection methods
was also presented. The model feature learning caused by insufficient sample size is not
sufficient. In the current several deep learning change detection methods, different spatial
attention modules are also used to enhance feature information. In the future deep learning
methods in building change detection, we will use different methods which can enhance
the feature in multi-temporal images or consider generative adversarial networks (GAN)
and other small-sample deep learning techniques to solve the problem of small sample size
and complex information.

6. Conclusions

In this paper, based on the WHU Building Change Detection Dataset, MDEFNET
has been proposed to automatically extract the building change area on the dataset. In
order to make the network more focused on the extraction of buildings, we designed the
network structures of the main branch and accessory branch. The main branch mainly
learned the change feature, and accessory branches guided the semantic information of
building changes, focusing the network on areas of building changes. At the same time, the
method proposed in this paper used dense block to connect the entire network, which can
reduce the amount of network calculation and has a certain degree of anti-fitting. We also
designed a feature-enhanced module, which adopted a global information enhancement
module; as the depth of the network increased, the initial detailed information was not
lost. MDEFNET has been proven capable of effectively extracting the changing areas of
buildings and reducing the interference of background information. The experimental
results show that the method presented in this paper obtained accuracies of 0.8526, 0.9418,
and 0.9204 in IoU, Recall, and F1 Score metrics, respectively, which could lead to accurately
and efficiently identifying areas of change in buildings from aerial images. Meanwhile, in
the experimental process of this article, the omission of annotations in the public dataset
by the proposed network was checked to a certain degree. Due to the sample imbalance
of building change detection, we will focus on improving the robustness of small-sample
supervised learning and transfer learning for these tasks in the future.

Author Contributions: J.X. and B.W. designed the experiments; Y.W., H.X., L.C. and P.W. contributed
analysis tools; J.C. performed the experiments; J.X. and H.Y. wrote the paper. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
numbers 41971311, 42101381 and 41901282) and the National Natural Science Foundation of Anhui
(grant number 2008085QD188).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhong, Q.; Ma, J.; Zhao, B.; Wang, X.; Zong, J.; Xiao, X. Assessing spatial-temporal dynamics of urban expansion, vegetation

greenness and photosynthesis in megacity Shanghai, China during 2000–2016. Remote Sens. Environ. 2019, 233, 111374. [CrossRef]
2. Li, Q.; Wang, W.; Wang, J.; Zhang, J.; Geng, D. Exploring the relationship between InSAR coseismic deformation and earthquake-

damaged buildings. Remote Sens. Environ. 2021, 262, 112508. [CrossRef]
3. De Moel, H.; Jongman, B.; Kreibich, H.; Merz, B.; Penning-Rowsell, E.; Ward, P.J. Flood risk assessments at different spatial scales.

Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 865–890. [CrossRef] [PubMed]
4. Afaq, Y.; Manocha, A. Analysis on change detection techniques for remote sensing applications: A review. Ecol. Inform. 2021,

63, 101310. [CrossRef]
5. Chen, J.; Liu, H.; Hou, J.; Yang, M.; Deng, M. Improving Building Change Detection in VHR Remote Sensing Imagery by

Combining Coarse Location and Co-Segmentation. ISPRS Int. J. Geo-Inf. 2018, 7, 213. [CrossRef]
6. Zhang, Z.; Li, Z.; Tian, X. Vegetation change detection research of Dunhuang city based on GF-1 data. Int. J. Coal Sci. Technol.

2018, 5, 105–111. [CrossRef]

http://doi.org/10.1016/j.rse.2019.111374
http://doi.org/10.1016/j.rse.2021.112508
http://doi.org/10.1007/s11027-015-9654-z
http://www.ncbi.nlm.nih.gov/pubmed/30197555
http://doi.org/10.1016/j.ecoinf.2021.101310
http://doi.org/10.3390/ijgi7060213
http://doi.org/10.1007/s40789-018-0195-4


Remote Sens. 2021, 13, 4171 15 of 16

7. Ferraris, V.; Dobigeon, N.; Wei, Q.; Chabert, M. Detecting Changes Between Optical Images of Different Spatial and Spectral
Resolutions: A Fusion-Based Approach. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1566–1578. [CrossRef]

8. Deng, J.S.; Wang, K.; Deng, Y.H.; Qi, G.J. PCA-based land-use change detection and analysis using multitemporal and multisensor
satellite data. Int. J. Remote Sens. 2008, 29, 4823–4838. [CrossRef]

9. Eid, A.N.M.; Olatubara, C.O.; Ewemoje, T.A.; El-Hennawy, M.T.; Farouk, H. Inland wetland time-series digital change detection
based on SAVI and NDWI indecies: Wadi El-Rayan lakes, Egypt. Remote Sens. Appl. Soc. Environ. 2020, 19, 100347. [CrossRef]

10. Niemeyer, I.; Marpu, P.R.; Nussbaum, S. Change detection using object features. In Object-Based Image Analysis; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 154–196.

11. Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to
object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [CrossRef]

12. Wang, B.; Choi, J.; Choi, S.; Lee, S.; Wu, P.; Gao, Y. Image Fusion-Based Land Cover Change Detection Using Multi-Temporal
High-Resolution Satellite Images. Remote Sens. 2017, 9, 804. [CrossRef]

13. Haiquan, F.; Yunzhong, J.; Yuntao, Y.; Yin, C. River Extraction from High-Resolution Satellite Images Combining Deep Learning
and Multiple Chessboard Segmentation. Acta Sci. Nat. Univ. Pekin. 2019, 55, 692–698.

14. Gong, M.; Yang, Y.-H. Quadtree-based genetic algorithm and its applications to compzter vision. Pattern Recognit. 2004, 37,
1723–1733. [CrossRef]

15. Baraldi, A.; Boschetti, L. Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based
and Object-Oriented Image Analysis (GEOBIA/GEOOIA). Part 1: Introduction. Remote Sens. 2012, 4, 2694–2735. [CrossRef]

16. Hou, X.; Bai, Y.; Li, Y.; Shang, C.; Shen, Q. High-resolution triplet network with dynamic multiscale feature for change detection
on satellite images. ISPRS J. Photogramm. Remote Sens. 2021, 177, 103–115. [CrossRef]

17. Khelifi, L.; Mignotte, M. Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-
Analysis. IEEE Access 2020, 8, 126385–126400. [CrossRef]

18. Wang, Q.; Zhang, X.D.; Chen, G.Z.; Dai, F.; Gong, Y.F.; Zhu, K. Change detection based on Faster R-CNN for high-resolution
remote sensing images. Remote Sens Lett 2018, 9, 923–932. [CrossRef]

19. Wang, Z.; Zheng, X.; Li, D.Y.; Zhang, H.L.; Yang, Y.; Pan, H.G. A VGGNet-like approach for classifying and segmenting coal dust
particles with overlapping regions. Comput Ind 2021, 132, 103506. [CrossRef]

20. Xiao, Y.Q.; Pan, D.F. Robust Visual Tracking via Multilayer CaffeNet Features and Improved Correlation Filtering. IEEE Access
2019, 7, 174495–174506. [CrossRef]

21. Afify, H.M.; Mohammed, K.K.; Hassanien, A.E. An improved framework for polyp image segmentation based on SegNet
architecture. Int. J. Imag. Syst Technol. 2021, 31, 1741–1751. [CrossRef]

22. Moustafa, M.S.; Mohamed, S.A.; Ahmed, S.; Nasr, A.H. Hyperspectral change detection based on modification of UNet neural
networks. J. Appl. Remote Sens 2021, 15, 028505. [CrossRef]

23. Papadomanolaki, M.; Vakalopoulou, M.; Karantzalos, K. A Deep Multitask Learning Framework Coupling Semantic Segmentation
and Fully Convolutional LSTM Networks for Urban Change Detection. IEEE T Geosci Remote. 2021, 99, 1–18.

24. Gong, M.; Yang, H.; Zhang, P. Feature learning and change feature classification based on deep learning for ternary change
detection in SAR images. ISPRS J. Photogramm. Remote Sens. 2017, 129, 212–225. [CrossRef]

25. Qian, J.; Xia, M.; Zhang, Y.; Liu, J.; Xu, Y. TCDNet: Trilateral Change Detection Network for Google Earth Image. Remote Sens.
2020, 12, 2669. [CrossRef]

26. Samadi, F.; Akbarizadeh, G.; Kaabi, H. Change detection in SAR images using deep belief network: A new training approach
based on morphological images. Iet. Image Process 2019, 13, 2255–2264. [CrossRef]

27. Gao, F.; Dong, J.; Li, B.; Xu, Q. Automatic Change Detection in Synthetic Aperture Radar Images Based on PCANet. IEEE Geosci.
Remote Sens. Lett. 2016, 13, 1792–1796. [CrossRef]

28. Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change
Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3–13. [CrossRef]

29. Peng, D.; Zhang, Y.; Guan, H. End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet++.
Remote Sens. 2019, 11, 1382. [CrossRef]

30. Daudt, R.C.; Saux, B.L.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection. In Proceedings of the 2018 25th
IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067.

31. Chen, J.; Yuan, Z.; Peng, J.; Chen, L.; Huang, H.; Zhu, J.; Liu, Y.; Li, H. DASNet: Dual Attentive Fully Convolutional Siamese
Networks for Change Detection in High-Resolution Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14,
1194–1206. [CrossRef]

32. Zhan, Y.; Fu, K.; Yan, M.; Sun, X.; Wang, H.; Qiu, X. Change Detection Based on Deep Siamese Convolutional Network for Optical
Aerial Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1845–1849. [CrossRef]

33. Chen, H.; Wu, C.; Du, B.; Zhang, L.; Wang, L. Change Detection in Multisource VHR Images via Deep Siamese Convolutional
Multiple-Layers Recurrent Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2848–2864. [CrossRef]

34. Huang, L.; An, R.; Zhao, S.; Jiang, T.; Hu, H. A Deep Learning-Based Robust Change Detection Approach for Very High Resolution
Remotely Sensed Images with Multiple Features. Remote Sens. 2020, 12, 1441. [CrossRef]

35. Fang, B.; Pan, L.; Kou, R. Dual Learning-Based Siamese Framework for Change Detection Using BiTemporal VHR Optical Remote
Sensing Images. Remote Sens. 2019, 11, 1292. [CrossRef]

http://doi.org/10.1109/TGRS.2017.2765348
http://doi.org/10.1080/01431160801950162
http://doi.org/10.1016/j.rsase.2020.100347
http://doi.org/10.1016/j.isprsjprs.2013.03.006
http://doi.org/10.3390/rs9080804
http://doi.org/10.1016/j.patcog.2004.02.004
http://doi.org/10.3390/rs4092694
http://doi.org/10.1016/j.isprsjprs.2021.05.001
http://doi.org/10.1109/ACCESS.2020.3008036
http://doi.org/10.1080/2150704X.2018.1492172
http://doi.org/10.1016/j.compind.2021.103506
http://doi.org/10.1109/ACCESS.2019.2957518
http://doi.org/10.1002/ima.22568
http://doi.org/10.1117/1.JRS.15.028505
http://doi.org/10.1016/j.isprsjprs.2017.05.001
http://doi.org/10.3390/rs12172669
http://doi.org/10.1049/iet-ipr.2018.6248
http://doi.org/10.1109/LGRS.2016.2611001
http://doi.org/10.1109/TGRS.2018.2849692
http://doi.org/10.3390/rs11111382
http://doi.org/10.1109/JSTARS.2020.3037893
http://doi.org/10.1109/LGRS.2017.2738149
http://doi.org/10.1109/TGRS.2019.2956756
http://doi.org/10.3390/rs12091441
http://doi.org/10.3390/rs11111292


Remote Sens. 2021, 13, 4171 16 of 16

36. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Learning a Discriminative Feature Network for Semantic Segmentation. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018.

37. Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multi-Source Building Extraction from An Open Aerial and Satellite
Imagery Data Set. Ieee T. Geosci. Remote 2019, 57, 574–586. [CrossRef]

38. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

39. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

40. Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection.
Remote Sens. 2020, 12, 1662. [CrossRef]

http://doi.org/10.1109/TGRS.2018.2858817
http://doi.org/10.1109/TPAMI.2016.2644615
http://doi.org/10.3390/rs12101662

	Introduction 
	Methods 
	The Network Structure 
	Feature Enhanced Module 

	Dataset and Experiments Settings 
	Dataset 
	Experimental Settings 
	Evaluation Metrics 

	Results and Analysis 
	Ablation I Experiments 
	Ablation II Experiments 
	Comparison Experiments 

	Discussion 
	Conclusions 
	References

