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Abstract: This article discusses the process of creating a digital forest model based on remote sensing
data, three-dimensional modeling, and forest inventory data. Remote sensing data of the Earth
provide a fundamental tool for integrating subsequent objects into a digital forest model, enabling
the creation of an accurate digital model of a selected forest quarter by using forest inventory
data in educational and experimental forestry, and providing a valuable and extensive database
of forest characteristics. The formalization and compilation of technologies for connecting forest
inventory databases and remote sensing data with the construction of three-dimensional tree models
for a dynamic display of changes in forests provide an additional source of data for obtaining new
knowledge. The quality of forest resource management can be improved by obtaining the most
accurate details of the current state of forests. Using machine learning and regression analysis
methods as part of a digital model, it is possible to visually assess the course of planting growth,
changes in species composition, and other morphological characteristics of forests. The goal of digital,
interactive forest modeling is to create virtual simulations of the future status of forests using a
combination of predictive forest inventory models and machine learning technology. The research
findings provide a basic idea and technique for developing local digital forest models based on
remote sensing and data integration technologies.

Keywords: digital modeling; geomodeling; remote sensing data; forest inventory data; regres-
sion modeling

1. Introduction

Digital geomodeling of forests is the next step in developing displays of spatial–
temporal forest data. Forestry requires improvements in forest management quality, as
well as in the information about forest resources. Detailing a specific forest object by
displaying its certain subject-true properties is one of the elements of improving the quality
of information display. Chinese scientists introduced the idea of digital forestry [1], and
the concept of the synergistic application of computationally demanding quantitative
methodologies and information technology was proposed.

Thematic forest maps, forest management plans, afforestation plans, and inventory
descriptions are now the key elements of spatial data visualization of Russia’s forest
management system. However, this information, in its technical form, only provides broad
forest information and features. The formation of new models for making management
decisions has been described in various studies [2–5]. When a person completes a forest
inventory task, the subjective aspect must be considered when evaluating taxation features.
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The forest inventory stand is the smallest accounting unit in a forest inventory; it is a
uniformly composed and shaped item that does not represent a precise number of trees
in a stand, impacting the correct evaluation of forests. When analyzing a forest inventory
stand, it is difficult to address the following issues:

1. How to determine the number of trunks and species diversity of trees within a forest
inventory unit with a complex structure—the fundamental goal of forest inventory is
to determine the correct number of trunks and various tree species, since this impacts
the plantation material and monetary worth.

2. How the trees are exactly located in space—this can aid in the division of forests
into territorial units (forest stands), as well as the development of forest roads and
other linear (power transmission lines, railways, highways) and nonlinear (forest park
(recreational) zones. It will also aid in the use of nontimber forest products, which are
materially justified in comparison to timber products under Russian conditions.

3. How the underlying surface or forest type can be displayed—the categorization of
forestry helps us to identify which forest felling technique may be used in a particular
forest stand and to indirectly determine the stand’s production and quality (quality
and marketability class).

Various forms of forest modeling and their features have now been described in
research papers due to modern technological advancements. Creating an accurate digital
forest model will help forestry professionals to more carefully approach the process of forest
analysis [6–8], and models based on remote sensing data will allow forestry specialists
to answer higher-level questions. Today, complicated, multi-parameter issues are solved
using digital simulation methods. Detailed modeling will help enhance forest resource
management quality by allowing professionals to examine, evaluate, and organize data on
a specific forest area: a model object [9–12].

Before software and hardware development and the general improvement in computer
performance, the presentation of precise and comprehensive geographic forest information
was not possible. Computer processing power was also insufficient to provide three-
dimensional displays. At the present stage of the development of computer technology, it
is possible and urgently necessary to switch to refined and detailed representations of the
characteristics of forests for the digitalization of the economy. In this regard, developing
a model based on physical, morphological, and inventory data of forests has become
possible. The use of data from local digital forest models, a collection of natural forest
characteristics, aims to improve forest management and provide better knowledge of the
ecosystem features that flow in forests. Studies [13–15] have shown the fundamental ideas
of digital modeling, allowing us to apply their knowledge to our research.

The main stages of creating a model are the digital geomodeling of forests, which
includes processing of remote sensing data; creating and exporting a specific forest area
(forest inventory stand, block); creating a three-dimensional model of a forest area; drawing
objects in a selected area; creating site relief on the elevation map; filling it with attributive
data. These are essentially the first and most important steps in creating a digital forest
model. The maximum number of physical characteristics simulated in the software envi-
ronment should be reflected in a comprehensive digital forest model. This will allow for
the most in-depth analysis of forest dynamics and for the identification of novel patterns
of mutually influencing factors [16–19]. The silvicultural features of the modeling object
(forest type, forest inventory characteristics, and specific sizes of tree species) should be
displayed in the improved digital forest model. The model may be parameterized and
improved by being continually filled with dynamic properties and presenting climatic
factors in real-time.

2. Study Area and Data

The object of our research is Russia’s oldest training and experimental forest, located in
Tosnensky District, Leningrad Oblast, a part of the St. Petersburg State Forestry University
named after S. M. Kirov, with an open forest area of 122 ha in quarter 1 (block No. 196)
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(Figure 1). We selected this site due to being the most diverse in structure and composition,
based on visual interpretation of remote sensing data and its complex spatial structure of
tree arrangement, making the subsequent modeling process interesting. Notably, forest
inventory descriptions of these quarters were completed in 2005, allowing for further use
of these data in the development of a digital forest model.
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Figure 1. Selected study object.

We selected block 196 as the subject of our modeling; this is a diverse area with
forested sections and parts where trees have been felled. The materials were collected
using an open web-mapping service (the high conservation value forest (HCVF) mapping
service supported by the World Wildlife Fund (WWF)). We used images with high spatial
resolution. To determine the boundaries of the forest block, data from Google Earth and
from the HCVF service provided by Scanex were used. The provider of remote sensing
data with an open license is Digital Globe. The pictures were taken in the summer of 2013,
the resolution of the satellite is 0.6 m, and the synthesis is natural colors (RGB).

The technology of the modeling process consisted of the implementation of the main
stages of study. The main steps are the following:
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1. Importing data into a graphics environment;
2. Identifying the area covered by forest and creating a weight map;
3. Fixing the capture points of the location of trees in space;
4. Implementing and overlaying primary tree models;
5. Combining remote sensing data and three-dimensional objects;
6. Developing a detailed forest model based on the first created model.

3. Materials and Methods

The graphic editor Blender was used as a tool for processing and creating a dynamic
map. The data were imported to the 3D editor Blender. The initial design step was to
create the UV mapping. The absence of major hydrological objects in the specified area
of the site facilitated modeling. In the forest management system, developed woodlands
are divided into quarters, with each quarter serving as an administrative-territorial unit.
UV mapping can be performed with a clean square. As the digital forest model will be
an administrative-territorial unit, the selected region was restricted and fragmented to
implement stage 1 (Figure 2).
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Figure 2. Result of image import and UV mapping: (a) selected area; (b) localized part.

Blender has a UV transform function; UV transform or unfolding in three-dimensional
graphics (UV-map) is the correspondence between the coordinates on the surface of a
three-dimensional object (X,Y,Z) and coordinates on a texture (U,V). The U and V values
usually range from 0 to 1. We proceeded to create a weight map using UV transform after
refining and selecting the forest-covered area.

The simple geomodeling object shape allowed us to subdivide the surface using the
Subdivision Surface tool. The number of cuts was 101. When using the Scales to distribute
trees, this value is required for the most accurate results. The surface was divided into
subdivisions, yielding 42,000 vertices, allowing for the most precise arrangement of tree
species in space.

The next step in the study was to use remote sensing data to disperse trees in space
as precisely as possible. Therefore, we constructed a heat map in the 3D editor: a map of
weights. (Figure 3). The weight map clarified the overlapping regions of individual objects,
allowing the element of a false overlay of an object that extended beyond the permitted
fragment borders to be excluded. The weight map also helped us to determine the areas
where vegetation should be placed. Subsequently, the scale map allowed the formation of
three-dimensional trees on the area where the tree species actually grew, with their exact
positioning. Previous studies developed technologies for the three-dimensional modeling
of plants based on the information obtained by remote methods [20–23].
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Figure 3. Creating a weight map of a forest quarter.

After constructing the weight map, we proceeded to place objects by superimposing
tree coordinate point features from map A1 (Figure 3) over point features from modeled
region B1 (Figure 4). The technology for capturing trees was previously described [24–26]
(Figure 5). To locate an individual tree, a point identification method was used, and an
ID number was manually assigned to each individual tree by the operator on the model
substrate in Blender. Remote sensing data and our experience in decoding stands were
used to identify the species. Thus, we knew exactly how the trees should be placed across
the area, reflecting the actual tree position. These point features and gridding allowed us
to exclude tree placement deviation from their actual location in space. The weight map
also allowed an understanding of the uniformly shaped areas of the forest, which could
be helpful when creating the boundaries of forest inventory stands. Other authors [27–30]
noted the technological possibilities of applying both machine learning and remote sensing
data processing methods to classify vegetation and obtain forest ecological information.
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Figure 5. Forest model before the integration of remote sensing data.

The next step was to add tree species models. Setting a criterion for describing the
presentation of objects based on the multiscaling of the model to conserve computational
resources is a superior method to improve the model operation. This condition is also
necessary since, in the case of the remote work with a model, the detailed features of each
tree do not need to be presented. The model can be split into two parts: distant and close
models. The model prior to the integration of remotely sensed data shows the exact location
of trees (Figure 5). Initially, it was necessary to create several tree species models with no
gradation by age class. Then, a refined model with parameterized features was created.
Among the main species in block No. 196, we singled out the economically significant
species for which there were data from the 2005 forest inventory. The main tree species
were pine, spruce, and birch.

When we incorporated the remote sensing data background, an overlay of two types
of data appeared: graphical data and data from remote sensing materials. The final model
(Figure 6) showed a more dynamic visual-graphics shape, making it easier to observe and
control the forest quarter. Despite the more dynamic display of the results of the two types
of integrated data, this model did not yet display the third type of data, the inventory
characteristics of the stand, which would make the model more realistic. In terms of their
logical content, these types of models are close to digital simulators, which are actively
being developed in the field of information technology and science [31–33].

The last step was the integration of forest inventory data. The main technological
task of this process was to connect three different types of data: the remote sensing data,
which serves as a substrate for accurately displaying tree models; the graphic models of
individual trees that precisely correspond to the spatial arrangement of objects; the forest
data of the Lisinsky training and experimental forest inventory conducted in 2005.
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4. Data Integration

To integrate forest inventory data, a technological chain of actions was established,
including creating a forest inventory database, establishing a connection between the
graphics objects of forest inventory allotments with a digital forest model, and developing
technology for dynamically visualizing forest inventory data in a digital forest model. The
main data types and the modeling process are shown in Figure 7.

The remote model was created in the Blender editor, the near model was created in the
Unity 3D environment, and the executable files were then imported into another system to
work with the model. We integrated the field forest inventory data into our model after
completing a full-fledged 3D model with ready-made three-dimensional objects for certain
tree species (in our instance, pine, spruce, and birch). This was the last step in creating a
remote three-dimensional model that has the following benefits:

(1) The model displays the exact location of individual trees using satellite imaging.
(2) An identification number (ID) and other forest indicators (for example, forest inven-

tory data and growth track data) can be assigned manually to each tree on a satellite
image and a 3D model because it was created based on a substrate from a satellite
image reflecting the natural geographic features of the spatial distribution of forests
using machine learning methods and, in particular, neural networks.

(3) By having the forest inventory data and the coordinates of the location of individual
trees, it is possible to display the course of plantation growth and even individual trees
over time in a 3D model, which allows creating a three-dimensional model, then using
forest growth models to observe how the forest develops, with the corresponding
process being displayed using a 3D model of the site.
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To display the change in forest inventory characteristics over time, regression models
were used to build a dynamic model of plantation growth rates. To accomplish this, we
developed numerous models based on data from the entire training and experimental
forestry inventory, using spruce as an example of heights and diameters. These data
can then be integrated into a digital forest model. A review of the technologies used in
forestry [34] showed that innovative forestry solutions are lagging behind in practical
implementation and widespread adoption.

For this purpose, it was possible to build several models based on existing species
in terms of heights and diameters using taxation data for the whole study area. For more
accurate long-term forecasts, machine learning methods can be used, for example, the
gradient boosting method [35–37].

To assess the reliability of the model, we propose an indicator of the digital forest
model reliability, G, calculated using

G =
N × P

S
× K (1)

As for indicators that determine the set of reliability, we define four fundamental
parameters that the projected model possesses (K, N, S, and P), where N is the number of
modeled species in the model; P is the quality factor of remote sensing data, determined
through the scale factor of the materials used in the model (Table 1); S is the size of the
forest modeling area; K is the number of trees in the model.
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Table 1. Accuracy factor according to material details.

Meters Resolution Scale of Application Accuracy Coefficient
(Conv. Units)

0.1–0.5 Extremely high resolution 1:500–1:5000 0.9
0.5–1.0 Very high resolution 1:5000–1:10,000 0.8

1–4 High resolution 1:10,000–1: 15,000 0.7
4–12 Medium resolution 1:15,000–1:25,000 0.6

12–50 Moderate resolution 1:25,000–1:10l,000 0.5

Since all of the elements in the digital model have fixed values, the confidence factor
is a deterministic indicator. One of the critical indicators on which the integration of 3D
modeling data is dependent is material quality. As a result, determining the correctness of
the materials on which the modeling will be performed is crucial; based on the resolution of
the materials, a scale of the accuracy of remote sensing materials from 0.9 to 0.5 is proposed.

The ID function was used to connect forest inventory data to three-dimensional objects;
it implies assigning a unique identification to each tree and the coordinates of the tree
location, which are linked in the forest inventory database structure (Figure 8). The range
of forest inventory box fields displaying the values of identifiers allows specifying the
interval of the values of the forest inventory box for displaying them in the model. The
advantage of the distant model is that the model characterizes and reflects the properties of
the stand by displaying a set of heterogeneous data when they are multiscaled and distant.
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Since the forest inventory database was already connected to the 3D model, it was
possible to add further information on how taxation indicators will change over time. This
allowed us, for example, to model the body of interest after a certain period and display
its intended appearance, maintaining the relevance of the data at sufficiently large time
intervals (especially when using machine learning methods) [38–41]. Compared with
LiDAR recording methods, this modeling method has several advantages:

(1) Lower cost of recording—in large countries such as the Russian Federation, it is
challenging to continually update forest data using LiDAR recordings. Creating 3D
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models of forest stands from a substrate using satellite imagery is a faster method to
model 3D maps.

(2) The LiDAR is recorded from aircraft, whereas the method proposed in this article
assumes only uses satellite images. This provides considerable flexibility when
selecting study sites, especially when exploring substantial forest areas, where LiDAR
recordings would require an extremely long time.

The second stage of the digital forest geomodeling stage was to detail the model; we
produced dynamic layers connected with remote sensing data. A dynamic layer is a type
of geospatial data (layer) that contains attributes and changes its characteristics according
to a provided algorithm. The formation of dynamic layers based on remote sensing data
will display important silvicultural parameters such as forest types. With the model, it will
be possible to observe how and under what conditions the indicators of the growing stand
change over time and with climate change. Retaining such information in the model, it will
be possible to observe dynamic changes. In the study, a detailed model of the forest stand
was built in the Unity 3D environment, demonstrating the possibility of implementing
digital forest models based on the first model built on the basis of remotely sensed data
(Figure 9).
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An essential task in developing the model was creating an environment for interaction
with the model and its functional features; to implement this task, intelligent geoinforma-
tion system technologies were used [42–44]. Designing a specialized system for working
with digital forest models should consider the features and tasks necessary for the decision
maker; such a system will be better adapted to the tasks of forestry specialists. To date,
some approaches have been developed for the design of this type of geographic information
system, a component of which is the processing of spatial–temporal information [45–47].

Notably, LiDAR recordings are more accurate for generating 3D models [48–51].
However, the question arises: is the highest accuracy so crucial given the higher complexity
and energy consumption of the LiDAR recording process? To answer this question, specific
goals and objectives for various types of research must be implemented. At the same
time, a digital forest model based on remote sensing data and obtained inventory data will
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allow us to determine the resources that need to be carefully managed, realizing the vital
ecosystem value of forests [52–55]. Despite the initial difficulties in building a forest model,
the peculiarity of organizing and preserving digital data allows us to improve, update, edit,
and fill the model constantly. Modern hardware and software tools can provide the ability
to display a valuable resource such as a forest, both on a small and large scale.

The final methodology for designing a visual digital forest model included eight
basic steps for performing sequential actions using data and model development tools
(Figure 10).

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 10. Methodology for developing a visual digital forest model. 

5. Conclusions 
In this study, we constructed a visual digital model of a forest that contains three 

types of primary data: remote sensing data, forest inventory data, and the data of 
three-dimensional tree models containing spatial–temporal relationships. The result is 
that we formed a method for constructing a visual digital model using software tools and 
remote sensing data, which displays the selected area in detail. Considering the techno-
logical developments and the increasing rate of computing power growth, it is possible to 
use the proposed local digital models of the forest to reflect the characteristics of forest 
dynamics, providing a convenient tool for managing a certain part of the forest. Using 
such models, forests can be selectively managed to obtain new knowledge, predict 
changes in forests, and visualize situational events occurring in forests. 

As a subject for further research, the constructed model can be improved using data 
mining technologies and machine learning procedures for building the model. The use of 
data mining will allow the analysis of the taxation characteristics simultaneously with the 
visualization of the selected area. The use of neural network technologies will allow for 
situational experiments to aid in the development of the stand in the future. It is espe-
cially important to use visual digital models as a tool for the demonstration and man-
agement of forests, considering the ongoing changes in forests. In further studies, we 
plan to include the mapping of climatic changes, the use of forest resources, and an in-

Figure 10. Methodology for developing a visual digital forest model.

5. Conclusions

In this study, we constructed a visual digital model of a forest that contains three
types of primary data: remote sensing data, forest inventory data, and the data of three-
dimensional tree models containing spatial–temporal relationships. The result is that we
formed a method for constructing a visual digital model using software tools and remote
sensing data, which displays the selected area in detail. Considering the technological
developments and the increasing rate of computing power growth, it is possible to use the
proposed local digital models of the forest to reflect the characteristics of forest dynamics,
providing a convenient tool for managing a certain part of the forest. Using such models,
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forests can be selectively managed to obtain new knowledge, predict changes in forests,
and visualize situational events occurring in forests.

As a subject for further research, the constructed model can be improved using data
mining technologies and machine learning procedures for building the model. The use of
data mining will allow the analysis of the taxation characteristics simultaneously with the
visualization of the selected area. The use of neural network technologies will allow for
situational experiments to aid in the development of the stand in the future. It is especially
important to use visual digital models as a tool for the demonstration and management of
forests, considering the ongoing changes in forests. In further studies, we plan to include
the mapping of climatic changes, the use of forest resources, and an increase in the number
of natural disasters that negatively impact forest ecosystems in the model.
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