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Abstract: Boulders on the seabed in coastal marine environments provide key geo- and ecosystem
functions and services. They serve as natural coastal protection by dissipating wave energy, and they
form an important hard substrate for macroalgae, and hence for coastal marine reefs that serve as
important habitats for fish. The aim of this study was to investigate the possibility of developing
an automated method to classify boulders from topo-bathymetric LiDAR data in coastal marine
environments. The Rødsand lagoon in Denmark was used as study area. A 100 m × 100 m test
site was divided into a training and a test set. The classification was performed using the random
forest machine learning algorithm. Different tuning parameters were tested. The study resulted in
the development of a nearly automated method to classify boulders from topo-bathymetric LiDAR
data. Different measure scores were used to evaluate the performance. For the best parameter
combination, the recall of the boulders was 57%, precision was 27%, and F-score 37%, while the
accuracy of the points was 99%. The most important tuning parameters for boulder classification
were the subsampling level, the choice of the neighborhood radius, and the features. Automatic
boulder detection will enable transparent, reproducible, and fast detection and mapping of boulders.

Keywords: topo-bathymetric LiDAR; machine learning; random forest; habitat mapping; boulders

1. Introduction

The seabed surface in the Danish waters is diverse regarding abiotic as well as biotic
features and functions (e.g., [1–3]). The seabed surface geodiversity, i.e., the variety in
seabed surface geology, geomorphology, and substrate, is relatively high in Danish waters
as a result of the composition of the seabed surface being a combination of a drowned glacial
landscape with subsequent and ongoing marine and coastal processes. Accordingly, seabed
substrate displays a broad spectrum of soft and hard substrates, including areas specifically
designated as stone reefs [4,5]. In coastal environments, stone reefs and boulders act as
natural coastal protection, e.g., by dissipating wave energy [6], whereby they provide
valuable geosystem services in relation to reducing coastal erosion and coastal hazard risk.

The seabed surface in the Danish waters also displays a high biotic diversity in terms
of flora and fauna. An investigation in the southern part of Kattegat identified 67 different
species of algae and 167 different animal species within an area of only 4 m2 [7]. Marine
animals live, hide, and feed in areas with algae and seaweed growing on hard substrates.
Hence, stones on the seabed form an important environment for ecosystems, and stone
reefs are considered as important habitats in the Habitat Directive Annex 1 [8]. It has been
estimated that ~10,500 km2 of the Danish seabed comprise stone reefs [4,5]. This estimate is
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based on existing geophysical data in combination with ground truthing data from GEUS’
marine database MARTA (www.geus.dk, accessed on 15 December 2018).

In specific areas of the Danish waters, stones have been removed from the seabed
by so-called stone fishing. These stones were used for coastal constructions of dams and
harbor piers. Stone fishing stopped in 1999 in Denmark, and it has been illegal since 2009 [9].
Stone fishing destroys the stone reefs and associated ecosystems. Besides, bottom trawling
using large trawls and wires can also move stones and destroy stone reefs [7]. Knowledge
about the seabed stones (as a hard substrate habitat), their distribution, and spatial extent
is an important measure for reef protection and preservation of reef ecosystems. Valuable
knowledge of stone reef locations and conditions can be obtained by mapping existing
stone reefs, which is also useful for stone reef restoration, and creation of new stone reefs [2].

There is no international common agreement on a quantitative definition of a stone
reef with respect to stone size and areal coverage in percentage. The Danish definition
of a stone reef is an area with over 25% stones, or an area with >10% adjacent to an area
with >25% stones [10]. The most common type of stone reef in Denmark consists of stones
originally transported by glaciers and subsequently transported and/or exposed by marine
and coastal processes, while seabed consisting of hard bedrock is rarely found in Denmark.

Stone reefs can be identified by mapping the seabed with remote sensing systems
and/or with direct visualization. Usually, seabed habitat mapping is based on vessel-
borne geophysical surveys using single- and/or multibeam echo sounding in combination
with side-scan sonar imaging and sub-bottom profiling. Video documentation, photos,
and sediment samples are acquired from remotely operated underwater vehicles (ROVs),
divers, or vessels for verification of geophysical mapping [2]. However, full spatial coverage
mapping of coastal areas using vessel-borne acoustic systems is a challenging task due to
vessel draft limitations in shallow water. Moreover, acoustic measurements with vessel-
borne multibeam echo sounder (MBES) systems cover only narrow swathes in shallow
waters, which makes full coverage mapping in such areas expensive and time consuming.
Side-scan sonar provides seabed imagery in 2D, also with limited spatial coverage in
shallow waters. Besides, objects near nadir are difficult to identify unless a 50% overlap
is achieved, which is time consuming and may not be economically feasible [11]. On the
other hand, divers only collect point data for an area within their visual domain.

An alternative approach for coastal seabed mapping is using airborne LiDAR tech-
nology. Recently, topo-bathymetric LiDAR (green wavelength of 532 nm) has made it
possible to derive high-resolution digital elevation models (DEMs) of the bathymetry in
coastal zones [12,13]. This technology has successfully been utilized to cover the transition
zone between land and water, and the time used in data acquisition is far less than with
vessel-borne methods [14]. However, the LiDAR data processing still requires manual
decision steps, which makes it rather time consuming and, to some extent, subjective and
unrepeatable. The amount of subjectivity in topo-bathymetric LiDAR data processing
is continuously decreasing, and improvement in the performance is an ongoing process.
Different machine learning approaches have been evaluated to automate the processing
steps (e.g., [15,16]).

One of the major challenges in remote sensing is to classify topographic and bathymet-
ric data. A meta-study [17] about classification methods used in satellite-based land-cover
mapping demonstrated that the parametric maximum likelihood classifier was the most
commonly used approach deployed in over 32% of the studies, even though machine
learning methods were routinely found to have notably higher accuracies. This could be
due to fewer implementations of advanced algorithms such as traditional ones in conven-
tional remote-sensing image-processing software packages [17]. The general definition of
interpretable machine learning is the use of machine learning models for the extraction of
relevant knowledge about domain relationships contained in the data. Here, knowledge
is relevant if it provides insight for a particular audience to solve a specific problem [18].
Machine learning covers many different approaches to automatically extract information
from data. Different machine-leaning algorithms have been applied to LiDAR point cloud
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data (combined height and intensity data) for land-cover classification [19]. Ref. [20] ex-
amined different machine learning approaches for boulder detection in a coastal marine
environment using MBES data. The best standalone result was obtained when an object-
based random forest method was used. Recent studies have confirmed random forest
as a valid machine learning approach for benthic habitat mapping [21]. In [22], stony
areas were detected from hydroacoustic data, and automated stone detection is under
development. Ref. [23] used the random forest machine learning model for coastal marine
habitat mapping based on point cloud data from MBES to detect underwater vegetation.
They derived predictive features from the native MBES point cloud in a similar manner
to terrestrial LiDAR data analysis. The results were very promising, with an accuracy of
87–96% [23].

Random forest machine learning creates decision trees from a set of features and a
predefined classification. Reference [24] tested the performance for different numbers of
trees on different datasets and suggest selecting a number of trees between 64 and 128.

As the use of machine learning for habitat classification is increasing quickly, the
use of topo-bathymetric LiDAR data is growing rapidly at the same time [25]. Obtaining
clean bathymetry data from topo-bathymetric LiDAR data without outliers and correcting
for refraction is still a challenging process [26]. Different machine learning approaches
have been evaluated for habitat mapping, or to derive clean bathymetric data, including
refraction correction [15,16].

Benthic habitat mapping using machine learning on data from topo-bathymetric
LiDAR is a new field, where different machine learning models have been tested [27].
Ref. [27] found that the random forest model yielded the best results in accordance with
other studies. However, most habitat mapping with topo-bathymetric LiDAR data is
carried out on DEMs and not directly on the point cloud [27]. Few point-cloud studies
have been made, in which all different kinds of elements on the seabed were found (e.g.,
boulders, vegetation, shipwreck) [28] and not a single habitat, such as boulders. So far, the
random forest algorithm has not been applied to topo-bathymetric LiDAR point clouds for
detecting a single habitat type.

In this study, we aim to develop an automated approach to directly map stand-alone
boulders from point clouds derived from topo-bathymetric LiDAR data. The objectives are
(1) to process the LiDAR data to generate a point cloud containing only seabed data, (2) to
develop a machine learning algorithm for automated boulder detection, (3) to identify the
most important tuning parameters and features for boulder detection, and (4) to evaluate
the results using relevant performance scores. The study site is the shallow-water Rødsand
lagoon in Denmark. It provides an optimal area to study the applicability of our approach
on the boundary between land and sea (see Figure 1). The study site was divided into a
training and a test area with similar geometrical characteristics.



Remote Sens. 2021, 13, 4101 4 of 25

Figure 1. (a) Rødsand lagoon with flight lines (green lines). Images: Copernicus Sentinel data
2021, processed by ESA, Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping,
Aerogrid, IGN, IGP, swisstopo, and the GIS User Community; (b) DEM of the study strip with
1 m × 1 m resolution; (c) DEM of the study area in the northern part of the lagoon, the square defines
the training/test area of 100 m× 100 m outlined in the text and the resolution is 1 m× 1 m. Projection
is in ETRS89 UTM Zone 32N with units in meters.

2. Study Site

The Rødsand lagoon is located at the southern coast of Lolland and Falster in southern
Denmark, adjacent to the Fehmarn Belt in the western Baltic Sea (Figure 1). The narrow
strait Guldborgsund connects the lagoon to the northern part of the inner Danish waters.
The lagoon is approximately 30 km × 10 km; it is semi-enclosed by a barrier spit and two
barrier islands [29]. The water depths range down to 4 m in the western part and down to
8 m in the eastern part of the lagoon. The lagoon is a Natura 2000 and RAMSAR area [30].

The landscape of Lolland and Falster was formed by glacial processes during the
Weichselian glaciation [31]. The moraine landscape is made of a WNW–ESE oriented ridge
and runnel morphology aligned in the direction of ice shield propagation during the final
stages of the glaciation. The adjacent seabed in the lagoon has a similar origin, containing
boulders. After deglaciation, a number of sandy barriers formed on top of the elevated
ridges of the drowned moraine landscape [32], and the lagoon was established behind
those. The seabed of the lagoon is subject to shallow marine and coastal processes.

Wave processes form the barriers between the Rødsand lagoon and the open water.
The sediments comprising the barriers stem from wave-driven onshore transport of sand
from the shoreface and alongshore supply of sand from the adjacent coasts by littoral
drift [31,33].

The lagoon exhibits a microtidal environment with a mean tidal range of 0.1 m, and
tidal currents are very small. The driving forces of the water exchange between the lagoon
and the inner Danish waters are basin-scale flushing and meteorological forcing. These
driving forces lead to water level fluctuations, which cause flow circulation in the lagoon.
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The salinity of the water in the lagoon is about 10–20 PSU. These brackish conditions
are caused by the exchange of brackish water from the Baltic Sea and salty water from
Kattegat [34]. Waves in the lagoon are fetch limited. The low to moderate waves and
currents generate bed shear stresses that can cause bed erosion and suspended sediments
in the water column. The latter increases the turbidity of the water.

The top layer of marine sediments in the lagoon is very thin, and the wave-driven
processes in the lagoon lead to sediment erosion, transport, and deposition, which may
bury the boulders in some areas while exposing the boulders in others.

The seabed contains marine habitats in the form of stone reefs and sandbanks that
are suitable as physical foundation for flora, as algae and eelgrass meadows, to grow and
flourish provided other environmental parameters are suitable. These habitats serve as
food supplies, homes, and hiding places for marine life. Stone reefs were mapped as part
of the FEMA baseline studies in relation to the Fehmarnbelt Fixed Link [35], and presented
also as part of the marine habitat mapping of the inner Danish waters [1]

3. Materials and Methods
3.1. Surveys and Instruments

LiDAR data and RGB images for orthophoto generation were collected by Airborne
HydroMapping GmbH (AHM) during a survey on 7 September 2015 (Figure 1a). The
weather conditions were of clear sky and average wind velocities of 6–7 ms−1 (DMI,
Weather archive).

A twin-engine aircraft (Tecnam P2006T) was used as flight deck with a laser scanner
(VQ-880-G, RIEGL LMS) integrated in the frontal part of the aircraft. The laser scanner
emits a green laser pulse with a wavelength of 532 nm and a pulse repetition rate of up to
550 kHz. The flight altitude was 400 m, which, combined with a laser beam divergence of
1.1 mrad, yields a laser beam footprint of ~0.4 m.

Aerial images were acquired with an RGB camera (Hasselblad H/39, focal length of
35 mm) integrated in the back of the aircraft. The ground sampling distance (GSD) of the
RGB images is ~8 cm at a flight altitude of 400 m. The RGB images showed the reflection
from the water and could not serve as ground truth data.

The position and altitude of the aircraft were recorded with a GNSS/IMU navi-
gation system at a rate of 256 Hz, consisting of a compact GNSS antenna (NovAtel
42G1215A-XT-1-1-CERT) mounted on top of the aircraft and an IMU (IGI AEROcontrol-IIe)
integrated on top of the laser scanner.

The laser scan pattern is circular, with an incidence angle of 20◦, generating curved
parallel scanlines with a swath width of ~400 m at a flight altitude of 400 m. The point den-
sity is ~20 points/m2 at a flight altitude of 400 m and a flight speed of ~80 kn (~150 km/h).
According to the sensor manufacturer, the typical water depth measuring range of the
VQ-880-G is about 1.5 Secchi depth. The laser scanner system records full waveform data.
Intensity information is provided for each returned signal. For each returned signal, the
collected LiDAR data contained the following information: xyz coordinates, GPS time
stamp, amplitude, reflectance, return number, and laser beam deviation [14,36].

3.2. Topo-Bathymetric LiDAR Data Processing

The post-processing steps were carried out using the software RiProcess by RIEGL
LMS, and the software HydroVISH developed by AHM (Figure 2). The flight trajectory
was calculated using the software packages Aerooffice and GrafNav and incorporating
correction data of continuously operated GPS base stations. RiProcess was used for deter-
mining the boresight calibration parameters between IMU and laser scanner prior to the
data collection, and for strip adjustment after the data collection [14].
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Figure 2. Workflow of the data processing described in the text. Abbreviations: RP = RiProcess, H = HydroVISH,
AM = ArcMap, M = Matlab.

It is necessary to distinguish between points in the water column and points on the
seabed, both for detecting objects on the seabed and for performing refraction correction of
all points below the water surface. Refraction correction is necessary due to different light
velocity in air and water (Figure 2, part 1). The differentiation between seabed and water
points was performed first by considering and computing attributes, such as classification,
clustering (density), GPS time (time stamp), intensity, last return, number of returns,
PointSourceID (strip number), positions (xyz coordinates), and return number. The point
density is utilized to ascribe points to certain clusters. For this, the point cloud is further
divided into fragments containing clusters to facilitate the data handling. The clusters are
then used to remove flaw echoes, especially below the seabed, while a preclassification is
carried out to distinguish between seabed and water points.

A triangular mesh representing the water surface was generated based on neighbor-
hood analysis, point density, and the water surface encircling line (equal to water edge line).
The encircling line was derived by creating the concave hull of the point cloud using alpha
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shapes. The refraction correction for the remaining points below water was calculated
using the water surface mesh after the removal of flaw echoes (see [14]).

3.3. Manual Classification of Stones on Training and Test Areas

Boulder and non-boulder points need to be classified in the training set and the test
dataset. This is manually performed by using RGB orthophotos from the geoDanmark
database (Figure 2, part 2) from eight different years: 2006, 2008, 2013, 2015, 2016, 2017,
2018, and 2019 (cf. Table 1). Small black dots that can be either vegetation or boulders, and
white dots that can be boulders above water, reflections from the camera, or sea spray were
identified on these orthophoto images. All black and white potential boulders were marked
in each photo using ArcMap. Since the accuracy of the georeferencing of the orthophotos
improved significantly over the years (cf. Table 1), the precise locations of these points
might be different on each orthophoto. Thus, we defined a buffer zone around the potential
boulders depending on the uncertainty of the georeferencing of each photo. The orthophoto
dataset obtained in 2019 was decided to serve as the base line from which uncertainty in
georeferencing can be estimated. Fixed points on objects such as houses about 1 km away
from the 100 m× 100 m training/test area were used for the georeferencing uncertainty test.
For this, the distance was calculated between these fixed points identified in the different
photos and the corresponding points of the 2019 dataset, where the longest distance was
set to represent the uncertainty. A minimum boulder size of 40 cm diameter was used due
to the minimum object size resolved in the LiDAR (footprint size) and the minimum dots
size measured in the orthophotos. The buffer zone for each dataset was calculated using a
stone radius of 20 cm and adding the georeferencing uncertainty (Table 1).

Table 1. Orthophoto properties.

Year Quality Pixel
Uncertainty (m)

Georeferencing
Uncertainty (m) Buffer Zone (m) Used

2019 + 0.10 0 (reference) 0.20 Yes

2018 + 0.10 0.12 0.32 Yes

2017 + 0.10 0.30 0.50 Yes

2016 + 0.10 0.35 0.55 Yes

2015 + 0.10 1.40 1.60 Yes

2013 + 0.10 1.40 1.60 Yes

2010 − 0.10–0.20 − − No

2008 + 0.10–0.20 1.40 1.60 Yes

2006 + 0.10–0.40 1.80 2.00 Yes

2002 − 0.40 − − No

1999 − 0.40 − − No

1995 − 0.80 − − No

1954 + 0.25 9.60 9.80 No

Separating potential boulders from vegetation on the photos was performed by as-
suming that vegetation spots may change their position from year to year, while boulders
are stable and show no positional changes over the years, but they could be covered due to
sediment transport and deposition. A point was classified as boulder if potential boulder
points from three different years were located inside the same buffer zone or in overlapping
buffer zones. The classified boulder locations from the orthophotos were subsequently
detected in the LiDAR point cloud. Boulder locations that are evident in the orthophoto,
but cannot be identified in the point cloud, were disregarded.
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3.4. Stone Detection Using Machine Learning
3.4.1. Features

To create input for the machine learning algorithm (Figure 2, part 3), three spec-
tral features (calculated from intensity), five relative position features (calculated from
depth), and six geometric features (calculated from the covariance matrix) were determined.
Neighborhood analysis was used for feature calculation and the search size was set to a
radius of 0.5 m, 1 m, 2 m, or 3 m, respectively. Some of the features were calculated in
two different neighborhoods (0.5 m and a larger radii), which resulted in a total set of 19
features (Table 2).

Table 2. Features and neighborhood radius.

Features Radius
0.5 m

Radius
1.0 m

Radius
2.0 m

Radius
3.0 m Single Value

Spectral features - - - - -

Intensity - - - - x

Std intensity x x x x -

Mean Intensity x x x x -

Relative position features - - - - -

z - - - - x

Std z x x x x -

Mean z x x x x -

dz x x x x -

dp - x x x -

Covariance features - - - - -

Linearity x - - - -

Planarity x - - - -

Sphericity x - - - -

Omnivariance x - - - -

Anisotropy x - - - -

Change of curvature x - - - -
x represents used neigbourhood sizes for each feature.

The radius of 0.5 m was chosen as the minimum radius due to the laser footprint size
of 0.4 m. The small radius allows to recognize the boundaries between stone and non-stone
points, and therefore the geometrical differences between the stones and seabed. Only
points with at least four neighbor points within the area of the radius were selected (Table 3).
The larger radii were chosen to detect geometrical differences in areas containing multiple
stones and areas without stones. The radius of 3 m is sufficient to cover entire boulders,
and therefore differences between areas with and without boulders are recognized. By
testing with only the small radius and with a large radius of 1 m, 2 m, and 3 m radius, a
sensitivity analysis was performed to define the appropriate radius.

The data were imported and visualized from the custom-built lasdata.m [37] func-
tion in Matlab, and the feature extraction algorithm was inspired from the custom-built
estimateNormal.m [38] function by using the built-in Matlab functions cov(), eig(), and
KDTreeSearcher.

The LiDAR sensor retains the signal amplitude of the returned echo, where the
intensity is the strength of the reflected signal [39]. The mean of the intensity was calculated
for all neighborhoods as well as the standard deviation. The depth to the seabed points as
z coordinate was measured with reference to the Danish Vertical Reference level (DVR90;
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mean sea level). The elevation change dz is the difference in z of the point and the lowest
point in the neighborhood, and it was calculated for all neighborhoods as well as the mean
and the standard deviation of the depth.

Table 3. Orthophoto properties.

Neighborhood
Radius Size (m)

Points in
Neighborhood

Minimum

Points in
Neighborhood

Maximum

Points in
Neighborhood

Average

Points
Excluded (%)

0.5 4 23 10 0.23

1.0 4 46 19 0.002

2.0 6 91 34 0

3.0 8 134 50 0

The best-fitting plane of the neighborhood was calculated from the neighborhood
points using the built-in Matlab function pcfitplane. The distance between the point and
the plane (Dp) was only calculated for the neighborhoods of the larger radii, because the
small neighborhood did not contain enough points to fit a reasonable plane. The Matlab
function pcfitplane fits a plane to a point cloud that has a maximum allowable distance
from an inlier point to the plane. The function returns a geometrical model that describes
the plane [40]. The distance used for this calculation was 0.1 m. The equation for the plane
is determined by the pcfitplane function in the form of

Ax + By + Cz + D = 0 (1)

where (x,y,z) can be all points that constitute the plane and fulfil the equation, the vector A
B
C

 is the normal to the plane and D =

 A
B
C

·(x0, y0, z0), where (x0, y0, z0) is a

specific point on the plane.
The distance between the plane and the point cloud point was then determined from

the equation:

dp =
| Ax1 + By1 + Cz1 + D |√

A2 + B2 + C2
(2)

where (x1, y1, z1) are the coordinates of the point, to which the distance is calculated, and
A to D are the values from the plane equation.

The geometrical distribution of the point cloud is described by tensor field analysis.
The representation of anisotropic characteristics such as linearity, planarity, and sphericity
was determined for each point in the point cloud by calculating the geometric derivatives
in the local neighborhood. This was carried out by calculating the covariance matrix and
the eigenvalues of the diagonalized matrix:

cov(A) =
∑N

i=1(Ai − µA)× (Aj − µA)

N − 1
(3)

where N is the number of observations in the neighborhood, A contains all observations in
the neighborhood, and µA is the mean of the observations.

The eigenvalues were calculated according to:

cov(A)·vi = vi × λi (4)

where v is the eigenvectors and λ is the eigenvalues, λ1, λ2, and λ3.
The resulting distribution characteristic of the point and the surrounding points in the

neighborhood is represented as an ellipsoid, where the eigenvalues define the proportions
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of each dimension (Figure 3). The ratio between the values describes how well the points
resemble a line, a plane, or a sphere [41].

Figure 3. Ellipsoid representation of relationship between sphericity, linearity, and planarity
(after [41]).

The local neighborhood included all points in a sphere with a 0.5 m radius around each
point of the point cloud. The eigen-features were calculated by choosing the eigenvalues
as λ1 ≥ λ2 ≥ λ3 > 0. Linearity describes points on a line and is high if λ1 is much larger
than λ2 and λ3. By calculating the linearity, it can be determined how much the points
in the area constitute a line (Figure 4a(1)). The linearity is 1 if the points lie on an exact
line, while it is 0 if the distribution is completely random. Planarity describes how well
the points constitute a plane (Figure 4a(2)). The planarity is high if λ1 and λ2 are near the
same size, while λ3 is much smaller. Sphericity describes how well the points constitute
a sphere (Figure 4a(3)). The sphericity is high when all three λ values have almost the
same size. Omnivariance describes the geometric mean of the eigenvalues. It describes
how much the semi-minor axis differs from the semi-major axis of the ellipsoid defined
by the eigenvalues. It describes if the average point density in all directions is high or low.
Anisotropy describes whether the points are distributed in a specific direction, or if they
are randomly distributed. The change of the curvature describes the degree of bending of a
curved line or a plane and is the derivative of the curvature (Figure 4b) [23,42,43].

All features outlined above were calculated for each point in the point cloud. All
feature values were subsequently centered by subtraction of the mean value of each feature
and normalized using minimum–maximum feature scaling to avoid predefined feature
preferences prior to the tuning process in the random forest algorithm (Figure 2, part 3).

3.4.2. Random Forest Automatic Stone Detection

Random forest is a machine learning model creating decision trees from a set of
features and a predefined classification. The algorithm creates trees by randomly choosing
between the features and their values. To avoid overfitting, the most likely class for the
classification is chosen from a subset of randomly generated trees. The classification is
made by using the most represented class for all trees [44].

The used random forest model is point-based. Each boulder can consist of several
boulder points, and the mentioned features are calculated for each of those points using
the values from the surrounding points in the neighborhoods. The in-built Matlab function
TreeBagger was utilized for the stone detection. Bootstrap-aggregated decision trees were
created by using a random subset of predictors for each decision split in each tree as in the
common random forest algorithm [45]. A new training set was developed with a random
set of features for each node in each tree. Features were chosen from the original feature
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set but with replacement, so that the same feature can be represented multiple times in the
new training set. For each node, the same number of features were represented, but not all
features. Two split criteria were evaluated: standard CART and curvature. The standard
CART algorithm selects the split predictor that maximizes the split-criterion gain over all
possible splits of all predictors [45]. For the CART criterion, the best splitting value was
found by Gini impurity [46].

Figure 4. (a) Visualization of (1) linearity, (2) planarity, and (3) sphericity (after [43]). (b) Equation for linearity (Lλ), planarity
(Pλ), sphericity (Sλ), omnivariance (Oλ), anisotropy (Aλ), and change of curvature (Cλ).

The curvature criteria select the split predictor that minimizes the p-value of chi-square
tests of independence between each predictor and the response [45].

The 100 m × 100 m study area (Figure 1) was divided into a training and a test set by
a diagonal line across the area to avoid large geometrical differences and to have a similar
heterogeneity in the two areas (Figure 2, part 3). The random forest algorithm was used on
the test set with features calculated for the small neighborhood radius of only 0.5 m, and
with both 0.5 m and a large neighborhood radius of 1 m, 2 m, and 3 m.

The 100 m × 100 m area contained nearly 255,000 points, of which about 2000 points
(0.8%) were classified as boulder points. The dataset is imbalanced with a large overrep-
resentation of non-boulder points. Combinations of subsampling and classification cost
were tested to avoid the algorithm’s tendency to classify as non-boulder points. Randomly
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distributed non-boulder points were selected along with all boulder points. Different
datasets were created with a ratio between boulders and non-boulders of 1:1–1:12 and 1:343
(all the points).

An equivalent classification cost was used, weighting boulder points to be equally as
important as the overrepresentation of non-boulder points. All features calculated from the
0.5 m radius, 0.5 m, and 1 m radius, 0.5 m and 2 m radius, and 0.5 m and 3 m radius were
individually tested for all subsampling/weighting levels and with the two split criteria.
These tests yielded 104 different combinations. The results were evaluated using the
F-score, by which the best radius/subsampling combinations were found (Figure 2, part 3).

The feature importance score was determined for the best radius/subsampling com-
binations using the feature selection Matlab function: OOBPredictorImportance. The
function was used to detect the order of the out-of-bag feature importance, and it calculates
the out-of-bag permuted delta error, which is the error for the prediction when all values
for one feature are permuted compared to using the correct values for all features. This
error was calculated for each feature. By using enough trees for the TreeBagger algorithm,
the feature importance value will no longer depend on each created tree. For this process,
10,000 trees were created (Figure 2, part 3).

3.4.3. Performance and Accuracy Assessment

Statistical measures were applied to evaluate the performance. The predicted data
points fell into four categories, for which the performance was evaluated from: TP = true
positive, FP = false positive, TN = true negative and FN = false negative. These categories
were used to describe the performance of the model. However, different performance
measures were found depending on how the categories were handled. Accuracy indicates
the percentage of correctly classified points. However, with an imbalanced dataset, the
accuracy can be good even though the model is not able to predict any stones correctly.
Therefore, other additional measures are required. Cohen’s kappa coefficient evaluates
whether the predicted result has occurred by chance. The precision shows the percentage
of the predicted boulder points that are classified correctly. The recall gives the percentage
of correct boulder points that are predicted. The F-factor is the harmonic mean between
the recall and precision, considering both measures [47]:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

κ =
2× (TP × TN − FN × FP)

(TP + FP)× (FP + TN) + (TP + FN) · (FN + TN)
(6)

True negative rate
(

Acc−
)
=

TN
TN + FP

(7)

True positive rate
(

Acc+
)
=

TP
TP + FN

(8)

G−mean =
(

Acc− × Acc+
)0.5 (9)

Weighted accuracy = βAcc+ + (1− β)Acc− (10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

f− score = 2 Precision
Recall

Precision + Recall
(13)

Balanced accuracy =
Acc− + Acc+

2
(14)
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All these performance measures are point-based. They determine the accuracy of each
boulder point even though each boulder consists of several points. A cluster analysis was
further utilized to determine how well the model is suited to detect each boulder. The
Matlab clustering algorithm, i.e., the density-based spatial clustering of applications with
noise (DBSCAN), was used to group the points from each boulder. All non-boulder points
were removed, and only the boulder points were clustered. The algorithm was used to
group the points from each stone. All boulder points are part of a cluster, while only one
point is sufficient to constitute a cluster. The algorithm detects clusters with a high density
of points from a neighborhood defined by a radius. By using the algorithm on the test
set with the manually classified boulder points, a minimum and maximum radius were
determined, which created exactly the same clusters as the boulders in the test set. The
average of these two radii was used as radius for the DBSCAN algorithm.

The detected boulders in the predicted set were coupled with the boulders in the
verified set. By comparing the equivalent clusters in the predicted and verified sets, the
percentage of overlapping points was determined, and it was used to evaluate the success
in boulder detection. A 50% overlap between predicted and verified points was found to
be sufficient. This corresponds to situation a (Figure 5a), which would be determined as a
predicted boulder, while it would not be determined as a predicted boulder in situation b
(Figure 5b).

Figure 5. Blue is verified boulder points and red is predicted boulder points. (a) A 50% overlap of the predicted boulder
points. (b) Less than 50% overlap of the predicted boulder points.

The clusters in the verified and in the predicted set were used to determine the recall,
precision, and F-score for the boulders by determining the number of correctly predicted
boulders (I), the number of predicted boulders (S), and the number of boulders in the test
set (T).

4. Results
4.1. Manually Classified Boulder Points

The potential boulders identified on the orthophotos from 2006 to 2019 are indicated
in Figure 6a, including uncertainty buffers (Table 1). They exhibit a decrease in uncer-
tainty from 2.0 m in 2006 to 0.2 m in 2019. The resulting spatial distribution of boulders
(Figure 6b) was determined by assuming that any overlapping buffer zones in three sub-
sequent years constituted verified boulders (cf. Section 3.3). The locations of the verified
boulders are visualized in the seabed point cloud, where the individual seabed points
constituting boulders are shown in black, while the non-boulder seabed points are shown
in orange (Figure 7b).
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Figure 6. (a) Potential boulders from orthophoto mapping with buffer zones. (b) Boulders found from three overlapping
buffer zones. Red dots are boulders used for machine learning and white dots are boulders that were not used for machine
learning. Projection is in ETRS89 UTM Zone 32N with units in meters.

4.2. Features in the Training and Test Set

Figure 8 shows the results for calculating the three spectral features (a), the five
relative position features for different neighborhoods (b), and the six covariance features
for 0.5 m neighborhood (c) (cf. Section 3.3). Very few points were removed in the feature
calculation due to a minimum number of only four points in the neighborhood (cf. Table 3).
Some large-scale patterns in the signal, showing geometrical or structural (material/color)
variations for the entire area, are visible in the intensity, mean intensity, std intensity
(large neighborhood), Z, mean Z (larger neighborhood), and omnivariance; while small,
separated dots are evident on std intensity, Z, dZ, mean Z (small neighborhood), std Z, and
omnivariance.

4.2.1. Boulder Density and Size—Subsampling and Radius

Features were calculated with different subsampling levels, neighborhood sizes, and
split selectors, resulting in 104 different combinations (cf. Section 3.4.2). The F-score
was used to evaluate subsampling/neighborhood combinations for both split selectors.
Subsampling level 7 was best when only using the 0.5 m radius, while subsampling level
10 was best for the 1 m and 2 m radius, and subsampling level 11 was best for the 3 m
radius (Figure 9). The curvature split predictor was the best split predictor (comparison
Figure 9a,b). Based on the F-score evaluation, the case with no large radius is best, and the
2 m large radius is second-best (Figure 9b).

4.2.2. Feature Selection

The most relevant features were the standard deviation of the depth, the standard
deviation of the intensity, and the mean of the depth (Figure 10). The spectral and relative
position features were the most important groups, while the geometric features were least
important. From the first two groups, the least relevant features were dz for the 0.5 m
radius, distance to plane, and intensity.
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Figure 7. (a) Point cloud of the study area colored by depth. (b) Point cloud with boulder (black)/non-boulder (orange)
classification divided into training set (left half) and test set (right half). Projection is in ETRS89 UTM Zone 32N with units
in meters.

Figure 8. Cont.
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Figure 8. Features in the area: (a) spectral features, (b) relative position features, and (c) covariance features.

The best threshold for feature selection uses the F-score that was calculated using only
the single best feature, then the two best features, and so on up to all features. For both
radius/subsampling situations, the best result was found based on all features. However, a
threshold was found using only the first three features for radius 0.5 m and subsampling 7
(Z std 0.5 m, Z mean 0.5 m, and intensity std 0.5 m; Figure 11a). For radius 0.5 m and 2.0 m
at subsampling 10, a threshold was found by using the seven best features (Z std 0.5 m,
Z std 2.0 m, intensity std 0.5 m, intensity std 2.0 m, Z mean 0.5 m, Z mean 2.0 m, and dz
2.0 m; Figure 11b).
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Figure 9. F-scores and performance scores. (a) F-score for all radii with all split predictors. (b) F-score for all radii with
curvature split predictor. (c) Recall and precision for radius 0.5 m. (d) Recall and precision for radius 0.5 m and 2 m.
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Figure 10. Estimates of feature importance for (a) radius 0.5 m with subsampling 7, and for (b) radius 0.5 m and 2 m with
subsampling 10.

4.3. Boulder Prediction Using Random Forest

The best random forest result depends on subsampling level, choice of large radius,
the selected features, and the predictor selection algorithm. In the curvature prediction
algorithm, only radius 0.5 m was chosen to determine the best subsampling level, which
was 7 (Figure 12a) and with all features (Figure 12b). Good results can still be obtained by
using only the best three features. The second-best result was achieved using curvature,
radius 0.5 m and 2.0 m, and subsampling 10, as well as all features (Figure 12c). Using only
the best seven features still yielded good results.

4.4. Performance and Accuracy Assessment

Performance scores were calculated for the best two results using point-based (Table 4)
and object-based (Table 5) analysis. A radius of 2 m was used for the clustering analysis
due to a minimum and maximum radius of 0.6 m and 3.4 m (cf. Section 3.4.3). The best
result with radius 0.5 m, subsampling level 7, and curvature split selector had a point-based
recall (R) of 23%, precision (P) of 32%, and F-score of 27%, while the object-based recall
was 57%, precision 27%, and F-score 37% (Tables 4 and 5). The second-best result with
radius 0.5 m and 2 m, subsampling level 10, and curvature split selector had a point-based
recall of 22%, precision of 36%, and F-score of 27%, while the object-based recall was 43%,
precision 21%, and F-score 28% (Tables 4 and 5).
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Figure 11. Test of all best feature thresholds for (a) radius 0.5 m and subsampling 7 and (b) for radius 0.5 m and 2.0 m and
subsampling 10.

Figure 12. (a) Boulder and non-boulder points for test set using subsampling level 7. (b) Predicted boulders with random
forest using radius 0.5 m and 2.0 m and subsampling level 10, all features; (c) predicted boulders with random forest using
radius 0.5 m and subsampling 7, all features.
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Table 4. Accuracy assessment with different performance scores for point-based analysis.

Radius
(m)

Subsampling
/Cost

Predictor
Selection

P
(%)

R
(%)

F-Score
(%)

TPR
(%)

TNR
(%)

G-Mean
(%)

Acc
(%)

W-Acc
(%)

Balanced
Acc (%)

Cohen’s
Kappa

0.5 1:7/7:1 Curvature 32 23 27 23 100 48 99 33 62 0.27

0.5 and
2.0 1:10/10:1 Curvature 36 22 27 22 100 46 99 29 61 0.27

R = recall, P = precision, TPR = true positive rate, TNR = true negative rate, Acc = accuracy.

Table 5. Accuracy assessment with different performance scores for object-based analysis.

Radius (m) Subsampling/Cost Predictor Selection R (%) P (%) F-Score (%) I S T

0.5 1:7/7:1 Curvature 57 27 37 12 44 21

0.5 and 2.0 1:10/10:1 Curvature 43 21 28 9 43 21

R = recall, P = precision, I = intersection (number of correctly predicted boulders), S = system (number of predicted boulders), T = truth
(number of boulders in the test set).

5. Discussion
5.1. Evaluation of Methods to Identify Boulders and Verified Boulder Points

Automated procedure yields reproducible results. The input data for an automated
machine learning procedure are crucial for algorithm performance. Two steps are necessary
to generate classification input data for a 3D point cloud: (1) the verification of boulder
positions, and (2) marking of boulder points in the point cloud. For this, the identification
of boulders from orthophotos is faster and less expensive than in situ boulder detection in
the field from diving or video imaging. However, exposure, overturning, and migration of
boulders may introduce errors in the boulder verification in the orthophoto images.

Ref. [48] concluded that exposure of cobbles and boulders from glacial till by erosion
is the main driver for stone habitat dynamics. However, the timescale in their study was of
decades. The study area in this work has similar bed sediments and wave heights as in [48],
but boulders could be more susceptible to sediment transport in the present study area
due to the shallow water depth conditions in Rødsand lagoon. Yet, it is unlikely to find
boulders exposed after 2015, though two boulders that were identified only on orthophotos
after 2015 may have been unexposed prior to 2015. In [48], overturning and migration
occurred only to cobbles, but not to boulders. The definition of boulders applied by [48]
is 60 cm, instead of 40 cm, as used in the present study following the Udden–Wentworth
grain size classification. However, the identified boulders are generally larger than one
meter in the present study. In [48], the overturning of cobbles occurred instantaneously
after storm events. Shallow water depth or difference in boulder size classification could
cause overturning to happen for boulders in Rødsand lagoon during storm events.

The misclassification of boulder and non-boulder points in the point cloud will lead to
errors in the prediction. Some of the identified boulders were difficult to extract in the point
cloud. In such cases, the points were classified as non-boulders. This category contains all
different types of non-boulder points, e.g., algae, eelgrass, or sand.

The exclusive classification of boulders (>40 cm) and the exclusion of cobbles (<40 cm)
from the classification can affect the results. Predicted stone points in areas without
boulders may be due to the presence of smaller stones, which were too small for correct
identification in the orthophotos dependent on the image resolution.

5.2. Evaluation of Selected Training Area

A 100 m × 100 m area was chosen as test and training set due to data amount and
processing time. The separation of the training and test set affects the prediction. The
algorithm performance is best in areas with similar depth and seabed properties as in the
training set. A diversity in the properties of the training set improves the model to predict
boulders better in different settings. The choice of the test set affects the evaluation of the
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algorithm. A test set of very similar characteristics to the training set can yield good results,
while the algorithm may perform worse in areas that are differing from the training set.
Therefore, the diversity of the classification area needs to be considered when defining the
training and test sets.

One way to ensure the diversity of the training set is to use the same area as training
and test set. Using random points distributed over the area for the training set and other
random points for the test set results in a very diverse training set [23]. If more than one
point represents the same boulder, this approach can lead to one boulder represented in
both the test and training set, so that the points in the training and test set have very similar
properties. In this case, the evaluation is good but not representative. Therefore, separate
training and test sets were set up in this study. An area with boulders, sand, and vegetation
was selected to ensure the diversity in both sets with similar distributions.

5.3. Prediction Errors and Possible Algorithm Improvements

Vegetation cover and geometrical irregularities appear in the lower right and upper
left corners of the test set. The prediction is poorer in these areas compared to areas where
boulders are exposed on a bare sandy seabed. This difference in algorithm performance
is probably due to clearer distinguished feature properties between sand and boulders
than between vegetation and boulders. Smaller stones in vegetated areas can also lead to
prediction errors.

Ref. [49] applied a probability threshold approach to predict boulders and non-
boulders. In the random forest standard setting, the splitting probability between two
classes is 50%. A probability threshold analysis can be applied as an additional tuning
parameter after radius, subsampling level, and feature selection.

5.4. Performance Evaluation

The evaluation of the prediction depends on the choice of the performance measure
for the random forest model. A standard accuracy measure evaluating all boulder and non-
boulder points as equally important can lead to a high accuracy with no predicted boulder
points at all, in the case of an imbalanced dataset. The purpose of the prediction is relevant
for the choice of the performance measure. The importance of predicting all boulders
(recall) or of avoiding prediction errors (precision) requires specific consideration. In this
study, the purpose is to detect boulder locations. Therefore, predicting non-boulder points
are irrelevant and the accuracy is an irrelevant measure despite the very high measure
score. Thus, we chose the F-score as the most important measure, because it takes both
recall and precision into account.

The most relevant features are the mean and the standard deviation of the depth
(neighborhood radius 0.5 m and 2.0 m), the depth change (neighborhood radius 2 m), and
the standard deviation of the intensity (neighborhood radius 0.5 m and 2.0 m). Furthermore,
the derivatives of the depth and intensity data are more important than the depth and
intensity data itself. This may be due to the fact that distinguishing between boulder and
non-boulder points requires knowledge about the change of feature properties between
boulder and non-boulder points. The difference between feature values for boulder and
non-boulder points is not sufficient for the model. This could be due to derivatives being
more sensitive to changes than the values themselves. None of the geometric covariance
features were of relevance for the boulder prediction. This can be due to the geometrical
diversity in the boulder appearance compared to other habitats, such as submerged aquatic
vegetation [23] or sandbanks showing more uniform geometric characteristics.

5.5. Processing Time and Upscaling

The TreeBagger algorithm is the most time-consuming part of the point-based analysis.
The time depends on the number of trees and the number of points for the analysis and
the computer power. For the 100 m × 100 m area in this study, the time consumption
was minutes to hours, depending on subsampling level and number of trees. The size
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of the area was chosen so that all points could be processed without subsampling and
still not reach the maximum level of Matlab memory. If the maximum level of Matlab
memory is reached, the processing velocity will be reduced significantly, and the process
is difficult to run. This problem could be solved by using a random forest algorithm in
another programming language such as Python. Using a low subsampling level, e.g., 7,
which led to the best result in this study, enables upscaling the area.

5.6. Boulder Dynamics

Mapping stone reefs in the same area over years makes it possible to detect potential
changes in the stone reefs, which is requested in relation to the EU MSFD with loss
and disturbance of seafloor integrity [50]. For decades, cobbles and boulders have been
seen as immobile and stable. However, new studies show how natural dynamics of
boulders and cobbles need to be considered in the marine habitat mapping directives [48].
Ref. [51] observed boulders in the western Baltic Sea for 22 years, and they noticed that,
despite stone fishing in the area until 1974, the number of boulders had increased in
the observation period. The study concludes that natural processes of boulder exposure
should be considered in regeneration of marine habitats. Exposure of boulders depends
on abrasion rate, which is dependent on water depth, wave climate, and resistance of the
glacial till against erosion [48]. Climate change and, especially, sea level rise can affect the
distribution of macroalgae living on hard substrate [52]. To preserve ecological stability
and the functioning of ecosystems, it is important to study the dynamics in the coastal areas
by observing how the climate affects the stone reefs and the vegetation on hard substrate.

6. Conclusions

We developed a semi-automated method to map boulders from topo-bathymetric
LiDAR point cloud data. First, the LiDAR data were processed to generate a point cloud
containing only seabed information by an unsupervised classification of the point cloud
without any manual classification correction of seabed points. Second, a random forest
machine learning algorithm was developed for automated boulder detection. Third, the
most important tuning parameters for the random forest algorithm were the subsampling
level, the choice of the neighborhood radius, and the choice of features.

The best combinations for boulder prediction in the study area were (i) subsampling
level 7, neighborhood radius 0.5 m, all features and curvature split selection algorithm, and
(ii) subsampling level 10, neighborhood radius 0.5 m, and 2.0 m, all features and curvature
split selection algorithm. For the parameter combination listed in (i), a threshold can be
set by using the best three features, which are Z std 0.5 m, Z mean 0.5 m, and intensity std
0.5 m. For the parameter combination listed in (ii), a threshold can be set by using the best
seven features (Z std 0.5 m, Z std 2.0 m, intensity std 0.5 m, intensity std 2.0 m, Z mean
0.5 m, Z mean 2.0 m, and dz 2.0 m).

Fourth, the results were evaluated using performance scores. For the best parameter
combination (i), the recall of the boulders was 57%, precision 27%, and F-score 37%, while
the accuracy of the points was 99%. For the best parameter combination (ii), the recall of
the boulders was 43%, precision 21%, and F-score 28%, while the accuracy of the points
was 99% with a kappa coefficient on 0.27.

Automatic boulder detection will enable transparent, reproducible, and fast detection
and mapping of boulders. Furthermore, it will allow to detect potential dynamics of
boulder assemblages and stone reefs over time. Quantification of the spatial distribution of
boulders and boulder sizes, as well as their dynamics, will also provide valuable knowledge
in relation to stone reef management and restoration.
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