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Abstract: The live weight (LW) and live weight change (LWC) of cattle in extensive beef production
is associated with pasture availability and quality. The remote monitoring of pastures and cattle LWC
can be achieved with a combination of satellite imagery and walk-over-weighing (WoW) stations.
The objective of the present study is to determine the association, if any, between vegetation indices
(VIs) (pasture availability) and the LWC of beef cattle in an extensive breeding operation in Northern
Australia. The study also tests a suite of VIs along with variables such as rainfall and Julian day to
predict the LWC of breeding cows. The VIs were calculated from Sentinel-2 satellite imagery over a
2-year period from a paddock with 378 cattle. Animal LW was measured remotely using a weighing
scale at the water point. The relationship between VIs, the LWC, and LW was assessed using linear
mixed-effects regression models and random forest modelling. Findings demonstrate that all VIs
calculated had a significant positive relationship with the LWC and LW (p < 0.001). Machine learning
predictive modelling showed that the LWC of breeding cows could be predicted from VIs, Julian day,
and rainfall information, with a Lin’s Concordance Correlation Coefficient of 0.62 when using the
leave-one-month-out cross-validation. The LW and LWC were greater during the wet season when
VIs were higher compared to the dry season (p < 0.001). Results suggest that the remote monitoring of
pasture availability, the LWC and LW is possible under extensive grazing conditions. Further, the use
of VIs and other readily available data such as rainfall can be used to predict the LWC of a breeding
herd in extensive conditions. Such information could be used to increase the productivity and land
management in extensive beef production. The integration of these data streams offers great potential
to improve the monitoring, management, and productivity of grazing or cropping enterprises.

Keywords: average daily gain; pasture availability; NDVI

1. Introduction

The live weight gain of cattle in extensive grazing conditions is directly linked to
pasture quantity and quality [1]. The distinct wet and dry seasons affect pasture growth
throughout the year, being highest during and immediately following the wet season
(December to March in the tropics of the Southern Hemisphere) [2]. A cow’s live weight
(LW) and body condition score (BCS) reflect this, typically being highest at the end of the
wet season, with declines in the LW occurring as pasture quantity and quality decline
throughout the dry season [1].

Satellite imagery with high a spatial and temporal resolution allows the calculation of
VIs, which can be correlated to pasture quantity and quality [3,4]. The growth and weight
of cows are of interest because they impact cows’ reproductive efficiency, including their
ability to conceive, gestate, and raise a calf to weaning [5,6]. Cow and calf loss in extensive
systems is responsible for large productivity losses, with the live weight of cows believed
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to impact the extent of calf loss in these systems [6]. Cattle live weight change (LWC) can
also be measured using remote automatic weighing systems [7,8]. This information could
be useful to integrate with remotely sensed VIs. However, no studies have been published
integrating data streams from the remote monitoring of both vegetation and cattle LWC in
extensive systems. Such information could then be used to assess the relationship between
these variables throughout the seasons. It could also be used to manage animals in regard
to nutrition, through paddock change, and feed supplementation. Mating and weaning
strategies, amongst others [8], could also benefit from this information.

VIs can assist in understanding the greenness and digestibility of a pasture [9]. VIs
have been known to help in grazing management decisions in the past [10,11], making them
a viable option for low-input, large-scale beef enterprises. Pairing VIs with LW and LWC
data could help to determine thresholds linked to animal performance, such as LW loss in
larger operations with low inputs where this is not measured. Machine learning techniques
have been used in the industry to predict meat characteristics and calving time [12,13], and
have the potential to predict production outcomes such as the LWC by utilising ancillary
variables such as VIs and rainfall in extensive production systems. To the author’s best
knowledge, there are no studies which incorporate the use of VIs to predict changes in
the growth of breeding cows under commercial conditions in Northern Australia. An
investigation into this area would be of benefit in increasing the productivity of breeding
animals under extensive conditions. Due to the global availability of freely accessible data,
such as rainfall and VI from satellites, predictive modelling can nowcast the growth of cows
in the coming months and could have benefits for management interventions such as the
stocking rate, provision of supplementation, early warning indicators for poor performance
of animals, and predictions of mortality.

The hypothesis of the present study is that there is a relationship between VIs and
cattle LW and LWC. The objectives of the present study are, firstly, to assess the relationship
between VIs and cattle LW and LWC under extensive grazing conditions of northern
Australia. Secondly, the study aims to utilise machine learning to develop a model which
could predict the LWC of breeding cows using VIs and freely available data such as rainfall.

2. Materials and Methods

All methods for the present project were approved by The University of Sydney
Animal Ethics Committee (Animal Ethics Project Number 2017/1296).

2.1. Cattle Handling

The study was conducted on a large commercial beef enterprise in the Western Victoria
River Downs Region of the Northern Territory, Australia. The property is 2480 km2, and the
trial paddock 33 km2 (Figure 1). The area has a tropical climate, with distinct wet and dry
seasons. Long-term average rainfall and temperature in the region is 800 mm of rainfall per
year, with an average daily maximum temperature of 35.0 ◦C and a minimum of 21.2 ◦C [14].
Rainfall is predominantly during the wet season from December to March. Vegetation is,
predominantly, lightly wooded eucalypt, dominated by tropical tall grasses such as Mitchell
grass (Astrebla spp.) [2]; however, the paddock is heterogenous with variation in vegetation
and land type.

Animals were mustered in April 2018 with a helicopter (R-22, Robinson Helicopter
Company, Torrance, CA, USA) as per regular mustering processes in the area. During
the two-year trial running from April 2018 to April 2020, a total of 378 trial animals were
monitored. Trial cattle from the larger mob mustered in April 2018 were processed and
selected based on gestation stage as described in Pearson et al., 2020 [15]. Trial animals
were mostly Brahman (Bos Indicus) (80%) with remaining animals being of shorthorn or
composite crosses. Cows were aged between 2 and 10 years old.
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per head per day of phosphorus supplement in the wet season of 2018–2019. 

 
 
 
 
 
 
 

Figure 1. Satellite image of the trial paddock with water points displayed. Trial animals were able to access the dam on the
northern boundary in Year 1, but not in Year 2.

Data collected for each individual cow in the larger herd included LW and LWC,
measured using a walk-over-weighing (WoW) station, which was set up at the entrance
to water and configured as previously described by Gonzalez et al., 2014 [7]. Trial cows
were provided with a loose mix urea supplement from June 2018 throughout the year until
mid-November and then provided with phosphorus supplementation at the onset of the
wet season in November 2018. In 2019, cows were provided with loose mix urea at the
onset of calving in September until December, but were not provided with phosphorus lick
during the 2019–2020 wet season. The dry season urea loose mix was 36% and 32% urea
for each year, respectively (Table 1; Red Range Stock Supplements (Kununurra, Western
Australia, Australia), and the wet season phosphorus lick block was a custom mix of
16% phosphorus (Olsen’s, Yennora, New South Wales, Australia). Animals consumed an
average of 150 g per head per day during the dry season in both years and 66 g per head
per day of phosphorus supplement in the wet season of 2018–2019.

All animals were subjected to commercial conditions and treatments for the duration
of the trial period, including provision of supplementation and mustering procedures.
Continuous mating was practised on the trial property, with calving structured around seg-
regation of cows according to gestation stages. Weaning of calves was generally performed
twice per year, once during the April and May period and again before the wet season in
September and October, depending on the time calves were born during the year. Calves
were between 2 and 6 months old at weaning. In 2018, weaning was performed on the 14
October and, in 2019, weaning was conducted on the 26 November. There were 8 bulls in
the trial paddock during both years, which, along with the cows, used the WoW stations
to access water. In addition, there were 126 calves born mid-year in 2018 and 134 calves
in 2019, born later in the year. The LW and LWC data for the present study included the
presence of bulls and calves in the paddock if these were tagged at muster and not weaned.
The expected calving date in 2018 for 67% of the herd was mid-August, with 27% due
between June and July 2018 and the remaining cows due in May 2018. In 2019, 58% were
due mid-September and the remaining cows were due to calve from October to December.
Weaning percentage in both years was 70%.
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Table 1. Nutritional information of dry season supplements for breeding animals under extensive
conditions in northern Australia.

Ingredient % as Fed Dry Season Urea—2018 Dry Season Urea—2019

Urea equivalent 36.21 32.86
Phosphorus 3.33 3.09

Crude protein 2.88 4.25
Equivalent CP 103.92 94.31

Total CP 106.80 98.56
Calcium 4.37 4.85
Sulphur 3.32 3.92

Fibre 0.55 0.95
Magnesium 0.31 0.18
Potassium 0.06 0.17
Nitrogen 0.45 15.27
Chloride 16.77 14.86
Sodium 10.57 9.37

Dry matter 76.52 95.07
Metabolizable Energy, MJ /kg

DM 0.80 1.57

2.2. Satellite Data and Calculation of Vegetation Indices

Satellite data were retrieved through Google Earth Engine (GEE) [16], which were
used to access Sentinel-2 Surface Reflectance satellite imagery at 10 m spatial resolution
and 5 day temporal resolution for the trial paddock from 24 April 2018 to 9 April 2020.
Sentinel-2 satellite data were chosen primarily because of the high temporal resolution,
and the number and type of spectral bands available. A cloud-masking filter was applied
to remove all pixels that were affected by cloud cover as per Filippi et al. 2020 [17]. Images
with more than 40% cloud cover of the study paddocks were removed from the analysis
to ensure a representative portion of the paddock. The average value for each VI for each
image was calculated for the study area.

For the remaining pixels within each image, the number of VIs was calculated, in-
cluding: Enhanced Vegetation Index (EVI) [18,19], Normalised Difference Vegetation Index
(NDVI) [20], Normalised Difference Red Edge (NDRE) [21], Colour Infrared (CIr) [22,23],
Vogelmann Red Edge Index (VREI) [24], and Bare Soil Index (BI) [25]. All indices were
fitted with a penalised B-spline [26] to smooth the data and interpolated using the cubic
method to fill in the gaps with no satellite data across the 2-year period. The VI was
estimated for each day, matching the daily cattle weight data.

These VIs were used to assess the relationship with LWC of animals in the present
study. The value of VIs typically represented the density or quantity of green forage
available in the trial paddock. Different indices often represented different aspects of
vegetation or complemented each other in terms of their sensitivity to prevailing vegetation
and soil reflectance. Therefore, a suite of VIs was assessed in the present study to determine
their association with LWC and LW (Table 2). As an example, NDVI and VREI were
chlorophyll sensitive [21], but NDVI often saturated at high levels of green vegetation and
was impacted more by soil and shadow. In contrast, EVI addressed some of these issues
and often had reduced interference from soil and atmospheric noise [27]. Similarly, NDRE
is known to be more accurate for use in mid to late season biomass and tree crops, and was
less likely to oversaturate compared to NDVI [28]. The BI was useful for improving the
identification of bare soil areas [25], which were especially common in areas of high cattle
traffic activity, such as water and supplement points. The CIr is commonly used to assess
vegetation, as its combination of bands shows vegetation to appear red, giving different
hues of the colour to show healthy or sparse areas of vegetation [22,23].
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Table 2. Vegetation indices included in the study, and associated bands used to calculate the vegeta-
tion indices, and description.

VI Red Green Blue NIR Red
Edge Description

NDVI X X Chlorophyll-sensitive
Identifying canopy structure

NDRE X X Good to estimate late season biomass and tree crops
Does not oversaturate images

EVI X X X
Reduces soil and atmospheric noise
Sensitive to changes in high biomass
Detects variations in plant structure

CIr X X X Assesses soil moisture
Assesses soil composition

VREI X Chlorophyll-sensitive
Sensitive to small changes in vegetation

BI X X X
Identifies areas of bare soil

Good for detection of degradation and
drought-affected areas

2.3. Live Weight and Live Weight Change Data

The WoW stations were placed at water points in the paddock and collected LW data
for each animal when attending the water point throughout the trial. The WoW stations
were erected at the entrance to water, and data processing was performed as described
by González et al. [7]. Animals which accessed the water point during this period were
automatically weighed and their electronic identification (EID) ear tag number (Allflex
Australia Pty Ltd, Capalaba, QLD, Australia) was recorded, along with the date and time.
The WoW data were stored on board the processor (indicator model WoW2; Tru-Test WOW,
Pakuranga, New Zealand). Data were downloaded once per fortnight, depending on
accessibility to the site by the research team. Once the data were collected, processing and
filtering of data were performed, removing outliers and fitting penalised B-splines [26] for
each animal, and then interpolating between measures to fill in days with no data.

2.4. Statistical Analysis and Linear Mixed-Effects Modelling

The VIs and WoW data were merged for each cow and date in RStudio [29]. There
were 2 experimental years, with a wet and dry season for each. Year one was from the
24 April 2018 to the 8 April 2019, and year two from the 9 April 2019 to the 9 April 2020,
coinciding with mustering. The initial linear mixed-effects regression model contained the
fixed effect of experimental year, date, and their interaction, and animal ID as random effect
with the dependent variables being LW and LWC. This model was not a predictive model,
but was used to assess the effect of time and obtain mean daily values on the variables of
interest. The date × year interaction was significant for all variables (p < 0.05) and, thus,
the analysis was performed for each year separately. However, figures were presented with
the two years together to show seasonal variation across the whole trial. The association
between variables and equations to predict LWC from the predictor covariate such as VIs
was assessed using linear mixed-effects regression, with cow EID and date as random
effects. Significance was declared at p < 0.05.

2.5. Predictive Machine Learning Model

A predictive model of cattle LWC was created using a random forest machine learning
model. Specifically, the ‘ranger’ function within the ranger package in R [30] was used,
which is a fast implementation of a random forest model. Live weight change was the
response variable, and the predictor variables were monthly rainfall, year, month, Julian
day, and the suite of VIs. Rainfall data were measured at the closest Bureau of Meteorology
weather station in Kununurra, 50 km from the trial site. Random forest models have
an ability to deal with non-linear relationships and are well-suited to diverse and high-
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dimensional datasets [31,32]. The dataset used for the random forest modelling included
only breeding cows with sufficient WoW data across the trial period. Cows which had less
than 90 days of data recorded, or less than 10 observations on the WoW system, were not
included. The dataset contained 65,000 rows of data over a 24-month period from 148 cows.
This data subset with cows that had a more complete time-series of data was selected,
as the aim of this modelling was to predict or nowcast the LWC of those animals for the
subsequent month. The predictor variable importance was assessed using the ‘permutation’
approach in the ‘ranger’ function in R [33].

To test the quality of the models and validate the predictions, a leave-one-month-
year-out approach was implemented in this study. This involved removing all data from a
particular year and month, and then building a model with the remaining data. This model
was then used to predict LWC of the removed data, and the predicted LWC was retained.
This procedure was implemented for all years/months in the dataset (n = 24 months).
The relationship between all of the observed live weight change data and independently
predicted LWC data was then assessed using R2, Lin’s concordance correlation coefficient
(LCCC) [34], root mean square error (RMSE), and bias.

The aim of creating this predictive LWC model was to test the ability to predict or
nowcast the LWC of cattle. The robust validation implemented provided a realistic insight
into whether LWC could be predicted in the future using machine learning in combination
with readily available data such as satellite VIs, rainfall data, and dates.

3. Results

Animals were heavier in the second year of the trial, but had less daily LWC (p < 0.05)
compared to year one (Table 3). The large range in the LW of over 750 kg (Table 3) was due
to the presence of bulls, cows, and calves (data not shown). The yearly average of VIs was
similar amongst years, although the maximum values of the mean study area were higher
in year two compared to year one (Table 3). The VI with the largest coefficient of variation
was reported for BI, followed by VREI and CIr, and the variability was greater in year 2
compared to year 1 (Table 3).

Table 3. Summary statistics for beef cattle performance and vegetation indices from Sentinel-2
satellite imagery measured across the two-year period.

Variable Mean Std Dev Minimum Maximum CV

Year 1 Live weight change (kg/day) 0.28 1.15 −9.07 8.14 414.2
Live Weight (kg) 380.29 115.67 36.26 797.53 30.46

NDVI 0.17 0.04 0.12 0.24 21.5
NDRE 0.13 0.03 0.10 0.18 21.2

EVI 0.14 0.03 0.11 0.19 18.6
CIr 0.36 0.11 0.24 0.58 30.9

VREI 0.03 0.01 0.02 0.05 28.9
BI 0.06 0.03 0.02 0.10 43.8

Year 2 Growth rate (kg/day) 0.07 1.00 −9.18 9.08 1440.2
Live Weight (kg) 404.77 98.03 44.12 835.04 24.2

NDVI 0.16 0.05 0.10 0.28 32.4
NDRE 0.12 0.04 0.08 0.20 33.0

EVI 0.13 0.05 0.08 0.25 39.4
CIr 0.35 0.14 0.22 0.66 40.5

VREI 0.04 0.02 0.02 0.07 46.2
BI 0.07 0.06 −0.04 0.13 86.6

The LWC over both years of the trial reached the maximum values early in the wet
season in January and their lowest values at the end of the dry season in October and
November (p < 0.001; Figure 2). However, the LW reached its maximum before the start of
the dry season in July and its minimum at the end of the dry season in November (p < 0.001;
Figure 2).
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The temporal changes in VIs showed an increase during the wet season (Figure 3).
The VIs peaked in the middle of the wet season in February and March, coinciding with
the greatest LWC, except for BI, which showed a decline with the onset of the wet season,
as bare soil areas began to grow pasture with the onset of the rain (Figure 3). In contrast,
the lowest values for all VIs, except for BI, reached their lowest point in the dry season,
coinciding with the lowest LWC of the year (Figure 3). It was clear that the LWC of
animals mirrored that of changes in VI, despite slight lags in the LWC after increases in VI,
signifying the importance of VIs in the changes to animal LWC through the years.
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There were significant relationships between all VIs and the LWC of cattle (p < 0.001;
Table 4). Regression coefficients for all VIs except BI showed positive values (p < 0.001).
Each unit increase in VIs resulted in an LWC increase by up to 33 kg in VIs such as VREI
(Table 4). Similarly, a value of zero for all VIs except BI corresponded to the weight loss of
the animals reflected in a negative intercept (Table 4).

Table 4. Linear mixed-effect regression models of vegetation indices and live weight change of
grazing cattle calculated from Sentinel-2 satellite imagery in both experimental years.

Year Vegetation Index
Intercept Regression Coefficient

Estimate ± SE p-Value Estimate ± SE p-Value

Year 1 NDVI −0.34 ± 0.06 <0.001 4.44 ± 0.10 <0.001
NDRE −0.96 ± 0.06 <0.001 10.82 ± 0.13 <0.001

EVI −0.77 ± 0.06 <0.001 8.54 ± 0.13 <0.001
CIr −0.84 ± 0.06 <0.001 3.36 ± 0.03 <0.001

VREI −0.72 ± 0.06 <0.001 33.19 ± 0.36 <0.001
BI 1.41 ± 0.06 <0.001 −16.46 ± 0.12 <0.001

Year 2 NDVI −0.84 ± 0.07 <0.001 6.61 ± 0.05 <0.001
NDRE −0.94 ± 0.07 <0.001 9.79 ± 0.07 <0.001

EVI −0.66 ± 0.07 <0.001 6.71 ± 0.05 <0.001
CIr −0.75 ± 0.07 <0.001 2.76 ± 0.02 <0.001

VREI −0.57 ± 0.07 <0.001 22.23 ± 0.17 <0.001
BI 0.71 ± 0.07 <0.001 −7.56 ± 0.05 <0.001

Machine learning random forest modelling results predicted the growth of breeding
cows using leave-one-month-out cross-validation from VIs, rainfall, day, month, and year
of the trial period, with an LCCC of 0.62 when testing with LOMOCV (Table 5). The density
plot of the observed vs. predicted LWC showed that many points were poorly predicted;
however, a higher density of points fell along the 1:1 line (Figure 4).
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Table 5. Validated model statistics for machine learning model predicting live weight change of
breeding cows from vegetation indices, date, and rainfall under extensive conditions.

R2 * LCCC * RMSE (kg) Bias

0.44 0.62 0.67 −0.02
* LCCC—Lin’s concordance correlation coefficient; RMSE—root mean squared error.

The assessment of the model variable importance suggested that CIr was the most
important predictor of the LWC in the random forest model (Figure 5). This was followed
by the BI index and day of the year. Rainfall and VREI shared similar importance as
predictors, followed by the month of the year. Less important predictors of the LWC were
NDRE and NDVI, suggesting benefits of certain VIs compared to others in the ability to
predict the LWC in extensive grazing conditions.
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4. Discussion

The present study looked at the relationship between several VIs derived from Sentinel-
2 and the LWC of cattle with linear mixed-effects models in a commercial breeding herd
in northern Australia. It also used machine learning to create a predictive model of the
LWC in breeding cows from a suite of VIs along with date and rainfall. To the author’s
best knowledge, this was the first study to show the relationships between these variables
in extensive commercial beef breeding operations using remote sensing technologies.

On the one hand, this knowledge could be used to predict the growth rate of cattle
from satellite imagery, which is of importance to manage livestock production systems,
including nutrition and fertility [35,36]. On the other hand, the fact that this information
can be collected in near-real time and remotely with the set of technologies used in the
present study, supports the hypothesis that the approach can be used to help in making
more informed and timely decisions regarding animal management. Such decisions could
involve the time to start and finish feed supplementation and the amount to be provided,
the weaning time and age of calves, and paddock changes where possible [8]. For example,
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if the weight loss could be predicted by the VI the month before, early management
interventions could include the onset of supplementary feed prior to weight loss, or the
weaning of calves earlier than planned in a breeding system. Similarly, stocking rates
could be modified based on predictive modelling, with potential for productivity gains
as well as improved animal welfare. These results could also have substantial impact
on rotational grazing systems, where predictions of the LWC and pasture availability
are of high importance. This could also increase the productivity of breeding herds by
determining threshold values beyond which negative impacts on production and animal
welfare could occur, such as excessive weight loss and the survival of animals. However,
further research is needed to determine these thresholds under multiple environmental
conditions and management practices.

The strong relationships between VIs and animal performance demonstrate the im-
portance of vegetation quality and quantity in extensive production systems. Despite the
broad range of studies in which machine learning has been utilised for beef [37–39] and
dairy cattle [40], to date, there are no studies which incorporate the use of VIs to explain
the LWC of animals under commercial conditions of northern Australia. In addition to the
VIs presented, other VIs were also used in the preliminary analysis, but not included in
the paper due to their low correlation with the LWC. These included the Canopy Chloro-
phyl Content Index (CCCI) [41], Modified Soil-Adjusted VI (MSAVI) [42], Normalized
Difference Moisture Index (NDMI) [43], and Modified Chlorophyll Absorption Ratio Index
(MCARI) [44]. Furthermore, CIr seemed to be the most suitable VI to predict animal
performance due to its greatest importance in the random forest model.

The machine learning predictive modelling dataset only included breeding cows, with
bulls and calves removed from the data. This was because the objective of the predictive
model was to predict the growth for breeding cows in a given month, so sufficient live
weight data were necessary to ensure this model was a robust prediction of the LWC.
However, results from linear mixed-effects models included the whole herd data with bulls
and calves. The aim of the linear mixed-effects models was to establish whether there
were relationships at the herd level with the VI. Since there were significant relationships
with VIs and herd data, the presence of only cows with sufficient live weight data would
only enhance the strength of these relationships with the VI. It is important to point out
that the association between VIs and the LWC could also have been affected by other
factors affecting energy and nutrient demands of the animals, including the lactation status,
weaning, and feed supplementation, amongst others.

It was clear that cows responded with an increasing LWC immediately after weaning
in October and November, and before rainfall and pastures started to green up, suggesting
that the lactation status may be more important in affecting the LWC than the pasture
biomass and availability and, indirectly, the VI. Interestingly, VIs were higher in the second
wet season of the trial, which experienced a higher rainfall, even though cow live weight
gains and the LW were lower than the first year. There could be several reasons for this, and
one possible explanation is the lack of wet season phosphorus supplementation in year 2.
Phosphorus supplementation during the wet season is critical to maintain the growth rate
and fertility of cattle in northern Australia due to deficiency in soils and vegetation [45,46];
therefore, demonstrating that there may be other factors influencing cow LWC.

Satellite imagery enabling predictions of vegetation quantity and quality are not
new [47], and their roles in agriculture have been proven useful, for example, for estimating
crop health and productivity [17,41,48], and the forage quantity of grasslands alike [49,50].
However, results of the present trial relating VIs with important profit drivers in the cattle
industry, such as animal performance, added considerable value to the information that
satellite data can provide. The predictive modelling was applied under these conditions
specific to this region and at this time. It is important to note that the independent variables
of the predictive model and the parameters presented in the present study may not be
applicable to other regions or operations. For example, regions with a larger variation in
VIs such as more arid areas may show stronger associations with the LWC. Measuring the
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relative importance of other variables in each production system would also be important
to quantify in future, to enable more robust predictive modelling in future research.

Traditionally, the productivity of extensive beef breeding operations in northern
Australia has been measured through weaning or branding percentages (number of calves
branded or weaned from every 100 cows exposed to a bull). It has previously been noted
that new technologies could enhance the productivity and profitability in beef breeding
herds of northern Australia [8,51]. This study offers an approach which utilises technology
linking cattle production with potential indicators such as VIs and, hence, could also be
linked to reproduction and calf loss [6]. However, further research on the use of this
information to predict, monitor, and improve the reproductive performance and cow and
calf survival is needed. Importantly, the present study emphasizes the broad range of
factors which may contribute to calf loss and the overall productivity of a breeding herd.
With further research, the predictive information that VI has on the LWC of animals in
extensive grazing systems could provide an alternative method to predict the risk of calf
and cow loss and reproductive efficiency.

Improvements to this study may include a longer-term assessment of the relation-
ship that VIs and, hence, pasture quality and availability have on breeder productivity
such as the weaning rate and cow growth rate over multiple years and locations. This
statement was supported by the findings that the regression coefficients linking the VI
and performance were different between years and amongst the different VIs calculated.
Larger datasets could mean that the industry may be able to use VIs as a tool to estimate
productivity at any point in time in relation to the stocking rate. Drawbacks of the present
study included the use of only one paddock with one group of animals and one location
over two years. Rainfall data were taken from approximately 50 km away from the trial
paddock. Although this was a significant distance, this was the most complete rainfall
dataset available for this research. This was also an accurate reflection of the many remote
cattle stations and the difficulties in obtaining accurate site-specific rainfall data to conduct
modelling and an analysis such as that implemented in this study. Future research should
consider including more site-specific rainfall data.

Further studies showing the impacts of cow LW and LWC on calf survival and preg-
nancy rates may also help to consolidate the importance of pasture availability in beef cattle
management under extensive commercial conditions. In addition, future research may also
include the quantification of the LWC with and without dry season supplementation with
urea-based supplements, and wet season phosphorus supplementation. The interaction
between feed supplementation and VIs may help to refine supplementation strategies and
quantify the impact on the LWC and LW of cows under extensive grazing conditions.

5. Conclusions

The present study supported the hypotheses that the remote monitoring of tropical
rangelands with satellite imagery can be used to calculate VIs, which are associated with
the LWC and LW of cows in commercial grazing conditions. Machine learning models
allow the prediction of the LWC in breeding cows from satellite VI, date, and rainfall data.
The combination of satellite imagery and automatic remote weighing of animals offers a
tool to monitor and manage animals in near-real time under extensive grazing conditions
and a further investment and development of these tools is encouraged. Longer term
data collection in different locations could help in developing robust tools and models
with applications in diverse conditions. However, the present study provides a frame-
work integrating multiple technologies for the remote monitoring of animals in extensive
conditions. A further investigation into the suitability of predictive modelling in various
regions to nowcast and forecast cattle live weight changes and other productivity indi-
cators from satellite-derived vegetation data could provide tools to improve land and
animal management.
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