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Abstract: Total Cloud Cover (TCC) retrieval from ground-based optical imagery is a problem that
has been tackled by several generations of researchers. The number of human-designed algorithms
for the estimation of TCC grows every year. However, there has been no considerable progress in
terms of quality, mostly due to the lack of systematic approach to the design of the algorithms, to the
assessment of their generalization ability, and to the assessment of the TCC retrieval quality. In this
study, we discuss the optimization nature of data-driven schemes for TCC retrieval. In order to
compare the algorithms, we propose a framework for the assessment of the algorithms’ characteristics.
We present several new algorithms that are based on deep learning techniques: A model for outliers
filtering, and a few models for TCC retrieval from all-sky imagery. For training and assessment
of data-driven algorithms of this study, we present the Dataset of All-Sky Imagery over the Ocean
(DASIO) containing over one million all-sky optical images of the visible sky dome taken in various
regions of the world ocean. The research campaigns that contributed to the DASIO collection took
place in the Atlantic ocean, the Indian ocean, the Red and Mediterranean seas, and the Arctic ocean.
Optical imagery collected during these missions are accompanied by standard meteorological obser-
vations of cloudiness characteristics made by experienced observers. We assess the generalization
ability of the presented models in several scenarios that differ in terms of the regions selected for the
train and test subsets. As a result, we demonstrate that our models based on convolutional neural
networks deliver a superior quality compared to all previously published approaches. As a key
result, we demonstrate a considerable drop in the ability to generalize the training data in the case of
a strong covariate shift between the training and test subsets of imagery which may occur in the case
of region-aware subsampling.

Keywords: total cloud cover; all-sky camera; algorithms assessment; neural networks; machine
learning; data-driven approach

1. Introduction

It is generally considered that clouds play one of the primary roles in climate by
mediating short wave and long wave radiative fluxes [1-3]. Clouds are also crucial for the
hydrological cycle on both a global and regional scale [4]. Cloud cover plays a vital role
in regulating climatic feedback and thus cloud cover may be exploited as a diagnostic in
sensitivity studies of climate models in different scenarios. Cloud cover variability over the
ocean is a key variable for understanding global and regional circulation phenomena and
modes of variability, such as monsoons, ENSO (El Nifio Southern Oscillation), Intertropical
Convergence Zone (ITCZ) shift, North Atlantic Oscillation (NAO), and Pacific Decadal
Oscillation (PDO). Clouds also strongly impact sea-air interactions in boundary currents
zones and upwelling zones [5,6].

Clouds also play a major role in various processes, like solar power production and
air traffic dispatching. In scientific observations, clouds may be unavoidable obstacles.
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In satellite observations, clouds mask land and ocean surface, thus significantly decreasing
the rate of useful satellite information about the surface in cloud-rich regions. In optical
observations in land-based astronomy, clouds are unavoidable obstacles as well [7,8]. Thus,
accurate estimating and forecasting of cloud characteristics is crucial for observational time
planning [9,10].

There are a number of data sources available for studies of clouds in the ocean. Among
the most frequently used are remote sensing archives, data from reanalyses, and observa-
tions made at sea from research vessels and voluntary observing ships. Each of these data
sources have their own advantages and flaws. Satellite observations may be considered
accurate, and they are uniformly scattered spatially and temporally, though their time
series are limited as they started only in the early 1980s [11-16]. Satellite measurements
are also characterized by different flaws, e.g., underestimating cloudiness over sea ice in
nighttime conditions [17] which may be significant in the Arctic. Data from reanalyses
is uniformly sampled as well. However, although the models applied in reanalyses for
diagnostic cloud cover estimation continuously improve, they need further development
and validation [17,18]. Reanalyses were shown to underestimate total cloud cover com-
pared to measurements provided by land-based weather stations, and observations over
the ocean [17,19]. A possible cause of this underestimation may be the overestimated down-
ward short-wave radiation that is taken into account within the computations for cloud
coverage [20]. It is worth mentioning, however, that in some particular cases reanalyses
may be consistent with meteorological stations data in terms of the low-frequency temporal
variability of cloud characteristics [21].

The best data source for climatological studies of clouds is the archive of observations
made from Voluntary Observing Ships (VOS) which are organized into the International
Comprehensive Ocean-Atmosphere Data Set (ICOADS) [22,23]. The very first visual ob-
servations at sea were made in the middle of the nineteenth century, though there were
not many before the twentieth century. Most studies use the ICOADS observations dated
from the early 1950s [24-26]. The change of cloudiness codes in the late 1940s [27] reduces
the validity of climatic studies relying on long-term homogeneity of the time series of
cloudiness characteristics over the ocean in the twentieth century. The key disadvantage of
the ICOADS records is their temporal and spatial inhomogeneity. Most observations are
made along the major sea traffic routes in the North Atlantic and North Pacific. In contrast,
the central regions of the Atlantic and Pacific are not covered by measurements tightly
enough. The Southern ocean coverage is poor as well [28].

Visual observations of clouds are considered the most reliable at the moment [29,30].
The observations over the ocean are conducted every three or every six hours at UTC
time divisible by 3 h. This procedure provides four or eight measurements a day per
observing ship. Observed parameters include Total Cloud Cover (TCC) and low cloud cover,
the morphological characteristics of clouds, and an estimate of cloud-base height. The total
cloud coverage is estimated by a meteorology expert based on the visible hemisphere of
the sky. To estimate the total cloud cover, the expert considers the temporal characteristics
of the clouds being observed along with their additional parameters, e.g., precipitation,
preceding types of clouds, light scattering phenomena, etc. For TCC retrieval, the observer
visually estimates the fraction of the sky dome occupied by clouds. This procedure is
described in detail in the WMO manual on codes [29], the WMO guide on meteorological
observations [31], and in the International Cloud Atlas [30]. The procedure for estimating
TCC involves making a decision on whether to consider the gaps in the clouds through
which the sky is visible as “sky” or as “cloud”. The decision is based on the cloud type.
For example, the gaps are countered as “clear sky” in the case of low clouds or convective
clouds, e.g., cumulus and stratocumulus clouds. In contrast, the sky gaps are not countered
as “sky” in the case of cirrus, cirrocumulus, and almost all sub-types of altocumulus clouds.
This feature of the TCC estimation procedure introduces uncertainty into the results of
automated TCC retrieval schemes.
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Cloud characteristics remain one of the few meteorological parameter subsets still
observed by experts visually whereas most of the other indices are measured automatically
today. The procedure is hard to automate due to the high amount of non-formalized rules
of thumb and heuristics that are learned by an expert as a result of long-term practice.
This way an expert estimating cloud characteristics adjusts their understanding of cloud
formation processes, relates them to the state of clouds theory, and learns how the observed
visuals correspond to the underlying physics dictated by the theory. The whole expert
experience results in a somewhat consistent measurement of quantitative characteristics
that are recommended by WMO as the most reliable source of information about clouds.
The flaws of the approach of visual estimation are: It suffers from subjectivity; the learning
curve mentioned above may result in biased estimates; and the approach itself is highly
time-consuming and requires massive human resources even today, in the era of Artificial
Intelligence and advanced computer vision.

In this study, we discuss mostly the problem of data-driven TCC retrieval, although
the classification of observed clouds is also an intriguing problem addressed in a num-
ber of studies employing data-driven methods along with expert-designed and fused
approaches [32-37].

1.1. On the Optimization Nature of the Known Schemes for TCC Retrieval from All-Sky
Optical Imagery

A number of automated schemes were proposed in last 20 years, beginning with
the pioneering work of Long et al. presented along with the optical package for the all-
sky imagery retrieval in 1998 [38] and described in detail in 2006 [39]. Since the first
scheme of Long et al., numerous variations of algorithms were described for estimating
some quantitative characteristics based on different in situ measurements such as all-sky
imagery [38,40-45] or downward short-wave radiation [46]. Most of these algorithms are
designed by experts integrating their own understanding of the physical processes that
result in all-sky imagery similar to the ones presented in Figure 1a,b.

Given all-sky imagery acquired, in most simple cases, an index is calculated pixel-
wise, e.g., red-to-blue ratio (RBR) in a series of papers by Long et al. [38,39,47] or in the
following studies [48-50], or the ratio g;—ﬁ in [42,43,51], or even a set of indices [52]. Then,
an empirical threshold is applied for the classification of pixels into two classes: “cloud”
and “clear sky”. A few schemes with a more complex algorithm structure were presented
recently [41,45,47,53,54]. These schemes were introduced mostly for tackling the flaw of
simple yet computationally efficient schemes: Taking the sun disk and the circumsolar
region of an all-sky image as “cloud”.

In contrast with the expert-designed algorithms for TCC retrieval, only a few data-
driven schemes have been presented lately for estimating TCC [55-57] or for clouds
segmentation in optical all-sky imagery [58]. Researchers may consider the problem of
TCC retrieval to be solved or to be too simple to address with complex machine learning
algorithms. However, none of the presented approaches demonstrated any significant
improvement in the quality of TCC estimation.

The only exception here is the method presented by Krinitskiy [57] which claimed to
achieve an almost human-like accuracy in TCC estimation. There is, however, an error at
the validation stage resulting in incorrect quality assessment. This study may be considered
a corrigendum to the conference paper of Krinitskiy [57].

At this point we need to note, that the so-called data-driven methods for the ap-
proximation of some variable (say, TCC) do not differ considerably from the ones that
are designed by an expert. An expert-designed method implies an understanding of the
underlying processes that form the source data (say, optical ground-based imagery) and
its features (say, relations between red, green, and blue channels of a pixel registering
clear sky or a part of a cloud). Then, these human-engineered features are used in some
sort of an algorithm for the computation of an index or multiple indices, which then are
aggregated over the image to a quantitative measure. The algorithm may be considered
simple [38,39,42,44,54], adaptive [45,53], it may be designed to be complex to some extent
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in an attempt to take some advanced spatial features into account [40,41,47,49,50], or in an
attempt to correct the distortion of imagery or other features of imagery that are not con-
sistent with the initial researcher’s assumptions [42,49,50,52]. However, all these methods
rely on the aggregation step at some point that is commonly implemented as a variation
of thresholding. The threshold value(s) is empirical and should be adjusted to minimize
the error of TCC estimates or maximize the quality of the method that is proposed in
the corresponding study. This adjustment stage is commonly described vaguely [49] or
briefly [39], though in this sense, the above mentioned expert-designed algorithms are
essentially data-driven and inherently have an optimization nature, thus the optimization
is a key part of the development of these schemes.

In case of the schemes employing Machine Learning (ML) methods [55-57], the algo-
rithms are inherently of an optimization nature since the essence of almost any supervised
ML algorithm is the optimization of empirical costs based on a training data set.

In the context of this study, the mentioned training dataset consists of ground-based
all-sky imagery with corresponding TCC estimates ("labels" hereafter). These estimates
were made by an expert in the field at the same time as the image was taken. It is worth
mentioning that this labeling procedure is subject to noise. There are multiple sources of
noise and uncertainties in labels and the imagery itself:

¢ Subjectivity of an observer. As mentioned above, the whole prior expert experience
may impact the quality of TCC estimates. The uncertainty introduced by a human
observer has not been assessed thoroughly yet. We can only hope that this uncertainty
is less than 1 okta (one eighth of the whole sky dome, the unit of TCC dictated by
WMO [29,30]), though from the subjective experience of the authors, the uncertainty
may exceed 1 okta when one scene is observed by multiple experts;

*  Violation of the observations procedure. Ideally, an expert needs to observe the
sky dome in an environment clear from obstacles, which may not always be the
case not only in strong storm conditions at sea, but even in the case of land-based
meteorological stations. In our study, every record made in hard-to-observe conditions
was flagged accordingly, thus no such record is used in the filtered training, validation,
and test datasets;

¢  Temporal discrepancy At,s between the time of an observation and the time of ac-
quisition of corresponding imagery. This time gap can never be zero, thus a decision
always needs to be made on whether At is small enough to be considered negligible,
and the expert records to be considered correct for the corresponding all-sky image;

*  Reduced quality of imagery. There is always room for improvement in the resolution
of optical cameras, their light sensitivity, and corresponding signal-to-noise ratio
in low-light cases (e.g., for registering in nighttime conditions). The conditions of
imagery acquisition may play a role as well, since raindrops, dust, and dirt may
distort the picture significantly and may be considered strong noise in source data;

*  Reduced relevance of the acquired imagery to the TCC estimation problem. It should
be mentioned that in storm and high waves conditions in the ocean, an optical package
tightly mounted to the ship may partly register the sea surface instead of the sky dome.
In our experience, the inclination may reach 15°, and even 25° in storm conditions.
This issue, along with the uncertain heading of the ship, also prevents the computation
of the exact sun disk position in an all-sky image;

*  Reduced relevance of the acquired imagery to the labeling records. Ideally, the TCC
labeling site should be collocated with the optical package performing the imagery
acquisition. This is not exactly the case in some studies [41].

All these factors may be considered as introducing noise to the labels or imagery of
the datasets that are essentially the basis of all the data-driven algorithms mentioned above.
The impact of these factors may be reduced by modifying the observation and imagery
acquisition procedures, or by data filtering. Some factors may be addressed by the releases
of more strictly standardized procedures for cloud observations, though the WMO guide
seems strict and straightforward enough [29,30].
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Figure 1. Examples of all-sky images acquired by optical package SAILCOP (Sea-Air Interactions Laboratory Clouds Optical

Package) (see Figure 2): (a,b) Typical all-sky imagery over the ocean; (c,d) rare cases (outliers) when an image represents a
scene with a bird or maintenance staff.

However, there are factors that are unavoidable, that were not mentioned above. Typi-
cal types of clouds and their amounts differ in various regions of the ocean. Typical states
of the atmosphere and its optical depth differ significantly as well, strongly influencing
the quality of imagery and its features. Statistically speaking, for the development of a
perfect unbiased TCC estimator within the optimization approach, one needs to acquire a
training dataset perfectly and exhaustively representing all the cases and conditions that are
expected to be met at the inference phase. This requirement seems unattainable in practice.
Alternatively, a data-driven algorithm is expected to have some level of generalization
ability, thus being capable of inferring TCC for new images acquired in previously unmet
conditions. The effect of significant changes in the source data is well known in machine
learning and in the theory of statistical inference as covariate shift. The capability of an
algorithm to generalize is called generalization ability. This ability may be expressed in
terms of discrepancy between the quality of the algorithm assessed on different datasets
within one downstream task.

1.2. On the Climatology of Clouds

Climatology of clouds shows a big difference between characteristics of clouds in
various regions of the world ocean not only in terms of total cloud cover, but in terms
of typical cloud types and their seasonal variability. In Aleksandrova et al. 2018 [28],
the climatology of total cloud coverage for the period of 1950-2011 is presented.

The climatology is based on ICOADS [22,23] data and limited to periods from January
to March, and from July to September. In the tropics, the average TCC varies from 1.5 to
3 okta, whereas the average TCC in the middle latitudes and sub-polar regions ranges from
6.5 to 7.5 okta. In the middle latitudes and sub-polar regions of the ocean, seasonal variability
results in an increase in TCC in summer compared to winter. In contrast, in the tropics
and subtropics, the average TCC in summer is lower than in winter, which is especially
noticeable in the Atlantic ocean. The most striking seasonal variations are registered in
the Indian ocean, which is characterized by strong monsoon circulation. That is, in the
northern regions of the Indian ocean, in winter dry seasons, the mean seasonal TCC varies
from 1 to 3 okta, whereas in wet summer seasons the average seasonal TCC is from 5 to
6.5 okta. A time series of the total cloud coverage for distinct regions of the world ocean
demonstrate significant differences in characteristics of the inter-annual variability of TCC.
Cloud coverage in the southern Atlantic rarely drops below 80-90%, whereas the inter-
annual seasonally averaged TCC variability may exceed 50%. In the central Pacific, some
years may be considered outliers with TCC significantly exceeding the mean values due to
ENSO [26].

At the same time, averaged TCC values are not representative enough within the
scope of our study. One needs to consider the regimes of cloudiness over the regions of the
ocean. In the middle latitudes, both the regime of long-lasting broken clouds (4-6 okta),
and the regime of interchanging short periods of overcast and clear-sky conditions may
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result in the same seasonal mean TCC. The diversity of the regimes of cloudiness may be
shown by the empirical histograms of the fractional TCC for various regions of the world
ocean (see [28], Figure 5).

Types of clouds are not distributed evenly over the ocean as well. This feature strongly
impacts the average TCC as well as the characteristics of the acquired imagery. The frequency
of different types of clouds varies between the tropics, mid-latitudes, and sub-polar regions.
The difference between the western and eastern regions of oceans is significant as well,
especially when one considers low clouds [59].

Cumulonimbus, denoted by two codes in the WMO manual on codes (Cy9 for cu-
mulonimbus calvus and Cy 3 for cumulonimbus capillatus) [29] are observed frequently in
the tropics, are rare in the mid-latitudes, and can almost never be registered in sub-polar
regions of the world ocean. At the same time, there is a considerable difference even be-
tween the distributions of the two sub-types of cumulonimbus over the ocean: Records of
cumulonimbus calvus over the ocean are twice as frequent as those of cumulonimbus capillatus.
There is also a significant difference in spatial distributions of these two sub-types: Cumu-
lonimbus capillatus are registered sometimes in the North Atlantic and northern regions of
the Pacific ocean, whereas cumulonimbus calvus are observed almost only in the tropics and
the equatorial zone. Cumulonimbus calvus has a maximum frequency in the central regions
of the oceans, whereas cumulonimbus capillatus are more frequent in coastal zones.

Cumulus clouds include two WMO codes: C; 1 for cumulus humilis and Cy 2 for cumulus
mediocris or cumulus congestus. The frequency of cumulus clouds is high in the western and
central regions of the subtropics and tropics of the oceans. In the mid-latitudes, cumulus
clouds are not that frequent in general, and even less frequent in summer. There are
however exceptions, which are the eastern part of the North Atlantic and the northern
regions of the Pacific ocean, where cold-air outbreaks are more frequent, thus the conditions
for cumulus clouds are more favorable. Generally, cumulus humilis are less frequent over
the ocean compared to cumulus mediocris and cumulus congestus.

In contrast with cumulus clouds, stratus clouds are much more frequent in mid-
latitudes (WMO codes C 5 for stratocumulus other than stratocumulus cumulogenitus, and
C16 for stratus nebulosus or stratus fractus other then stratus of bad weather). They are
also frequent in eastern regions of the subtropics over the ocean. In some studies, these
two codes are considered as one type [60,61], however, their spatial distributions differ
considerably. Stratocumulus clouds (CL.5) are registered most frequently in eastern regions
of the oceans’ subtropical zones, whereas stratus clouds (C;6) are mostly found in the
mid-latitudes, especially in summer. Stratus clouds (C6) are rare in eastern regions of
the subtropics (excluding some of the upwelling zones). There are also stratus fractus or
cumulus fractus of bad weather (WMO code C17), which are frequently observed in the
mid-latitudes in winter, when the synoptic activity is strong. Sometimes, clouds of C;7 are
registered in the low latitudes, in the stratiform precipitation regions [62].

Sometimes there are even no low clouds (WMO code C;0). This code is frequently
registered in the coastal region of the ocean, in the Arctic, and the Mediterranean sea.

As one may notice from the brief and incomplete climatology of clouds above, different
types of clouds are distributed very unevenly over the world ocean. If one collects a dataset
in a limited number of the regions of the ocean for the optimization of a data-driven
algorithm, the resulting scheme may lack quality in the regions that were not represented
in the training set.

1.3. On Data-Driven Algorithms for TCC Retrieval from All-Sky Optical Imagery

A few data-driven methods were presented recently for estimating TCC from all-sky
optical imagery [55,56,58]. In [56], the only improvement compared to simple schemes [39]
is the application of a clustering algorithm in the form of a superpixel segmentation step.
This step allows the authors to transform the scheme to an adaptive one. However, one
still needs to compute the threshold value for each superpixel. In [58], a probabilistic
approach for cloud segmentation is proposed employing Principal Components Analysis
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(PCA) approach along with the Partial Least Squares (PLS) model. The whole approach
may be expressed as PLS-based supervised feature engineering resulting in the pixel-
wise linearly computed index claimed to be characterizing the probabilistic indication of
the “belongingness” of a pixel to a specific class (i.e., cloud or sky). For this index to be
technically interpreted as a measure of probability, it is normalized to the [0, 1] range linearly.
The model described in this study is similar to logistic regression with the only reservation
being that the log-regression model has strong probabilistic foundations resulting in both
the logistic function and binary cross-entropy loss function. The logistic function naturally
transforms the covariates to the probability estimates within the [0, 1] range without any
normalization. Thus, the model proposed in [58] has questionable probabilistic foundations
compared to well-known logistic regression. However, the study [58] is remarkable, as it is
the first (to the best of our knowledge) to formulate the problem of cloud cover retrieval as
a pixel-wise semantic segmentation employing a simple ML method. In [55], the authors
employ the stat- of-the-art (at the time of the study) neural architecture namely U-net [63]
for semantic segmentation of clouds in optical all-sky imagery. The two latter approaches
are very promising if one has a segmentation mask as supervision. It is worth mentioning
that labeling all-sky images in order to create a cloud mask is very time-consuming. In our
experience, this kind of labeling of one image may take an expert 15 to 30 min depending on
the amount of clouds and their spatial distribution. To the best of our knowledge, no ML-
based algorithms were presented that are capable of estimating TCC directly without
preceding costly segmentation labeling.

One more issue with most of the presented schemes for TCC estimation is the lack of
universal quality measure. In some studies, the quality measure is not even introduced [52].
Other studies with the problem formulated as a semantic segmentation of clouds, employ
typical pixel-wise quality measures adopted from computer vision segmentation tasks,
such as Precision, Recall, F1-score, and misclassification rate [56,58]. This decision may
be motivated by the models applied and by the state of the computer vision. However,
the definition of a quality measure should never depend on the way the problem is
solved. In some studies, the quality measures that are used are common for regression
problems, e.g., correlation coefficient [55], MSE (Root Mean Squared Error), or RMSE (Root
Mean Squared Error) [49]. In probability theory, these measures usually imply specific
assumptions about the distribution of the target value (TCC), and also assumptions about
the set of all possible outcomes and their type (real values). In the case of TCC, these
assumptions are obviously not met. It is also obvious that the assessment of the quality of
TCC retrieval by any valid algorithm (that does not produce invalid TCC) is biased for the
events labeled as 8 okta or 0 okta. Since the set of possible outcomes of TCC is limited, any
non-perfect algorithm underestimates TCC for the 8-okta events and overestimates TCC
for the 0-okta events. Thus, any quality metric is biased by design as it is calculated using
the deviation of the result of an algorithm from the expert label. We are confident that one
should never use a biased-by-design quality measure. Thus, if one were to employ the
quality measures of regression problems (MSE, RMSE, correlation coefficient, determination
coefficient, etc.), it would be consistent with solving the problem as regression, which is
not always the case for the studies mentioned above.

In our understanding, the problem of TCC retrieval should be formulated as a clas-
sification since the set of possible outcomes is finite and discreet. Alternatively, one may
formulate the problem as ordinal regression [64]. In these cases, accuracy (event-wise,
rather than pixel-wise) or other quality measures for the classification problem may be the
right choice. In our study, we balance the datasets prior to the training and quality assess-
ment, thus accuracy may be considered a suitable metric. In the case of ordinal regression,
the categorical scale of classes is implied, which shows an order between the classes. This is
exactly the case in the problem of TCC retrieval, since the classes of TCC are ordered in such
a way that the label “1 okta” denotes more clouds compared to the label “0 okta”; “2 okta”
is more than “1 okta”, and so on. In this case, the conditional distribution of the target
variable P(TCC|event) is still not defined, which would be necessary for the formulation of
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a loss function and quality measures (MSE, RMSE, etc.) within the approaches of Maximum
Likelihood Estimator or Maximum a Posteriori Probability Estimator, similar to regression
statistical models. However, the “less or equal than one-okta error accuracy” (“LeqlA”
hereafter) is frequently considered as an additional quality measure in the problem of TCC
retrieval [49,55]. In our understanding, this metric is still not valid and may be biased due
to the reasons given above, though we include its estimates for our results in order to be
comparable to other studies.

In the context of the introduction given above, the contributions of our study are
the following:

1.  We present the framework for the assessment of the algorithms for TCC retrieval from
all-sky optical imagery along with the results of our models;

2. We present a novel scheme for estimating TCC over the ocean from all-sky imagery
employing the model of convolutional neural networks within two problem formula-
tions: Classification and ordinal regression;

3. We demonstrate the degradation of the quality of data-driven models in the case of a
strong covariate shift.

The rest of the paper is organized as follows: In Section 2, we describe our Dataset of
All-Sky Imagery Over the Ocean (DASIO); in Section 3.1, we describe the neural models
we propose in this study and the design of the experiment for the assessment of their
generalization ability; and in Section 4, we present the results of the experiment. Section 5
summarizes the paper and presents an outlook for further study.

2. Data
2.1. Dataset of All-Sky Imagery Over the Ocean (DASIO)

Since the early 2000s, we have been collecting all-sky imagery over the ocean along
with concurrent expert estimates of the set of meteorological parameters recommended by
WMO. Our experts observe and register TCC, low cloud cover, and other cloud character-
istics among other parameters. From 2014 onwards, imagery acquisition was automated
using the optical package designed and assembled in our laboratory [57]. We name it
SAILCOP, which stands for “Sea-Air Interactions Laboratory Clouds Optical Package”.
SAILCOP is capable of acquiring the optical imagery of the visible skydome. In Figure 2,
one registering head of the package is presented along with the mounting points of both of
the optical heads on our research vessel. In Figure 1, some examples of the imagery are
presented. One may notice that the positions of the superstructures of the vessel visible
in the images in Figure 1 are not the same due to variations of the mounting points of
cameras and variations of the host vessel itself. However, the mounting points are fixed for
every mission. Thus, if one wants to apply the masking, the two masks (one per camera)
are unique for a mission. The optical heads of SAILCOP are wired to the management
computer. Each head is equipped with a GPS sensor and positioning sensors, including an
accelerometer. As a result, SAILCOP is capable of taking pictures at moments when the
position of the vessel is nearly horizontal. This capability helps us reduce the impact of the
noise-introducing factor related to the swinging platform mentioned in Section 1.1. In addi-
tion, each pair of all-sky images is labeled with the GPS coordinates, date and time (UTC),
and additional technical information. These attributes allow us to automatically compute
the sun elevation in the ship’s geographical position at the time of observations. Imagery
acquisition with SAILCOP starts at dawn, when the sun elevation exceeds 0°, and stops
when the sun elevation drops below 0°. In a regular functioning regime, SAILCOP takes
images synchronously from two heads with a time discrepancy not exceeding 15 millisec-
onds. In Figure 3c,d, we present an example of the images acquired simultaneously from
two cameras. One may see that they are almost the same. However, the two cameras
were positioned some distance apart thus, the clouds are presented in these snapshots
from slightly different angles. In some studies, this effect is exploited in the schemes for
estimating cloud base height [65,66]. However, the distance between paired instruments
in these studies may be more extensive than a research vessel’s linear scale. The typical
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period of imagery acquisition in SAILCOP is 20 s. In Table 1, we present a short description
of the research missions resulting in the DASIO collection. In Appendix A, we also present
the complete maps of the missions. In Table 2, we present the quantitative summary of the
acquired collection on a per-mission basis and overall. Note that for the mission named
AI-45, there is no TCC labeling information, whereas there were 113 observations made by
an expert. In this mission, the observations of TCC were registered following the Russian
standard of meteorological observations, which implies the estimation of cloudiness in
tenths instead of oktas. Thus, these records are not standardized and are not included in
the quantitative summary of the DASIO collection.

Figure 2. Optical package designed for the all-sky imagery acquisition: (a) Registering head, and (b) positions of registering

heads mounted on the research vessel “Akademik Ioffe” in the research mission “AI-49” in June 2016.

Table 1. Scientific missions resulting in the Dataset of All-Sky Imagery over the Ocean (DASIO) collection of all-sky imagery over the

ocean with the corresponding expert records of meteorological parameters.

Mission Name Departure Destination Route
AI-45 17 September 2014 25 September 2014 Northern Atlantic
Reykjavik, Iceland Rotterdam, Netherlands
AI-49 12 June 2015 2 July 2015 Northern Atlantic
Gdansk, Poland Halifax, Canada
ANS-31 16 December 2015 19 January 2016 Indian ocean, Red sea,
Colombo, Sri Lanka Kaliningrad, Russia Mediterranean sea, Atlantic ocean
AI-52 30 September 2016 3 November 2016 Atlantic ocean
Gdansk, Poland Ushuaia, Argentina
ABP-42 21 January 2017 25 March 2018 Indian ocean, Red sea,
Singapore Kaliningrad, Russia Mediterranean sea, Atlantic ocean
AMK-70 5 October 2017 13 October 2017 Northern Atlantic,
Arkhangelsk, Russia Kaliningrad, Russia Arctic
AMK-71 24 June 2018 13 August 2018 Northern Atlantic
Kaliningrad, Russia Arkhangelsk, Russia Arctic
AMK-79 13 October 2019 5 January 2020 Atlantic ocean

Kaliningrad, Russia

Montevideo, Uruguay

Arctic
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Table 2. Quantitative summary of the DASIO collection in terms of the number of collected images and hourly meteorological

observations.
Mission Name  No. of Images No. of No. of Observations per TCC (Total Cloud Cover) Value
Observations
0 1 2 3 4 5 6 7 8
Al-45 8536 113 - - - - - - - - -
AI-49 42,550 330 6 6 4 6 7 4 19 28 250
ANS-31 79,748 349 28 29 21 19 40 21 20 30 141
AlI-52 218,890 374 38 22 13 25 24 20 22 36 174
ABP-42 295,170 655 114 57 53 51 56 27 48 48 201
AMK-70 30,336 68 0 1 2 1 1 4 11 16 32
AMK-71 340,858 708 8 23 11 14 9 14 19 36 574
AMK-79 139,194 355 15 23 17 28 26 16 35 50 145
Total 1,155,282 2839 209 161 121 144 163 106 174 244 1517

Y "V
L A e A

Figure 3. Examples of all-sky imagery (a-d) with the corresponding computation masks (e-h).

The DASIO collection obviously does not represent all the regions of the World Ocean.
However, the regions of this dataset include the western, central, and eastern parts of the
Indian Ocean as well as of northern Atlantic; the north-eastern, central, and south-western
regions of the Atlantic ocean, Arctic ocean, and regions of the Mediterranean sea and the
Red sea. Typical cloud types and cloud cover levels of these regions differ considerably;,
as mentioned in Section 1.2. Thus, using this dataset, one may assess the generalization
ability of a data-driven scheme optimizing it on some subset of the DASIO collection and
estimating it on a hold-out subset.

The DASIO collection will be released online in early 2021 with a corresponding
announcement in the GitHub repository devoted to this study: https:/ /github.com/MKr
initskiy / TCCfromAllSkylmagery.

2.2. Data Preprocessing and Filtering

In this section, we present our approach for data preprocessing and filtering employed
in this study. The DASIO collection includes some outliers, as shown in Figure 1. There are
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also outliers caused by the cameras’ malfunctioning, e.g., when the automatic algorithm
for adjustment of white balance fails. This may happen in the early morning or in low-light
conditions typically observed concurrently with stratocumulus clouds in high latitudes.
In our study, we filter the collection by applying the Convolutional Variational Autoencoder
model (CVAE) [67], see Section 3.1. This method allows us to filter out the snapshots that
may be considered outliers. We inspect the results of the filtering to decide whether
the images marked using our approach are indeed outliers. The criterion here is our
expert understanding of whether the image represents its skydome scene the way that the
major collection does. In Appendix A, we present a subsample of the images marked as
outliers using the CVAE model. Some of the images are corrupted and may not be used
as training examples. However, others may be considered valid. Expert inspection is still
inevitable here.

For the application of the models of our study, we preprocess all the images of DASIO.
First, we create a binary mask for each mount point of each mission. A mask is an image
that is the same size as the DASIO examples. The goal of using masks is to mask the
structures of a vessel. The masks for some of the missions are presented in Figure 3,
along with the corresponding imagery. The whole set of masks for the imagery is included
in DASIO. We also reduce the size of snapshots in order to fit our computational resources.
The original size of DASIO examples is 1920 x 1920 px. In our study, we resize the images
to 512 x 512 px. The masks are resized respectively.

For improving the generalization ability of the CVAE model and other data-driven
models of our study, we apply the augmentation of data. Several studies have recently
demonstrated the effectiveness of augmentation for increasing data-driven models” gener-
alization ability [63,68-76]. In some studies, even the approach is presented for trainable
data augmentation, which improves the training process [77-79]. In our study, we apply
simple affine transformations along with weak elastic distortions described in [68] at the
stage of image data augmentation.

All artificial neural networks of this study were trained on NVIDIA GPU using the
PyTorch framework [80]. However, to improve the computational speed, we stopped using
the torchvision implementations of imagery augmentations (a part of PyTorch project).
We re-implemented all the transformations with pure PyTorch, so the augmentation is
effectively performed on GPU, which is not always the case at the moment for native
torchvision. As a result of this decision, we observed a speedup of the training by approx-
imately four times. The code for the augmentations is integrated into our study’s code,
which is available on GitHub: https://github.com/MKTrinitskiy /TCCfromAllSkyImagery.
The distortions introduced at the augmentation time are stochastic by design: We sample
the affine and elastic transformations’ magnitudes. However, to preserve the consistency
of the distorted imagery and the masks, we apply the same transformation to the masks as
to the images.

Since we use artificial neural networks as the data-driven models in our study, we ap-
ply source data normalization recommended for the stabilization of training (see, e.g., [81]).

The sampling procedure is rather part of the experiment design thus, one may refer to
Section 3 for the detailed description.

3. Machine Learning Models and Experiment Design

In this section, we present the design of the experiments in our study. We also present
the competing architectures of artificial neural networks, which we employed for TCC
retrieval from all-sky optical imagery over the ocean.

3.1. Filtering Outliers with Convolutional Variational Autoencoder (CVAE)

When filtering outliers we assumed that most of the typical examples of training
dataset belong to some compact manifold in some feature space. Intuitively, one may expect
a considerable difference between the cardinality of the set of all the possible RGB images of

size 1920 x 1920 (~ 255107) and the amount of meaningful all-sky photographs. The latter
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excludes meaningless chaotic images and real-world objects, persons, scenes of kinds other
than all-sky, etc. Whether an example belongs to the manifold of a dataset or not may be
determined by distance measuring, e.g., Euclidean distance in the original feature space
described by R, G, and B components of all the pixels of an image. The dimensionality
of this original feature space is ~ 107 in the case of DASIO examples. Thus, an effect
of the high dimensionality of the examples takes place, which results in insignificant
differences of distances between the examples that are close to each other (“seem similar”
as images) or spaced apart (“seem dissimilar” as images). This effect is known as the
“curse of dimensionality”. One way to tackle this effect is a dimensionality reduction.
The requirements for this mapping are simple: (i) It should preserve the relations between
the examples of the training dataset (similar images should be projected to the points of a
new feature space close to each other); (ii) at the same time, if the examples happened to be
mapped close to each other in a new feature space, they should appear similar.

An artificial neural network is essentially a function that maps objects from one feature
space (e.g., images) to another, the so-called feature space of hidden representations. There
is a neural model capable of reducing the dimensionality of examples without losing much
meaningful information of the examples, namely the Autoencoder (AE) [82-84]. Since the
examples in our study are images, we exploit convolutional autoencoders. An autoencoder
generally includes two functional parts: An encoder and a decoder. The encoder transforms
the examples extracting meaningful features and mapping the examples into a hidden
representation feature space. The dimensionality of this feature space is commonly lower
than the original dimensionality of the examples. This is the case in our study. The decoder
part decodes (reconstructs) the examples based on their hidden representations. The tech-
nical task for an autoencoder is to reproduce the examples with the lowest errors. Training
an autoencoder is no different from training any other artificial neural network or other
statistical models: One exploits a gradient-based optimization procedure for optimizing
the loss function in the space of the neural network’s parameters. In our study, we employ
MSE as a reconstruction loss for the autoencoder model.

Though autoencoders are applied widely for anomaly detection, an autoencoder
in its simple form (a.k.a. “vanilla” autoencoder in jargon) is not enough for filtering
outliers. Only the second requirement is met in the case of a “vanilla” autoencoder:
Examples that are close to each other in the hidden representation feature space are similar.
However, the opposite is not true: Subsets of similar examples may be projected into
clusters spaced apart. In our study, we overcome this issue by exploiting variational
autoencoders [67] in the form of a CVAE. Variational autoencoders were shown to find a
special kind of mapping that preserves the continuity of the feature space, meaning that the
first requirement is met: Similar examples are projected to the close points of the hidden
representation feature space. This property is achieved by introducing the assumption
that each feature of the hidden representation of the dataset’s examples is distributed
normally. Technically this assumption can be met using an additional loss component
of KL divergence between the sample distribution of hidden representation features and
normal distribution. The loss component and a technical way for implementing this
approach (known as “reparameterization trick”) were proposed in [67]. The resulting loss
function is presented in Equation (3) and includes reconstruction loss (MSE) along with
the KL term. In Figure 4, we present the general architecture of the CVAE implemented in
our study.

hi = g(xi/ 68)/ (1)
X; = D(hi, 04), )
L(x;, hi, %;) = MSE(x;, %;) + KL(h;), 3)

where h; is hidden representation of an example x;; £(-) and D(-) are encoder and de-
coder parts of the autoencoder; 6, and 6, are parameters of the encoder and the decoder,
respectively; and L(-) is the CVAE loss function.
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Figure 4. General architecture of the Convolutional Variational Autoencoder model (CVAE) model
for filtering outliers. See more details in Appendix A.

In our study, we employ several approaches for improving the convergence of artificial
neural networks. We employ the Adam optimizer [85] with the learning rate scheduling
strategy named SGDR (Stochastic Gradient Descent with warm Restarts) presented in [86]
that implies cosine annealing of learning rate with warm restarts. In addition to SGDR we
apply exponential decay of the maximum learning rate. The resulting learning rate curve
and typical training loss curve are presented in Figure A3 in Appendix A.

3.2. Neural Models for TCC Retrieval from All-Sky Imagery

Convolutional Neural Networks (CNNs) demonstrated a huge leap forward in image
recognition [69,70,87], semantic segmentation [63,88-91], and other visual tasks. In most of
the problems related to image processing, CNNs can achieve the highest quality with a gap
unbridgeable by classic computer vision approaches. In some of the problems, CNNs reach
human-like or even super-human quality today. Being data-driven models, CNNs seem
to be perfect candidates for the application to TCC retrieval from all-sky imagery. In our
study, we propose an advanced architecture of CNN motivated by the latest results in the
field of neural architectures.

In contrast with a number of contemporary studies, we were looking for a state-of-
the-art CNN architecture demonstrating the best results in a range of benchmark visual
problems. In https:/ /paperswithcode.com/, a perfect up-to-date collection of studies is
presented. The resource is not of an academic sort, and it does not provide a comprehensive
overview and does not perform benchmarking itself. However, it is still a tool for the
selection of best-known approaches at the moment. Not to mention the set of benchmarks
like MNIST [92], CIFAR-10/100 [70], Imagenet [93], and up to 165 others that are commonly
considered by researchers when testing the proposed approaches and model architectures.
The approaches presented in the state-of-the-art studies at the moment are of several types:
Data augmentation strategies, strategies of training of neural networks, approaches for
neural architecture search, meta-learning, and a set of approaches that pursue a goal of
decreasing the computational overhead of neural networks without too much loss of the
quality. One of the best neural designs we have come up with from studying the state-of-
the-art architectural solutions, is the PyramidNet proposed in [94]. The key contribution
of this work is the conscious design of the layers resulting in computational efficiency of
the PyramidNet along with increased quality compared to other architectures with similar
computational costs [95,96]. In our study, we tested both ResNet-like architecture and
the one based on PyramidNet. No statistically significant difference was found. In this
paper, we do not demonstrate the results of using ResNet-like architecture, as a thorough
comparison of different architectures for TCC retrieval from all-sky imagery is not the topic
of this study:.
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3.2.1. TCC Retrieval as Classification

As mentioned in Section 1.3, there are two formulations that we consider promising
and valid for the TCC retrieval problem. The first and obvious problem design is classi-
fication, since the set of possible outcomes is finite and discreet. In this case, the target
variable (TCC) is one-hot-encoded, that is, transformed into the form of a row-vector of K
elements, where K is the number of classes of the problem. All elements of this vector are
zero, and only one element of this vector equals 1, which corresponds to the label number.
For example, the target vector for an image labeled as TCC = 3 okta is the following:
[0,0,0,1,0,0,0,0,0]. As a result of this transformation, the one-hot-encoded target vector
represents the probability distribution of a multi-variate target variable assuming that each
component has Bernoulli distribution. In this formulation, a neural network approximates
the parameters p of Bernoulli distribution for each of the components of the target vector.
In the Maximum Likelihood Estimation approach, this sequence of assumptions results in
a loss function of multinomial cross-entropy (see Equation (6)). Note that a neural network
that maps features of examples into the feature space of one-hot-encoded target variable is
simply a parametric function F(x;, 6yn), where 0y are the parameters of the network.
It is worth mentioning that the architecture of the neural network is not dependent on the
loss function. Thus, one may consider the same architecture with a different formulation of
the problem resulting in different loss functions and network behavior.

h; = SOffMLlX(.F(Xi, ONN)), 4)
etk
SoftMaxy(z) = W, ®)
K
Lpe(hiti) = = ) iy + log (hyj), ©)
j=1

where x; is the image raw data; SoftMax(-) is the function transforming a vector to a
form meeting the requirements to represent a probability distribution (e.g., summation
to one over the vector); h; is the estimates of parameters of Bernoulli distribution of one-
hot-encoded target variable TCC denoted as ¢; (also known as “ground truth”); and K is
the number of classes (K = 9 for TCC retrieval following the recommendations of WMO).
The subscript PC regards the formulation particularity, which is “Pure Classification” here.
When a network is trained, the estimates /;; may be regarded as a measure of the probability
of an event described by features x; to be of class C;, where {C;}| ]K=1 is a set of classes of
the problem.

The network described above is referred to hereafter as PNetPC, which stands for
Pyramid Net for Pure Classification. The approach of classification using artificial neural
networks is not new on the contrary, classification is one of the most common problems in
machine learning. What is new in the presented approach is the formulation of the TCC
retrieval as a classification.

3.2.2. TCC Retrieval as Ordinal Regression

As an alternative to classification, we consider the TCC retrieval as ordinal regression
since TCC classes have a natural order. There are a few competing approaches for solving
ordinal regression with artificial neural networks [97-103]. As mentioned above, the archi-
tecture of a network does not depend on its loss function. It defines the behavior of the
network rather than its architecture. Thus, one may apply any of the approaches mentioned
in the studies [64,97-103] with their own network architecture. In our study, we exploit
PyramidNet within the approach of ordinal regression. Following the survey [64] and
the original paper [98], we implemented our neural model to solve the problem of TCC
retrieval within the approach of ordinal regression with no assumptions made on the
distribution of target value. Alternatively, one may consider the formulation to be a soft
classification: If an object x; is labeled as class Cj, it is inherently labeled as class C;_; and
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so on down to Cj. Technically, this formulation implies only two minor changes: A new
encoding of target variables and a new loss function. The new encoding implies that all the
target vector elements of an example labeled as C; are equal to 1 in positions j and lower.
For example, the target vector for an image labeled as TCC = 3 okta are the following:
[1,1,1,1,0,0,0,0,0]. As the problem is considered soft classification, each of the target
vector elements is considered an independent random variable with Bernoulli distribution.
Thus, the loss function, in this case, is just the sum of individual binary cross-entropy loss
functions for all the K components of the target vector, as shown in Equation (8).

hi = ]-"(xi, GNN)/ (7)
K
EOR(hi/ ti) = — Z(ti]' * log(hl]) + (1 — t,‘j) * log(l — hz]))’ (8)

j=1

where the notation is the same as in Equation (6). The subscript OR regards the formulation
particularity, which is “Ordinal Regression” here. Note that there is no SoftMax(-) in
this case. However, each of the target vector’s independent components still represents
a Bernoulli parameter estimate. Thus, the activation function of the very last layer of the
network F(x;,6nx) needs to be sigmoid (&) = m or a similar alternative (e.g.,
tanh(-) normalized accordingly).

The network described above is referred to hereafter as PNetOR, which stands for
PyramidNet for Ordinal Regression. To the best of our knowledge, the problem of TCC
retrieval has never been solved using any data-driven models within the approach of
Ordinal Regression. As one may see in Section 4, ordinal regression delivers supreme
quality compared to classification.

All the deep learning models described in this section are available in source code in
the GitHub repository devoted to this study: https:/ /github.com/MKrinitskiy /TCCfrom
AllSkylmagery.

3.3. Experiment Design

In this section, we propose the framework for assessing the quality and generalization
ability of data-driven models in the problem of TCC retrieval. Given a model capable of
estimating TCC for an expert-labeled all-sky image, one may compare the expert label
with the model estimate. As mentioned in Section 1.3, MSE, M AE, correlation coefficient,
or determination coefficient are questionable quality measures for data-driven models in the
problem of TCC retrieval. We propose measuring the quality with accuracy (Equation (9))
in the case of a balanced test dataset.

YN, [TCC = t)]

A == 7
cc N

©)

where N is the number of test dataset examples; TCCi is a model estimate of TCC; and
t; is the expert-defined label for TCC (ground truth). In addition to accuracy, one may
assess the quality using a common measure "less than or equal to one-okta error accuracy”
(LeqlA, see Equation (10)). However, as mentioned in Section 1.3, this measure may be
biased biased due to how the problem is designed.

YN [|TCC — 1] < 1]
N

LeqlA = . (10)

Each configuration of data-driven models (PNetPC, PNetOR) is trained and evaluated
multiple times (typically five to nine times due to high computational costs of CNNs) for
estimating the uncertainty of the quality measures. Following the procedure for estimating
the uncertainty of quality measures proposed in Maddox et al. in 2019 [104], we also saved
a few snapshots (meaning the parameters set) of neural models trained in their state close
to a quality plateau. This quality plateau is achieved using a constant learning rate while
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training a model with the SGD optimizer, starting from a state named “pre-trained” [104],
which is the final state of the model assessed in this study. We then use quality estimates
of these snapshots as additional realizations of the random variables, namely quality
measures. We assess all the quality measures’ uncertainty as a confidence interval of 95%
confidence level, assuming that the measures are distributed normally.

In this section, we employ the same approaches as in Section 3.1 for improving the
convergence of artificial neural networks. We use the Adam optimizer [85] with a SGDR
learning rate scheduling strategy [86] and exponential decay of the maximum learning rate.
The resulting learning rate curve and typical learning curves for PNetOR are presented in
Figure A4 in Appendix A. We do not show the learning curves for PNetPC in this paper.
They are similar to the ones of PNetOR with the only difference being that PNetOR delivers
slightly better quality, as one can see in the Results Section 4.

3.4. Datasets Balancing and Subsampling Procedures

The DASIO collection is strongly unbalanced: The number of examples labeled with
8 okta is approximately 50% (see the region-agnostic TCC distribution in Figure 5). In our
study, all the subsets (training and test) are balanced the following way: We randomly
subsample the subset of the examples labeled as 8 okta. The number of 8-okta subsample
examples is the average number of the rest classes (marked with orange lines in Figure 5).
The other classes are subsampled or oversampled to reach the same number of examples.
This target-balancing procedure is applied in all the experiments described below.

o
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Figure 5. Histograms of the empirical distributions of TCC in different scenarios: Region-agnostic (train and test distribu-
tions are the same) and region-aware. In all of the three cases, orange lines denote the average levels for 0-7 okta classes
used for target-balancing each of the subsets; 8-okta class is downsampled to this level following the procedure proposed in

Section 3.3. See details on exact numbers of cases in Appendix A, Table A2.

3.4.1. Region-Agnostic Scenario

To compare different data-driven algorithms for TCC retrieval, we propose training
them on the same training subset and assessing their quality on the same test subset of
imagery. In our study, we applied this procedure for comparing the performance of the
two proposed models, namely PNetPC and PNetOR. In this scenario, we do not impose
any restrictions on the regions where the data were collected for train and test subsets. We
name this scenario “region-agnostic” hereafter. Note, however, that objects of the DASIO
collection may be correlated when being close in time. In time series analysis, there is a
known effect of naturally correlated examples that are temporally related. This is especially
the case when the imagery is taken with the period of order of 20 s. This is considerably
shorter than the typical period for decorrelating of spatial cloud characteristics, which was
estimated to be ~15 min [65]. Thus, the common data science procedure of completely
random train-test split produces strongly correlated (i.e., not independent) subsets, and
thus the estimates of the quality are ultimately too optimistic. This effect strongly influenced
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the results presented in [57]. Instead of entirely random subsampling, one needs to employ
the procedure of block-split. In our study, we consider each day of observations as a block
of data. This way, we overcome the issue of an auto-correlated time series of TCC and
all-sky imagery. Currently, the DASIO collection contains 250 days of observations. Thus,
there are 250 daily blocks. In the case of non-restricted splitting procedure, we split these
250 blocks into train and test subsets. As the classes’ fractions may vary depending on
the split realization, we did our best to select the split that produces the most equally
distributed train and test subsets. Particularly, we sample the blocks for subsets with
a subsequent computation of KL divergence between the TCC distributions produced.
After 10,000 sampling attempts, we consider the best split that results in the lowest KL
divergence. This way, the fractions of TCC classes are almost the same in train and test
subsets. Although we still cannot guarantee the absence of covariate shift this way, at least
we guarantee a low shift of a target’s distribution.

3.4.2. Region-Aware Scenario

For assessing the generalization ability of data-driven models, we propose comparing
the quality estimates evaluated within the region-agnostic approach described above with
the ones achieved with a different strategy of train-test split. The region-aware approach
implies the restrictions on the regions of imagery acquisition. In this scenario, a strong
covariate shift is expected, as mentioned in Section 1.2 on the climatology of clouds.
In particular, we train the models on the subset limited by latitudes from 45°S to 45°N.
In this scenario, we assess the quality using the data subset acquired to the north of
45°N. As one may see in the maps of the missions which contributed to the DASIO
collection, the regions selected for the training set this way include the central Atlantic,
the Mediterranean and Red seas, and all the observations in the Indian ocean. The regions
selected for the test set include the northern Atlantic (the section along the 60°N and coastal
regions) and the Atlantic sector of the Arctic ocean. In Figure 5, the distributions of TCC
values are presented for the region-agnostic and region-aware scenarios.

3.5. Quantitative Characteristics of Datasets

Data-driven models, particularly deep learning ones, are known to be strongly depen-
dent on the amount of data. The size and diversity of a training set are crucial for both the
generalization ability and expressive power of a data-driven model. A validation set’s size
and diversity are crucial for the reliability of the model’s quality estimates. The number
of observations of the whole DASIO collection is 2’839, and almost half of this amount
are observations with TCC = 8 (see Table 2). This low amount of data points may be con-
sidered highly insufficient for deep learning models described in Sections 3.2.1 and 3.2.2.
For increasing the number of data points for both training and validation, we assumed that
images close (temporally) to expert observations have the same TCC value. This approach
is valid due to the consideration of strongly correlated examples close to each other in
terms of acquisition time. The typical period for decorrelating spatial cloud characteristics
is considered to be ~15 min [65]. In our study, we considered all the images acquired
within £10 min of the time of expert observation as having the same TCC as registered by
the expert. This procedure extends the subsets that were used for training and testing in
both region-agnostic and region-aware scenarios. The quantitative characteristics of the
datasets are presented in Table 3. Note that the numbers of data points in the “balanced
train” and “balanced test” columns are less than the number of examples of the whole
training and test sets due to the balancing procedure described earlier in Section 3.4.
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Table 3. Number of examples in training and test subsets in both region-agnostic and region-
aware scenarios.

Scenario Train Test Balanced Train Balanced Test
Region-agnostic 236,131 78,387 130,302 40,410
Region-aware 170,665 132,269 125,055 39,321

4. Results and Discussion

In this section, we present the results of the numerical experiments described in
Section 3. For each of the data-driven models proposed in this study, we performed the
training and quality assessment several times (typically five to nine times) to estimate
the uncertainty of the quality measures. The results in this section are presented in the
following manner: First, in Table 4, we present the results of the PyramidNet-based models
PNetPC and PNetOR in the region-agnostic scenario for assessing the influence of the
problem formulation. Then, in Table 5, we present the results of the PNetOR model in both
the region-agnostic and region-aware scenarios to assess the generalization ability in the
case of a strong covariate shift.

In our study, we also performed the optimization and quality assessment of some
of the known schemes mentioned in Section 1.1 of the Introduction for a comparison
with ours. This analysis was performed within the same framework as PNetPC and
PNetOR. As mentioned in Section 1.1, each of the schemes is essentially data-driven
and has its own parameters (at least one) subjected to optimization based on a training
subset. The schemes used for comparison are the ones that may be considered a baseline.
In particular, we assessed the following algorithms:

¢ The algorithm proposed by Long et al. in [38,39], which we name "RBR" hereafter
after the main index proposed in these studies (red-to-blue ratio);

¢ The algorithm proposed by Yamashita et al. in [42,43,51], which we name "SkyIndex"
hereafter after the index proposed in these studies.

As with the models proposed in this study (see Section 3.3), we assessed the uncer-
tainty of the schemes RBR and SkyIndex by training them and estimating their quality
multiple times. The schemes RBR and Skylndex are not as highly demanding computa-
tionally as PNetPC and PNetOR. Thus, we were able to repeat the procedure 31 times.
The results of this quality assessment are presented in the Table 5.

Table 4. Quality estimates for PNetPC (Pyramid Net for Pure Classification) and PNetOR (Pyramid-
Net for Ordinal Regression) in the region-agnostic scenario.

Model ACCtrain Accy,l Leq1A¢r4in Leq1A,,;
PNetPC 46.52 + 4.6% 41.43 +2.3% 86.52 + 1.87% 85.7 £2.1%
PNetOR 46.44 + 0.38% 42.38 4+ 0.97% 88.4 +0.23% 84 4+ 0.18%

From the results presented in Table 4, we can see that PNetOR is slightly superior.
However, we need to mention that this superiority is not statistically significant, at least
for such a small number of runs. In addition, in terms of Leql A, PNetPC is slightly better
than PNetOR. It is worth mentioning that state-of-the-art expert-designed schemes for
TCC retrieval demonstrate a considerably lower quality level: In no fair conditions, Acc for
them exceeds 30% [49,57]. In the scenarios employed in this study, the estimated accuracy
did not exceed 27%. In Table 5, we present more detailed quality characteristics of the RBR
and SkyIndex’s schemes estimated within the proposed framework.
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Table 5. Quality estimates for PNetOR, red-to-blue ratio (RBR) [39], and SkyIndex [42] in different scenarios.

Scheme Scenario ACCTrain ACle LeqlATrain LeqlAvul RMSETruin RMSEvul
(Model) (Percent) (Percent) (Percent) (Percent) (okta) (okta)

RBR region-agnostic 25.7+0.2 259405 5754+0.2 614404 2.18 +0.01 2.18 +0.02
RBR region-aware 247 +1.0 263402 59.6 0.2 548 +0.4 212 4+0.01 2.37 +0.01
SkyIndex region-agnostic 258 +0.3 259404 575403 61.34+04 2.18 +0.01 2.18 +0.02
SkyIndex region-aware 247 +0.2 26.4+0.3 59.6 £ 0.3 547405 2.124+0.01 2.37 +0.02
PNetOR region-agnostic 46.4+04 424+1.0 88.4+0.2 84.04+0.2 1.01 £0.02 1.24 £0.02
PNetOR region-aware 484 4+0.7 36.6 0.5 90.0+04 774 +£0.6 0.95 4+ 0.04 1.62 £0.06

According to the considerations set out in Section 1.3, RMSE may be a biased quality
metric in the case of an ordered finite set of outcome values (e.g., TCC). In Table 5, these
metrics are provided for a comparative purpose only.

From the results presented in Table 5, one can see a considerable difference in the
gaps between training accuracy and its test estimate in different sampling scenarios. In the
region-agnostic scenario, the gap is ~ 4%, while in the region-aware scenario, the gap
is ~ 12%. We need to remind the reader that this gap is inevitable, and only a perfect
model would deliver the same quality on the test set as on the training set (sometimes even
better in some particular cases). However, as mentioned in Section 3.3 (Experiment design),
we assess a data-driven model’s capability to generalize in terms of these gaps. This means
if the gap increases significantly, then the typical covariate shift between regions is too
strong, and the combination of model flexibility and data variability guides a researcher to
collect more data for the model to be applicable in a new region with an acceptable level of
confidence. In the presented cases, a significant difference is noticeable.

One possible reason for that may be a substantial disproportion of TCC classes in the
region-aware test subset. One may conduct a hypothetical experiment of assessing the
quality of a scheme that predicts 8 oktas disregarding the real skydome scene characteristics.
The accuracy score of such an algorithm in high latitudes would be outstanding. However,
this quality measure would be definitely unreliable. It is worth mentioning that our CNN-
based approach is still superior to the previously published results even in this worst-case
scenario of a strongly unbalanced test subset.

One may propose another possible reason for the significant increase in the quality
gap between the region-agnostic and region-aware scenarios. In a routine study involving
machine learning, the common reason for such a considerable quality gap would be
overfitting. Indeed, convolutional neural networks may be engineered to have such high
expressive power that they would be able to "memorize" training examples, demonstrating
low quality on the test set. However, the concept of overfitting relies on the relations
between the quality estimates on training and test samples that are drawn from the same
distribution or at least on the samples demonstrating weak signs of covariate shift. This is
the case in the region-agnostic scenario, where the sampling and subsetting procedures
described in Section 3.4.1 ensure that the data of training and test sets was at least acquired
in similar conditions. In the region-aware scenario, training and test sets should be treated
as having a substantial covariate shift, as discussed in Section 1.2. Thus, the concept of
overfitting per se cannot be applied in this case. On the contrary, such a significant increase
in the quality gap between the region-agnostic and region-aware scenarios suggests a
strong covariate shift in the latter case.

One may also notice that the thresholding-based schemes like RBR or SkyIndex demon-
strate an outstanding generalization ability: The quality drops from training to test subsets
do not differ much between region-agnostic and region-aware scenarios. However, the ex-
pressive power of these models is weak, and even in the worst-case scenario the PNetOR
model demonstrates significantly higher quality in terms of all the presented measures.
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5. Conclusions and Outlook for Future Study

In this study, we presented the DASIO collected in various regions of the world ocean.
Some of the imagery is accompanied by cloud characteristics observed in situ by experts.
We demonstrated that there was a strong covariate shift in this data due to the natural
climatological features of the regions represented in DASIO. We proposed a framework
for the systematic study of automatic schemes for total cloud cover retrieval from all-sky
imagery. We also proposed quality measures for the assessment and comparison of the
algorithms within this framework. We also presented a novel data-driven model based
on convolutional neural networks of state-of-the-art architecture capable of performing
the task of TCC retrieval from all-sky optical imagery. We demonstrated alternatives for
the formulation of the TCC estimation problem: Classification and ordinal regression.
The results demonstrated a slight superiority of the version based on ordinal regression.
We assessed the quality measures of the proposed models guided by the framework we
introduced. These data-driven models based on convolutional neural networks demon-
strated a considerable improvement in TCC estimation quality compared to the schemes
known from the previous studies.

Most importantly, in this study we proposed an approach for testing the generalization
ability of data-driven models in TCC retrieval from the imagery of the DASIO collection.
We demonstrated a considerable drop in the generalization ability expressed in terms of the
gap between the train and test quality measures in the scenario implying close distributions
of objects’ features compared to the scenario characterized by a strong covariate shift
(~4 and ~12 percentage points accordingly). The considerable quality gap in the former
scenario (namely “region-aware”) may indicate that specialized algorithms with high
expressive power applied in regionally limited conditions may practically be of higher
demand than the ones characterized by high generalization ability along with low accuracy.
There is also an indication of a strong need for additional field observations in a greater
variety of regions of the world ocean with the concurrent acquisition of all-sky imagery.
This would help enrich the part of the DASIO collection with low TCC values.

In addition, although convolutional neural networks demonstrate impressive results
in the problems of low-noise images recognition with strongly curated labeling information,
in the TCC retrieval problem, a CNN model based on state-of-the-art architecture does not
deliver that high quality being trained with the most-used tricks aimed for the improvement
of generalization ability and training stabilization. The quality drop may also be due to
noisy source data or uncertain labels. The issue of the labels” uncertainty will be addressed
in our future studies.

Several unanswered questions remain that may be addressed regarding data-driven
models in the problems of retrieving cloud characteristics from the DAISO data. We will
tackle the problems of estimating the cloud base height since the SAILCOP optical package
allows us to acquire paired imagery. We also will assess the uncertainty of expert labels for
TCC and other characteristics. This may be possible due to the presented CVAE model’s
capability to preserve the proximity relations between examples of the dataset. One may
assess the uncertainty of expert labels for similar examples identified with the use of CVAE.
We will also continue the neural architecture search to find a CNN-based model that is
balanced in quality and generalization. We will reproduce the results of all the previously
published schemes for automatic TCC retrieval and assess their ability to generalize within
the framework proposed in this study. We will also formulate a similar approach for the
assessment of automated algorithms for cloud type identification.
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Abbreviations

The following abbreviations are used in this manuscript:

ENSO El Nifio Southern Oscillation

TCC Total Cloud Cover

NAO North Atlantic Oscillation

PDO Pacific Decadal Oscillation
ITCZ Intertropical Convergence Zone
VOS Voluntary Observing Ships

ICOADS International Comprehensive Ocean-Atmosphere Data Set
WMO World Meteorological Organization
DASIO Dataset of All-Sky Imagery Over the Ocean

CVAE Convolutional Variational Autoencoder

(RYMSE (root) mean squared error

KL Kullback-Leibler (divergence)

SGDR stochastic gradient descent with warm restarts [86]

PNetPC  PyramidNet for Pure Classification
PNetOR  PyramidNet for Ordinal Regression
RBR red-to-blue ratio

Appendix A

In this section, we present the materials that we consider important for the repro-
ducibility of our study, though not essential for the main sections of the paper. In Figure A1,
we present the map of all of the research cruises conducted so far that contributed to the
DASIO collection. In Figure A2, we present examples of the DASIO collection marked as
outliers by the CVAE model used for data filtering presented in Section 3.1.

In Table A1, we present the details of the CVAE model’s architecture for filtering DA-
SIO outliers. The model is built using ResNet [96] building blocks (namely, residual_block
and identity_block) to improve training stability and increase the capability for the train-
ing itself. More details of the CVAE model’s implementation are available in the source
code of our study at GitHub: https://github.com/MKrinitskiy /TCCfromAllSkyImagery.

In Figure A3, we also present an example of learning curves for one of the training
runs of the CVAE model.

In Figure A4, we present the details of PNetOR model training in different data split
scenarios characterized by different covariate shift strengths. We do not show the learning
curves of all the runs that were performed in order to assess the uncertainty of the quality
estimates. Instead, we demonstrate only one typical run per scenario.


https://dasio.ocean.ru/
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https://github.com/MKrinitskiy/TCCfromAllSkyImagery
https://github.com/MKrinitskiy/TCCfromAllSkyImagery
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Figure A2. Examples from the DASIO collection marked as outliers by the CVAE model used in this study.
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Table A1. CVAE architecture details.

Block Name Block Type Inputs Input Size Output Size
encoder_input input - 256,256,3 256,256,3
mask_input input - 256,256,3 256,256,3
residual_block_1c residual_block encoder_input 256,256,3 256,256,322
identity_block_1i identity_block residual_block_1c 256,256,32 256,256,322
residual_block_2c residual_block identity_block_1i 256,256,322 128,128,64
identity_block_2i identity_block residual_block_2c 128,128,64 128,128,64
residual_block_3c residual_block identity_block_2i 128,128,64 64,64,128
identity_block_3i identity_block residual_block_3c 64,64,128 64,64,128
residual_block_4c residual_block identity_block_3i 64,64,128 64,64,128
identity_block_4i identity_block residual_block_4c 64,64,128 32,32,256
residual_block_bc residual_block identity_block_4i 32,32,256 32,32,256
identity_block_5i identity_block residual_block_bc 32,32,256 16,16,512
identity_block_6i residual_block residual_block_bc 32,32,256 16,16,512
residual_block_6c¢c identity_block identity_block_6i 16,16,512 8,8,1024
identity_block_7i residual_block residual_block_6c 8,8,1024 8,8,1024
residual_block_7c identity_block identity_block_7i 8,8,1024 4,4,1024
enc_gap2d GlobalAveragePooling2D identity_block_7i 8,8,1024 1024
bottleneck fully-connected enc_gap2d 1024 512
z_mean_fc fully-connected bottleneck 512 512
z_var_fc fully-connected bottleneck 512 512
z_sampling normal sampling z_mean_fc,z_var_fc (512), (512) 512
dec_input fully-connected Z_sampling 512 1024
dec_reshape Reshape dec_input 1024 32,32,1
dec_identity_block_1i identity_block dec_reshape 32,32,1 32,32,1024
dec_identity_block_2i identity_block dec_identity_block_1i 32,32,1024 32,32,1024
dec_upsampling_1u UpSampling2D dec_identity_block_2i 32,32,1024 64,64,1024
dec_identity_block_3i identity_block dec_upsampling_1lu 64,64,1024 64,64,512
dec_identity_block_4i identity_block dec_identity_block_3i 64,64,512 64,64,512
dec_upsampling_2u UpSampling2D dec_identity_block_4i 64,64,512 128,128,512

dec_identity_block_5i

identity_block

dec_upsampling_2u

128,128,512

128,128,256

dec_identity_block_6i

identity_block

dec_identity_block_5i

128,128,256

128,128,256

dec_upsampling_3u

UpSampling2D

dec_identity_block_6i

128,128,256

256,256,256

dec_identity_block_7i

identity_block

dec_upsampling_3u

256,256,256

256,256,256

dec_identity_block_8i

identity_block

dec_identity_block_7i

256,256,256

256,256,256

dec_identity_block_9i

identity_block

dec_identity_block_8i

256,256,256

256,256,128

dec_identity_block_10i

identity_block

dec_identity_block_9i

256,256,128

256,256,128

dec_conv2d_out Conv2D dec_identity_block_10i 256,256,128 256,256,3
dec_pw_norm min-max normalization dec_conv2d_out 256,256,3 256,256,3
masking element-wise mask_input, (256,256,3), 256,256,3

multiplication

dec_pw_norm

(256,256,3)
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learning curve (estimated on hold-out test subset of DASIO).

region-agnostic | train subset

(2 #(c) (d)

validation subset l

loss
Acc
LeqlA

LN

iteration of training (epoch number)

train subset

region-aware | validation subset |

le ) W MW\M (g) (h)

1.2x10 O
8x10 = <
4x10 C t
0 | 21
[ e

iteration of training (epoch number)

Learning rate
loss

]

Figure A4. Training details of the data-driven models of our study: (a—d) Learning curves for the region-agnostic scenario
and (e-h) learning curves for the region-aware scenario.

Table A2. Numerical values of the histograms presented in Figure 5 of the empirical distributions of TCC in different
scenarios: Region-agnostic and region-aware. Here TBLul (target-balancing level) is the average level for 0-7 okta classes
that is used for target-balancing each of the subsets; the 8-okta class is downsampled to this level following the procedure
proposed in Section 3.3.

Scenario, Subset TBLvl No. of Observations per TCC Value
0 1 2 3 4 5 6 7 8
region-agnostic train 14,478 20,834 14,573 10,888 12,289 13,078 9028 14,363 20,774 120,304
region-agnostic test 4490 5898 4508 2722 4080 4754 2986 4437 6539 42,463
region-aware train 13,895 20,380 14,449 11,132 12,595 14,096 8526 12,817 17,167 59,503

region-aware test 4369 1876 4152 2478 3774 3736 3488 5983 9468 97,314
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