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Abstract: Ocean surface net radiation (Ry) is significant in research on the Earth’s heat balance
systems, air—sea interactions, and other applications. However, there have been few studies on
Ry until now. Based on radiative and meteorological measurements collected from 66 globally
distributed moored buoys, it was found that R, was dominated by downward shortwave radiation
(Ré) when the length ratio of daytime (LRD) was greater than 0.4 but dominated by downward
longwave radiation (Rli) for the other cases (LRD < 0.4). Therefore, an empirical scheme that
includes two conditional models named Case 1 (LRD > 0.4) utilizing Ré as a major input and Case
2 (LRD < 0.4) utilizing Rll as a major input for R, estimation was successfully developed. After
validation against in situ Ry, the performance of the empirical scheme was satisfactory with an
overall R? value of 0.972, an RMSE of 9.768 Wm ™2, and a bias of —0.092 Wm 2. Specifically, the
accuracies of the two conditional models were also very good, with RMSEs of 9.805 and 2.824 Wm ™2
and biases of —0.095 and 0.346 Wm 2 for the Case 1 and Case 2 models, respectively. However,
due to the limited number of available samples, the performances of these new models were poor
in coastal and high-latitude areas, and the models did not work when the LRD was too small (i.e.,
LRD < 0.3). Overall, the newly developed empirical scheme for Ry, estimation has strong potential to
be widely used in practical use because of its simple format and high accuracy.

Keywords: net radiation; shortwave radiation; longwave radiation; empirical model; buoy data;
CERES; sea surface

1. Introduction

Ocean surface all-wave net radiation (Rp) is the sum of the downward and upward
shortwave and longwave radiation at the ocean surface. Mathematically [1]:

Rp= Rng+Rnl (1)
Rng= R§ — R} )
Ry =R — R/ 3)

where Rpg is the shortwave net radiation (Wm~2), R, is the longwave net radiation

(Wm™2), Ré is the downward shortwave radiation (Wm™2), Rg is the upward shortwave
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radiation (Wm~2), Rli is the downward longwave radiation (Wm~2), and RlT is the upward
longwave radiation (Wm~2). Downward is defined as positive in this study.

The ocean occupies 71% of the Earth’s surface area, and it is the largest heat-storage
body in the Earth’s climate system because seawater has a large specific heat capacity to
absorb and store most of the solar insolation. Ocean heat flux, which is composed of the
ocean surface, radiative heat flux (R,) and turbulent heat flux (i.e., latent heat flux and
sensible heat flux) [2], plays a vital role in controlling the stability of the Earth’s climate
system by regulating the heat balance of the Earth system through frequently exchanging
heat flux with the atmosphere [3-8]. In addition, ocean heat flux was found to be closely
related to the Earth’s energy imbalance (EEI) [9]. The EEI is usually reflected as a larger
incident solar radiation compared with the outgoing longwave radiation of the Earth’s
system [3,10]; therefore, it is usually used to characterize the climate state of the Earth
and global warming caused by human activities [11]. Hence, it is of great significance to
obtain an accurate ocean heat flux estimates. However, as an important component of
the ocean heat flux, the ocean surface R, has received less attention than turbulent fluxes,
although it is also critical as the input for most physical models for long-term weather
and climate prediction [12]. Therefore, accurate ocean surface R, is very meaningful for
various applications.

In contrast to the land surface, R, is not routinely measured for the ocean surface;
instead, the downward radiative components (Rg and R% ) are frequently measured but
only at very few buoy sites. Because of the paucity of measurements, the ocean surface R,
is usually taken out of simple climatology or parameterizations [13]. The alternative way to
obtain the ocean surface Ry, is from various types of products, including the satellite-based
products generated from radiative transfer models (i.e., Clouds and the Earth’s Radiant En-
ergy System Synoptic Radiation Fluxes and Clouds <CERES-SYN> [14] and International
Satellite Cloud Climatology Project Flux Dataset <ISCCP-FD> [15]), model reanalysis prod-
ucts generated from weather numerical models (i.e., ERA-Interim [16]), ship-based products
generated from parameterization formulas (i.e., NOCS Flux Dataset v2.0<NOCSv2.0> [17]),
and reconstructed products by combining different products with interpolation methods
(i.e., a third-generation Japanese ocean-flux dataset using remote sensing observations
<J-OFURO3> [2] and Objectively Analyzed Air-sea Fluxes<OAFlux> [18]). However, sev-
eral studies have pointed out that large discrepancies exist among these products in ocean
surface Ry, or radiative components, and these differences cannot be ignored [13]. Hence, it
is desirable to develop a relatively simple method to estimate the ocean surface R, with
high accuracy for practical applications.

The traditional way to calculate Ry, is to add its components (shortwave and longwave
radiation) estimated through physical or empirical models separately, but it is very difficult
to estimate all components accurately; therefore, the accuracy of the final obtained R,
would be very likely influenced by error propagation and accumulation. According to
previous studies [19,20], R, is mainly determined by shortwave radiation for most cases;
hence, many empirical models were successfully developed to calculate R, directly from
shortwave radiation and other ancillary information, especially on the land surface [1],
and even the latest released Global Land Surface Satellite (GLASS) R, product, whose
accuracy was validated to be comparable to or even better than most existing products,
was generated by using this kind of algorithm [21]. Similarly, Polavarapu analyzed the
relationship between the ocean surface R, and Ré using survey observations collected
from the Global Atmospheric Research Program-Atlantic Tropical Experiment (GATE) ship
and found a close linear relationship between the two components [22], based on which
a linear regression model was established to estimate the ocean surface R,. Although
the validation results were satisfactory on the GATE site, the robustness and global ap-
plicability of this model is questionable because of the limited samples used, and it is
known that the performance of an empirical model usually relies heavily on the quality
and comprehensive representation of the observations. Fortunately, an increasing number
of radiative measurement platforms have been built on the global ocean surface in recent
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decades, increasing awareness of the significance of the ocean surface radiative flux [23,24];
therefore, there have already been several studies on ocean surface radiative component
estimation, such as ocean surface downward shortwave [25-27] and longwave [28-30]
measurements, but very few studies have focused on ocean surface Ry. Therefore, this is
the right time to extend Polavarapu’s study for ocean surface R, estimation with these
increased buoy measurements.

The objective of this study is to develop a new scheme for estimating the daily ocean
surface R, empirically in a simple way based on measurements collected from more than
60 global moored buoy sites. Then, the performance of this new scheme is evaluated
and analyzed carefully. The organization of this paper is as follows. The data and their
preprocessing are introduced in Section 2. Section 3 presents the development of the new
scheme for ocean surface R, estimation. The validation results and analysis of the model
are provided in Section 4. The conclusions are presented in Section 5.

2. Data and Preprocessing

The primary data used for modeling and validation in this study are the radiative and
meteorological measurements collected from 66 globally distributed, moored buoy sites
from five networks/projects. In addition, other ancillary information was also used for
modeling, including the ocean surface broadband albedo, broadband emissivity, clearness
index (CI), and daytime duration (Dd). Table 1 summarizes all the variables used in this
study and their sources. In summary, there were 53,460 daily samples in total. Specifically,
for each site, 70% of the samples were randomly selected for R, estimation model devel-
opment (37,378 in total), while the other 30% (16,082 in total) were used for independent
validation. Furthermore, one remotely sensed product, Clouds and the Earth’s Radiant
Energy System Synoptic Radiation Fluxes and Clouds (CERES SYN1deg_Ed4A), was also
used for comparison in this study. More details are given below.

Table 1. Variables used for modeling in this study.

Abbreviation Variable Unit Source
R Daily downward longwave radiation Wm~?2 In situ
Rﬁé Daily surface incoming solar radiation Wm~?2 In situ/CERES

RH Daily mean relative humidity % In situ
Independent variables ssT! Daily mean sea surface temperature K In situ
T, Daily air temperature K In situ

ASTD Air-sea temperature difference K Calculated

CI Clearness index Calculated

Dd Daytime duration Hour Calculated

Dependent variable Rn Daily ocean-surface net radiation Wm~—2 Calculated

1 SST was corrected from the measured bulk sea surface temperature.

2.1. Measurements from Moored Buoy Sites

Radiative and meteorological observations from 66 moored buoy sites from 1988 to
2018 were collected and used in this study. Figure 1 shows the spatial distribution of the
66 moored buoy sites in five networks/projects, most of which were distributed in low- and
mid-latitude oceans. However, only very few moored buoys were sparsely distributed in
the mid-high latitude oceans in the Southern Hemisphere, which might be attributed to the
presence of fewer “hot spots” for air-sea interactions in this region [31]. Fortunately, more
buoys have been considered to be deployed at seas in the Southern Hemisphere, such as at
the Brazil Current (55°—41°W, 48°-28°S) [32], the Eastern Australian Current (150°-165°E,
15°-45°S) [33], and so on. Hence, the performance of the new models developed in this
study should be used for more investigations within this region in the future.



Remote Sens. 2021, 13, 4170

40f22

o
60°N
30°N
0°-
-] OccanSITES
30°SH | o PpIRATA ‘
A RAMA
o | TAO
60°S | o 1
[ ] Continent
180°W 120°W 60°W 0° 60°E 120°E 180°

Figure 1. Spatial distribution of the 66 moored buoy sites from five observation networks.

2.1.1. Introduction to the Moored Buoy Sites

Table 2 lists the detailed information about the five observation networks to which
the moored buoy sites belong. The Upper Ocean Processes Group (UOP) launched by the
Woods Hole Oceanographic Institution (WHOI) focuses on the study of physical processes
in the upper ocean and at the air-sea interface using moored surface buoys equipped with
meteorological and oceanographic sensors. These observations enable the first accurate
quantification of the annual cycle of net air-sea heat exchange and wind stress from a
Southern Ocean location [34]. Twenty-three sites for the UOP were collected. The Tropical
Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON) [24] in the tropi-
cal Pacific, The Pilot Research Moored Array in the Tropical Atlantic (PIRATA) [35] in the
tropical Atlantic, and The Research Moored Array for African-Asian-Australian Monsoon
(RAMA) [23] in the tropical Indian Ocean, were the components of the Global Tropical
Moored Buoy Array (GTMBA) program deployed in the tropical oceans [36]. The data
provided by the three networks have undergone extensive quality control examinations
to ensure that they meet stringent accuracy standards [37,38], and they have been used
in studies for understanding, monitoring and forecasting ENSO and ENSO-like events,
meridional modes, and monsoon variability [23]. Thirty-five sites from the three networks
were selected in this study (TAO: 21, PIRATA: 7, and RAMA: 7). The OceanSITES network
consists of buoys funded by individual oceanographic investigators from many different
nations. The aim of the OceanSITES network is to measure, deliver and promote the use of
high-quality multidisciplinary data from long-term, high-frequency observations at fixed
locations in the open ocean [12]. Eight sites from OceanSITES were used. Observations
from 66 moored buoy sites have been widely applied in previous studies, such as air—sea
interaction studies [13,39-41], ENSO prediction [42], and monsoon variability studies [23].

In general, the instruments for measuring the radiative components Ré and Rf were
the Eppley Laboratory precision spectral pyranometer (PSP) and the precision infrared
radiometer (PIR) with calibration accuracies of 2% and 1%, respectively [38]. According
to previous study [12], the radiative flux measurements provided by the moored buoys
are generally thought to be the highest-quality compared with those obtained from ves-
sels; hence, the moored radiative measurements could be taken as the “ground truth” for
tuning satellite measurements and assessing uncertainties in the surface flux estimates
from satellites and models. For meteorological factors, RH and T, were usually measured
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by the Rotronic Instrument corporation MP-101 temperature-humidity probe with accu-
racies of 2.7% and 0.2 K, respectively [38]. These radiative and meteorological sensors
were deployed at a height of 3-5 m above the sea surface at the moored buoy site. To be
different, the SST was measured under approximately 1 m of the ocean surface using Sea
Bird Electronics (SBE37/39). As Table 2 shows, the observations from the different obser-
vation networks have different characteristics resulting from the different measurement
instruments, data-processing procedures, quality-control policies, and so on; hence, all
radiative and meteorological measurements were preprocessed first in the present study;,
and the details are given below.

Table 2. Descriptions of each network.

Network/Program Nun}ber Period Observation URL
of Sites Frequency
http:/ /uop.whoi.edu/index.html (accessed on
UOP 23 1988-2017 1h 15 October 2021)

. . https:/ /www.pmel.noaa.gov/tao/drupal/disdel/

TAO/TRITON 21 2000-2019 10 min (accessed on 15 October 2021)
N . https:/ /www.pmel.noaa.gov/tao/drupal/disdel/

RAMA 7 2004-2018 10 min (accessed on 15 October 2021)
u . https:/ /www.pmel.noaa.gov/tao/drupal/disdel/

PIRATA 7 2006-2017 10 min (accessed on 15 October 2021)

OceanSITES 8 2000-2019 1h http:/ /www.oceansites.org/ (accessed on

15 October 2021)

2.1.2. Radiative Measurements

As mentioned above, only two downward radiations (Ré and R#) were routinely
measured at the ocean surface. Hence, the ocean surface R, at moored buoys could be
calculated by the following formulas [43,44]:

Rug = (1 — )R} )

Ry= Rli - [EoceandSST4+(1 - Eocean)Rﬂ (5)

where « is the daily ocean surface shortwave broadband albedo, €qcean is the daily ocean surface
broadband emissivity, and o is the Stefan-Boltzmann’s constant (5.67 x 10 3W-m—2.K™%).
From Equations (4) and (5), Ré, Rf, and SST can be measured directly, while the other
two key parameters, & and eocean Needed to be carefully defined for R, calculation. In
most previous studies, « and €ocean Were usually highly simplified in parameterizations
using specific constants [28,45]. However, several recent studies have pointed out that the
variations in « and €ycean cannot be ignored, especially in the ocean surface energy balance
calculation [12,46,47]. In this study, the a dataset from Feng et al. [48] during 2000-2018
and the €ocean (8-13.5 um) dataset from Cheng, Cheng, Liang, Niclos, Nie and Liu [46]
during 1981-2018, both with a 10 km spatial resolution at a daily scale, were used. The
« dataset was generated using satellite reflectance data via MODIS and other ancillary
information via MERRA reanalysis data based on a three-component reflectance model
of ocean water, and its validation accuracy was generally consistent and satisfactory with
the previous parameterization scheme [48]. The eocean dataset was generated based on
its relationship with wind speed, and its validation accuracy was less than 0.003 under
wind-free conditions at a daily scale, which was lower than the measurement uncertainty
of 0.004 [46]. Hence, the employment of the two datasets was more reasonable. Note
that the multiyear average daily « from 2000 to 2018 was used as the value for « before
2000 by considering the very small annual changes in « [49]. Furthermore, the buoy SST
observations only represent the bulk SST because of the radiative cooling of the ocean
surface skin; therefore, it is necessary to adjust the bulk SST measurements into ocean
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surface skin SST before Ry, calculation. The bulk SST was closely related to the skin SST [50],
the relationship was affected by wind speed, and a constant correction offset can be used
as long as wind speed exceeds 6 m-s~! [51]. In fact, 83% of all samples were in a condition
with wind speeds exceeding 4 ms~!, and the moored, measured bulk SST was directly
adjusted to the skin SST by using a cooling bias of 0.17 K, as Vanhellemont [52] suggested.
In this study, to obtain the daily ocean surface R, at moored buoys, all measurements
(R, Rli, and adjusted SST) were aggregated into daily means from hourly values without
any missing data and then fed into Equations (4) and (5). For those measurements at
higher observation frequencies (i.e., 10 min), they were aggregated into hourly means
first only when the available observations were more than five in one hour. Note that
only the measurements flagged as high-quality were used in this study. Finally, the in
situ ocean surface Ré, Rli ,and R, were obtained for modeling and validation afterwards.
However, it is difficult to collect all inputs required in Equations (4) and (5), for instance,
most moored buoys usually provide only one of the downward shortwave or longwave
radiation measurements; therefore, an effective but more practical model for ocean surface
R, estimation is needed to meet the requirements of various studies and applications.

2.1.3. Meteorological and Other Ancillary Information

As Table 1 shows, three meteorological variables (T,, RH, and ASTD) were also
needed in this study. It is known that T, is an essential parameter for radiation estimation.
However, the difference between T, and SST (ASTD) cannot be ignored for ocean surface
net longwave radiation estimation. According to Fung et al. [53], the omission of ASTD
could result in large net longwave radiation estimation errors in summer and winter for
midlatitude and subarctic regions. Hence, the ASTD was taken into account for ocean
surface R,, modeling in this study, as suggested by Clark, Eber, Laurs, Renner and Saur [45]
and Bunker [54]. In addition, RH was also considered in this study because it is usually
used as an indicator to capture the contribution of longwave radiation from moisture in
the lower atmosphere [55-58]. The T, and RH could be obtained directly from the moored
buoy sites, and the ASTD was computed as the difference between the skin SST and T,.
As radiative measurements, the daily T,, RH, and ASTD were also calculated from their
hourly values.

In addition to the radiative and meteorological variables, the other two variables, Dd
and CI (see Table 1), were needed for ocean surface R, estimation model development. Dd is
defined as the difference between sunrise and sunset, and the sunrise and sunset times were
computed by using the National Oceanic and Atmospheric Administration’s (NOAA) Solar
Calculation algorithm (NOAA Solar Calculator, www.esrl.noaa.gov/gmd/grad/solcalc/
(accessed on 15 October 2021)).

Cl is the ratio of the surface downward solar radiation to the extraterrestrial solar radi-
ation (DSRtoa), and it is usually used to represent sky conditions and atmospheric turbidity,
which have significant influences on the surface radiative budget balance [20,41,59]. The
ClI value ranges from 0 to 1, and a larger Cl indicates a clearer sky. CI has been successfully
employed in previous studies [1,60-62] and is utilized in this study. CI can be calculated as
following [1]:

Rg
Cl= 6
DSRicn ©
144
DSRtoa = %GSCdr (wssin @ sin d 4 cos & sin ws) (7)
2nDOY
=1 .

dr +0.033 COS( 365 ) (8)

2nDOY
5 = 0.409sin(2PY 4 39 )

365
ws = cos 1 (— tan ¢ tan d) (10)
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where G, is the solar constant (1366.7 Wm™2), d; is the inverse relative distance from the
Earth to the Sun, ws is the sunset hour angle (rad), ¢ is the latitude (rad), o is the sun
declination (rad), and DOY is the day of the year. The CI calculated using the daily Rg
measurements at moored buoys was used for modeling.

2.1.4. Uncertainty Analysis

According to a previous study [63], the errors in the measurements at the ocean surface
should be taken into account in modeling due to their relatively significant influences.
Moreover, the in situ ocean surface R, cannot be directly obtained at the moored buoy sites;
therefore, its uncertainty should also be considered for better reference. According to the
error propagation rules [64], the standard error of calculated Ry, can be derived as:

(11)

where S is the standard error, Y is the dependent variable, Xj is the independent variable in
the formula, and N is the number of X. For example, if Y is the ocean surface Ry, calculated
by Equations (4) and (5), then N is equal to 5. This method is a general technique for
estimating the moments of the variables under consideration. The first-order, second-
moment, uncertainty analysis was used because Ry, is a simple algebraic sum of radiative
components. An implicit assumption of Equation (11) is that errors in different variables
are independent. In this study, Equation (11) was applied to estimate the uncertainty of
the in situ calculated ocean surface R,, and it was extended and revised to estimate the
uncertainty of the newly developed model by excluding the errors of all inputs.

2.2. CERES SYN1deg_Ed4A Product

For comparison, the daily Rg and Rf from the CERES SYN1deg_Ed4A product was
utilized in the newly developed R, estimation models. The CERES experiment provides
Earth radiation budget data, including the top-of-atmosphere (TOA) radiation flux and
surface radiation flux (https://ceres.larc.nasa.gov (accessed on 15 October 2021)). The
CERES SYN1deg series product was calculated using the Langley Fu-Liou radiative transfer
model from the input geostationary (GEO) radiance, MODIS and GEO cloud properties,
Goddard Modeling and Assimilation Office (GMAO) atmospheric profiles, and MODIS
aerosols [14]. Daily Ré was computed by averaging the hourly Ré and extracted according
to the locations of the moored buoys.

3. A New Ocean Surface R, Empirical Estimation Scheme

As described above, the R, at the land surface is closely related to the Ré or Rf
determined by daytime duration [1,60,65], which has not been fully explored at the ocean
surface. Hence, the relationships between the ocean surface R, and its two components
(Ré and Rf) were analyzed first before modeling. Based on the results, empirical models
for R, estimation were built and validated afterwards. In this study, the model accuracy
is indicated by three statistical indices: root-mean-square-error (RMSE), mean bias error
(bias) and R-squared (R?).

3.1. Relationships between the Ocean Surface Ry, and Ré / Rll

Similar to the study by Chen, He, Jiang and Liang [65], the variations in the relation-
ships between the ocean surface R, and Ré/ Rll with the length of daytime duration are
explored. For convenience, a normalized index named the length ratio of daytime (LRD,
0 ~ 1), calculated using the ratio of the total daytime hours to the entire day (24 h), was
used to represent daytime duration. The LRD was divided into 20 bins (by 0.05 increments),
and then, the Pearson correlation (R) between the in situ daily ocean surface R, and Rg / R#
was calculated for each LRD bin and is shown in Figure 2.
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Figure 2. The correlation between R, and Ré and R# with LRD.

Figure 2 shows that the variations in the two relationships (Ry ~ Rg and R, ~ Rli) were
opposite with increasing LRD. Specifically, the R values between the ocean surface R, and
Rg (the solid dotted line) increased rapidly to approximately 0.84 when the LRD increased
from 0.3 to 0.4, and the values remained very close to 1.0 afterwards, while the R values
between the ocean surface Ry, and RlL (the dashed dotted line) decreased continuously from
approximately 0.82 to 0 with LRD increasing from 0.3 to 0.55, and the values remained at
approximately O or even lower afterwards. The two lines intersected when the LRD was
approximately 0.4. The results indicate that the ocean surface R, was highly correlated
with the Ré(Rli) when the LRD was greater (less) than 0.4. Hence, it is more reasonable to
estimate the ocean surface R, under different conditions defined by the LRD.

3.2. Conditional Model Development

Many empirical models have been successfully developed for R, estimation at the
land surface directly from the Ré [1,60,66] when the two have a high correlation. Therefore,
two conditional models were developed in this study in which the ocean surface R, was
estimated mainly from the ocean surface Ré when the LRD was greater than 0.4 (hereinafter

referred to as the Case 1 model), and mainly from the ocean surface R# when the LRD
was equal to or less than 0.4 (hereinafter referred to as the Case 2 model). Table 3 shows
the number of samples used for the two conditional model developments. Note that
the samples for Case 2 modeling were much less than those for Case 1, because most
moored buoys were located in low- and mid-latitude areas, where the LRD is usually larger
than 0.4.

Table 3. Details of the two conditional models for R, estimation.

Conditional Model Classification Criteria Training Samples Validation Samples
Case 1 LRD > 04 37,054 15,952
Case 2 LRD <=04 324 130

3.2.1. Case 1 Model

Figure 3 shows the scatter plot between the daily ocean surface R, and Rg when the

LRD was greater than 0.4. The daily ocean surface R, was highly linearly related to R},
with an R? value of 0.925, RMSE of 15.501 Wm~2, and bias of 0 Wm~2 (Equation (12)).
However, the linear relationship was not as good when the ocean surface R, value was
smaller than 100 Wm 2.

Ry = 0.846Ry — 27.305 (12)
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Figure 3. Scatter plot showing relationship between the in situ daily ocean surface R, and Ré.

To improve the accuracy of the estimated R,, other variables (see Table 1) were
introduced into Equation (12). Therefore, the relationships between the model residuals
ARy (the difference between the original and model estimates) from Equation (12) and
these parameters were explored one by one. After multiple experiments, it was found that
the RH, CI, and ASTD were related to the variations in AR,; in different formats, as shown
in Figure 4.

The scatter plots between the ARy,; and the CI, RH, and ASTD are shown in Figure 4a,ce,
respectively. To better display their relationships, the corresponding box plots are given
in Figure 4b,d f, respectively, in which the mean of the AR;; and its standard error of the
mean (SEM) were calculated for each bin of the CI, RH, and ASTD (by 10% increments),
respectively. Specifically, the ARy, varied with the CI with a quadratic relationship
(Figure 4b), and with the RH (Figure 4d) and ASTD (Figure 4f) in an approximate linear
relationship. Hence, the CI, RH, and ASTD were introduced into Equation (12) in their
proper formats as Equation (13):

Rp = 1.05Ré + 0.83RH — 132.82CI? + 17.15CI 4 3.58 ASTD — 100.96 (13)

The training results of Equation (13) are shown in Figure 5. Compared with the
fitting results from Equation (12) (Figure 3), the accuracy of the R, estimations from the
new model was significantly improved as the R? value increased from 0.925 to 0.971 and
the RMSE decreased from 15.501 Wm ™2 to 9.650 Wm~2. Therefore, Equation (13) was
determined as the Case 1 model.

3.2.2. Case 2 model

Figure 6 gives the scatter plot between the in situ daily ocean surface R, and Rll when
the LRD < 0.4. The daily ocean surface Ry, is also linearly related to Ri, although not
as closely as the relationship between Ré and R, in Case 1. Similar to the Case 1 model

development, a simple linear regression model (Equation (14)) taking Rli as the only input,
was built first. The fitting accuracy of Equation (14) was accepted with an R? value of 0.558
and RMSE of 12.815 Wm 2.

Ry = 0.568R; — 182.939 (14)
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As in previous work, the relationships between the model residuals ARy, from
Equation (14) and the parameters in Table 1 were explored one by one, and two parameters
(CI and Dd) were found to be linearly related to the variations in the ARy, as shown in
Figure 7.
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Figure 7. The same as Figure 4 but for the model residuals AR, and CI and Dd.
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Therefore, the CI and Dd were directly introduced into Equation (14) as Equation (15):
R, = 0.839R1¢ + 7.125Dd + 88.2CI — 354.93 (15)

Figure 8 shows that the fitting accuracy of Equation (15) was significantly improved
compared with the results from Equation (14), by increasing the R? value from 0.558 to
0.868 and decreasing the RMSE from 12.815 to 7.014 Wm 2, which indicated that the CI and
Dd were very helpful in ocean surface R, estimation when the LRD was small. It is known
that the upward longwave radiation is mainly determined by SST; hence, SST should also
be taken into account for estimating R, under the Case 2 condition. Furthermore, a close
linear relationship was found between the model residuals from Equation (15) (ARy3) and
the SST, as Figure 9 shows. Therefore, the final Case 2 model is given in Equation (16):

R, = 0.957Rll + 11.05Dd + 102.323CI — 4.751SST — 393.461 (16)
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Figure 8. Fitting accuracy of Equation (15).
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Figure 9. The same as Figure 4 but for the model residuals AR,3 and SST.
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The fitting results of Equation (16) are shown in Figure 10. Compared with Figures 6 and §,
the results from Equation (16) were closer to the in situ ocean surface Ry, with an R? value
of 0.984 and an RMSE of 2.428 Wm 2. Therefore, Equation (16) was determined as the Case
2 model.

Overall, two conditional models (Case 1 and Case 2) for ocean surface R, estimation
were successfully built based on the measurements collected from more than 60 globally
distributed moored buoys and in the formats of Equation (13) and Equation (16). Specifi-
cally, when the length of daytime duration is sufficiently large (LRD > 0.4), the daily ocean
surface R, is mainly determined by R}, and RH, CI and ASTD also make contributions.

For other cases (LRD < 0.4), the Case 2 model was formulated as a linear function of RL,
Dd, CI and SST, and the fitting accuracies of both cases were satisfactory.
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Figure 10. Fitting accuracy of the Case 2 model (Equation (16)).

4. Results and Discussions
4.1. Validation Results

The overall accuracy of the ocean surface Ry, estimations derived from the Case 1 and
Case 2 models was validated against all independent validation samples (see Table 2), and
the results are shown in Figure 11. Based on the results, the new ocean surface R, empirical
estimation scheme performed very well, with an R? value of 0.972, an RMSE of 9.768 Wm 2,
and a bias of —0.092 Wm 2. Moreover, the performances of the Case 1 and Case 2 models
were also satisfactory, with R? values of 0.972 and 0.979, RMSEs of 9.805 and 2.824 Wm 2,
and biases of —0.095 and 0.346 Wm~2, respectively. For better illustration, validation
was conducted at each moored buoy site. Figure 12 shows the spatial distribution of the
validation accuracy for each moored buoy, represented by the RMSE value. Generally,
the two models had better performances over the oceans in low-latitude areas than in
mid- and high-latitude areas, especially over the open ocean. It was also found that the
two conditional models performed more poorly over the ocean with high SSTs, where
the variations in wind and atmospheric convection are more active because of intensive
ocean—-atmosphere interactions [67].
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Figure 12. Validation accuracy of the newly developed models at each moored buoy site, represented by the RMSE value.

To further explore the influences of latitude and distance to the coastline on the
performances of the newly developed models, the variations in the validation accuracy
with the two factors were analyzed, and the results are presented in Figures 13 and 14. By
considering the different sizes of the samples, the relative RMSE (rRMSE) was used. In
order to better illustrate the influence of the coastal seas on the model performance, the
results in Figure 13 were calculated based on measurements only from the buoys over open
seas, while the one in Figure 14 based on all available measurements. Figure 13 shows the
performances of the new models in areas with different latitudes, which were classified
into nine groups by latitude, in 10 degree intervals from 40°S to 50°N. The rRMSE and
magnitude of the bias were both much lower over the oceans in low-latitude areas than
in mid- and high-latitude areas. Similarly, the performances of the new models were
examined by the distance to the coastline, from 0 to 300 km, as shown in Figure 14, and the
closer to the coastline, the worse the validation accuracy of the new models. The results
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rRMSE

rRMSE

in Figures 13 and 14 are consistent with the conclusions derived from Figure 12. On the
one hand, this was possibly caused by the much higher number of samples available in
low-latitude areas and open ocean for modeling, because the performance of the empirical
model may tend to reflect highly sampled conditions. On the other hand, the atmospheric
conditions, such as cloud characteristics, water vapor content, and aerosol types, are
different for the areas near the coast and in low-latitude regions, which has not been
thoroughly considered in the newly developed models. Specifically, the atmosphere over
coastal ocean areas is usually affected by continental aerosols transported by favorable
winds, which introduce more enhanced aerosol direct-radiative effects than over the open
ocean [68,69].
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Figure 13. The performances of the new models in oceans within different latitudinal zones.
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Figure 14. The same as Figure 13 but for different distances to the coastline.

Taking two moored buoy sites, TAO_03 (0°N, 140°W) and OS_PAPA (50°N, 145°W),
as examples, TAO_03 is located in the tropical ocean, with all LRD values larger than 0.4,
while OS_PAPA is located in the high-latitude ocean, with all LRD values smaller than 0.4
for some days in one year; thereby, only the Case 1 model was applied at TAO_03, but
two conditional models were applied at OS_PAPA. The time series of the ocean surface
R, estimations and the moored Ry, samples of the two sites, as well as their scatter plots,
are shown in Figure 15. The ocean surface Ry estimations at the two sites captured the
variations in the in situ R, very well, and their validation results were very good, with R?
values of 0.927 and 0.984, RMSE values of 8.506 and 8.466 Wm ™2, and bias values of 3.945
and —0.944 Wm~2, respectively.



Remote Sens. 2021, 13, 4170 16 of 22
site:TAO_03 (Onl40w) year:2010-2011
T T T —~y
- - pl |
m0r- A - * . » LM ‘I.
\ I &0 12 ' q ;
ns L |‘ Thdies ‘ll" - [ s WU w | v B AL
[} ol | Meses o 2ew L il N . RMSE = 8.506 -
Y \ I By i L . e 1l g .',' T * Eali-L N o bias = 3.045 . s e 1
00 - | 111V 3 /™ - b, AL ' R*=0.927 o
— - VN } - 4 L FTTY E Num =449 .
E - ¥ : Yol T z 15 f ", .
| L - L™ * [ .
175 - | » [
E * . v > - 2 sk . 4
S s | ol T .
- 180 L N z S
: M 2 st |
- E -
125 | . =
* 100 | g
. . ) b
00 5 —— Predicted R, =L 4
+ Insita R,
- -
" " . L " " i L = L L L L
010-01 010-04 010-07 010-10 mi1-01 011-04 W11-07 W1-10 S0 100 150 00 =0
In situ R, (Wm ~?)
site:OS_PAPA (50n145w) vear:2012-2013
30 T T T T
=0 - c . —— Predicted R,
30 - 4
b I - | * In sitn R, Case 1 & Case 2
00 ‘ . A i RMSE = 8.460
g [ o vl o AL 4L B _ =0 bias = -0.944 . 1
Lyl g oy 4 LR “ RE = 0.984 2
s f A, - fir q | | s wo b Num =715 Y )
’-' ) [ o T :
g i I U ¥ ., | f = s b ]
E | * i . i 5
z - 1 " .l‘_ * W 3 I || t ; . g Case |
= i T, X u b 2 w0l RMSE = 9.813 i
@ L L0 ¥ -l il % N bias = -1.29
- h 4 v . 2 » R = 0.969
A . " = N =516
‘|=-1| * L. ‘! s A o s Case 2 " d T
of Il " "i, $: {34 3 RMSE = 2.8
3" Y « 0% of bias = -0.046 )
! L R*=0.98
—=n k- Num =199
1 1 1 1 1 1 1 1 1 —50 1 1 L 1 -
wiz2-01 012-04 012-07 012-10 2013-01 2013-04 W013-07 013-10 2014-01 1] 100 200 300
Date

In situ R, (Wm ~ %)

Figure 15. Time series and scatter plots of the ocean surface R, estimations and the in situ Ry at the (a,b) TAO_03 (0°N,
140°W) and (c,d) OS_PAPA (50°N, 145°W) sites.

Therefore, the direct validation results demonstrated the overall satisfactory perfor-
mance of the newly developed models for ocean surface R, estimation. However, the
accuracy of the estimated ocean surface R, obtained from the new models over the areas
near the coast or at mid-high latitudes could be decreased because of the very limited
number of samples available for modeling in these regions.

4.2. Model Sensitivity Analysis

To determine the effects of the input parameters on the estimated Ry, from the Case 1
and Case 2 models, a global sensitivity analysis was conducted by utilizing SimLab software
(http:/ /simlab.jrc.ec.europa.eu (accessed on 15 October 2021)). All inputs into the Case 1
model (Ri, RH, CI and ASTD) and Case 2 model (Rf, CI, Dd and SST) were entered into
SimLab separately, and then 4000 combinations of the inputs for the two models (2000 in
Case 1 and 2000 in Case 2) were generated by assuming a normal distribution between
the lower and upper bounds for each variable. Then, 4000 ocean surface R, estimations
were obtained from the Case 1 and Case 2 models with these generated combinations
of inputs. Afterwards, all combinations of inputs and the corresponding ocean surface
R, estimations were used for sensitivity analysis using the Fourier amplitude sensitivity
test (FAST) method [70] on the SimLab platform. The total sensitivity index (TSI), which
indicated the total contribution of a factor to the output variance when the interactions
of other factors were also computed, was employed to determine the sensitivity of each
factor. Table 4 lists the TSI of each input in the Case 1 and Case 2 models. For the Case
1 model, Rg played the most important role, with the largest TSI, 86.9%, and the second

most sensitive variable was the CI with a TSI of 5.5%, while for the Case 2 model, Rli was
the most sensitive variable with a TSI of 64.3%, and the second most sensitive variable
was also the CI with a contribution of 17.7% of the variance in the outputs. Therefore, the
performances of the two newly developed models depended highly on the accuracies of
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the ocean surface Rg and Rli measurements, especially the Rg, because of the importance of
the CI in the two models.

Table 4. The total sensitivity index of each input in Case 1 and Case 2.

Model Ré Rf RH CI ASTD Dd SST
Case 1 0.869 \ 0.031 0.055 0.003 \ \
Case 2 \ 0.643 \ 0.177 \ 0.053 0.052

To better understand the importance of the accuracy of Rg and Rf in the two condi-
tional models, the validation accuracy of the estimated ocean surface R from the newly

developed conditional models using the daily Ré and Rli from CERES SYN1ldeg Ed4A

(CERES Ré and CERES Rli) were also examined. According to previous studies, the radia-
tion product from CERES SYN1deg Ed4A has been acknowledged to be one of the most
reliable products for ocean surfaces [71]. In this study, the accuracy of CERES Ré under
the Case 1 condition was also validated against all independent validation samples with
an R? value of 0.818, an RMSE of 27.467 Wm ™2, and a bias of 0.971 Wm 2. Additionally,
the accuracy of CERES Rli under the Case 2 condition was validated with an R? value of
0.63, an RMSE of 15.672 Wm ™2, and a bias of 0.066 Wm 2. Afterwards, the validation
results of the estimated daily ocean surface R, with the CERES Ré and CERES R1i (named
CERES_based Ry for the Case 1 model and CERES_based Ry, for the Case 2 model) are
shown in Figure 16a,b, respectively. Note that the validation samples (14,185) for Case 1

were less than those in Figure 11 (15,952) because CERES_R; has only been available since

2000. Hence, the validation accuracy of the Case 1 model with the in situ Ré measurements
since 2000 was calculated with an R? value of 0.974, an RMSE of 9.035 Wm ™2, and a bias of
—0.955 Wm 2. Overall, the performances of the Case 1 and Case 2 models both worsened
noticeably after replacing the in situ radiation measurements with those from CERES Rg
and CERES Rli. Specifically, for the Case 1 model, the accuracy of the daily ocean surface R,

estimates worsened considerably using CERES R, with an R? value decreasing from 0.974
to 0.808 and RMSE increasing from 9.035 to 24.461 Wm ™2, respectively, while for the Case 2
model, the validated R? value decreased from 0.979 to 0.453 and RMSE and bias increased
from 2.824 to 14.825 and 0.346 to 1.113 Wm ™2, respectively. Therefore, reliable and accurate
daily ocean surface Ré and Rl¢ datasets are necessary for generating an accurate daily ocean
surface R, dataset.

4.3. Error Analysis

At the ocean surface, the errors in the moored buoy measurements mostly resulted
from buoy rocking motions, sensor tilting due to wind and currents, solar contamination,
thermal gradients in the dome and case temperatures, and dome contamination at sea (e.g.,
salt spray crystallization, bird guano, etc.) [37,72,73], and these errors in measurements
have not been taken into account in the common validation (Section 4.1). Hence, the
performance of the newly developed empirical models should be assessed by eliminating
the influences of measurement errors in the inputs. A quantitative analysis of the error
propagation of the new models was conducted in this section. In addition, the uncertainty
in the in situ ocean surface R, was estimated for comparison.

First, the variables related to error analysis are defined in Table 5.
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Figure 16. Validation results of CERES-based R, estimates.

Table 5. Variable definitions.

Abbreviation Stands for
P Ocean surface R, estimations
O In situ ocean surface Ry, calculations
Py Ocean surface R, estimations with “true” inputs
Ot In situ ocean surface R, without measurement errors (true values)
Sp Uncertainty of the ocean surface R, estimations
So Uncertainty of the in situ ocean surface R, calculations
Sm Uncertainty of the model

P and O can be written as P = Py + Sp and O = O + S, and the uncertainty of the
model is Sy, = Py — Oy; hence, the residuals (Ap.o) between P and O are:

Ap.0 =Sm + Sp - So (17)

By combining with the calculation of RMSE, we obtained Ap.g ~ (0, 9.805) in the Case
1 model and Ap.p ~ (0.346, 2.824) in the Case 2 model. Therefore, the Sy, could be estimated
if the uncertainty of S, — So (S(g,_s,,)) was known. According to the error propagation
calculation (Equation (11) in Section 2.1.4) and the information provided in Table 6, S5, s,
was 2.70 Wm~2 and 6.84 Wm~2 in the Case 1 and Case 2 models, respectively. Therefore,
Sm in the Case 1 or Case 2 model can be calculated as

Sm = 1/Sap_o® + S(sp—50)2 (18)

Therefore, the “true” uncertainty of the R, model was 10.17 Wm~2 and 6.84 Wm 2.
For comparison, the uncertainty of the calculated in situ R, using Equations (4) and (5)
was estimated as 6.23 and 2.55 Wm~2 under the Case 1 and Case 2 conditions, respectively.
Hence, the true uncertainty of the new model was comparable to the calculated in situ
Ry, but takes more accessible buoy measurements as inputs, which demonstrated that the
performance of the new model was satisfactory.
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Table 6. The standard error of each parameter.

Parameters Case 1 Standard Error\ Average Case 2 Standard Error\ Average Source

R! (Wm—2) 6\225.40 0.90\33.90 [72]

le (Wm~2) 2.5\397.0 2.5\310.99 [72]
RH (%) 0.027\- -\- [38]

CI 0.015\0.57 0.06\0.31 Calculated
ASTD (K) 0.20\- -\- [72]
Dd (Hour) -\- 0\- Calculated

SST (K) 0.07\298.20 0.07\280.63 [50]

o 0.0049\0.06 0.0049\0.06 [48]

€ocean 0.002\0.95 0.002\0.95 [46]

5. Conclusions

Ocean surface R, is one of the most essential parameters in determining the ocean
heat flux, which plays a vital role in controlling the stability of the Earth’s climate system.
However, R;,, and four other radiative components are not routinely measured at the
ocean surface; hence, a simple but effective ocean surface Ry, estimation method is neces-
sary for practical use. In this study, a new LRD-based empirical scheme for daily ocean
surface R, estimation was successfully developed based on downward shortwave or long-
wave radiation and meteorological measurements collected from more than 60 globally
moored buoys.

The LRD-based empirical scheme includes two conditional models named Case 1
(R ~ f (R§, CI, RH, ASTD)) and Case 2 (R, ~f (R{, CL, Dd, SST)). Specifically, when the
length of daytime duration was longer than 9.6 hours (LRD > 0.4), the ocean surface R,
was primarily determined by R}, while the ocean surface R, was primarily determined by

Rf for the other cases. After validation against the in situ ocean surface R, calculations, the
overall accuracy of the new scheme was very good with an R? value of 0.972, an RMSE
0f 9.768 Wm~2, and a bias of —0.092 Wm—2, and the performance of the two conditional
models was also satisfactory, with R? values of 0.972 and 0.979, RMSE values of 9.805 and
2.824 Wm™2, and bias values of —0.095 and 0.346 Wm 2, respectively. Afterwards, the
“true” performance of the Case 1 and Case 2 models was estimated by eliminating the
measurement errors in the inputs, which were also very good, with uncertainties of 10.17
and 6.84 Wm 2, respectively. These were comparable to the uncertainties of the calculated
in situ ocean surface R, of 6.23 and 2.55 Wm~2 under Case 1 and Case 2 conditions,
respectively, but with a simpler format and more easily accessible inputs. Therefore, the
new empirical LRD-based scheme for ocean surface R, has strong potential to be widely
used in the near future.

However, some drawbacks in the newly developed models should be noted. For
example, the two models performed worse in areas near the coastline and at high latitudes
because of the limited number of samples collected within these regions, and the accuracy

in the Ry, estimates strongly depends on the accuracies of Rg and Rll . Furthermore, the
models only work as long as the Cl is available, which indicates that the new models cannot
work when the daytime length is short (LRD = 0.3 in this study). More efforts should
be made to improve the performance and robustness of the newly developed models in
future research.
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