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Abstract: Using the Global Land Surface Satellite (GLASS) leaf area index (LAI), the actual evapo-
transpiration (ETa) and available water resources in the Mekong River Basin were estimated with
the Remote Sensing-Based Vegetation Interface Processes Model (VIP-RS). The relative contributions
of climate variables and vegetation greening to ETa were estimated with numerical experiments.
The results show that the average ETa in the entire basin increased at a rate of 1.16 mm year−2 from
1980 to 2012 (36.7% of the area met the 95% significance level). Vegetation greening contributed
54.1% of the annual ETa trend, slightly higher than that of climate change. The contributions of air
temperature, precipitation and the LAI were positive, whereas contributions of solar radiation and
vapor pressure were negative. The effects of water supply and energy availability were equivalent on
the variation of ETa throughout most of the basin, except the upper reach and downstream Mekong
Delta. In the upper reach, climate warming played a critical role in the ETa variability, while the
warming effect was offset by reduced solar radiation in the Mekong Delta (an energy-limited region).
For the entire basin, the available water resources showed an increasing trend due to intensified
precipitation; however, in downstream areas, additional pressure on available water resources is ex-
erted due to cropland expansion with enhanced agricultural water consumption. The results provide
scientific basis for practices of integrated catchment management and water resources allocation.

Keywords: actual evapotranspiration; available water resources; climate change; vegetation greening;
VIP-RS model

1. Introduction

As a result of the impacts of global warming and human activities, the global water
cycle has been intensified, leading to changes in global precipitation [1], evapotranspiration
(ET) [2,3] and runoff [4]. More than half of the global absorbed solar radiation is used
for ET, which reintroduces approximately 60% of land surface precipitation back into
the atmosphere [5]. However, the mechanisms responsible for the variations in ET are
spatially heterogeneous; thus, investigating ET variations and their underlying mecha-
nisms can improve our ability to simulate land surface processes and predict future water
cycle alterations.

Terrestrial ET variations are impacted by changes in the atmospheric evaporative
demand (AED), water supply and physiological properties of vegetation. Observational
and experimental evidence has shown that climate factors, including precipitation, so-
lar radiation, temperature and wind speed, control both the AED and the water supply for
terrestrial ET. Research has found that in humid areas, long-term ET variations are driven
primarily by changes in incident solar radiation, whereas ET variations in arid areas are
controlled predominantly by the soil water supply, which is linked to precipitation [6].
In addition to climate factors, elevated atmospheric CO2 concentrations can also induce
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changes in ET by stimulating the photosynthetic rate, thereby increasing plant growth and
leaf areas, which accelerates the rate of ET [7]. Due to increasing CO2 fertilization, nitrogen
deposition, climate change and land-use change, the global leaf area index (LAI) increased
significantly by 8% during 1982–2011 [8], which had a significant impact on the intensifi-
cation of terrestrial ET. Numerical modeling has played an important role in simulating
terrestrial ET [9,10], and provides a possible solution for quantifying the contributions
of different environmental factors on ET [9]. For example, with a land surface model,
Shi et al. [10] and Mao et al. [11] pointed out that spatio-temporal variations in ET were
determined mainly by climate variables. However, when a remote-sensing ET model with
observation-based environmental drivers was applied, it was found that more than half of
the accelerated global terrestrial ET was caused by vegetation greening [9], which suggests
that the attribution of regional terrestrial ET trends without considering vegetation dy-
namics is improper. Considering the climate changes and vegetation greening on regional
ET and available water supply are still unclear, based on the remote sensed LAI data,
the contributions of climate control and vegetation greening to ETa can be quantified with
an ecological model.

The Mekong River Basin (MRB), which is rich in natural resources, spans large parts
of continental Southeast Asia. However, under the impacts of climate change and rapid
socioeconomic development over recent decades, the natural resources within the MRB
have faced increasing pressure. Since the 1950s, the MRB has been characterized by signifi-
cant increases in the temperature and spatial-temporal variation of precipitation [12,13].
The hydrological cycle has therefore intensified, resulting in changes in the rates and
patterns of ET and river flows [14,15]. Differences in flow variability were found between
the upper and lower MRB because floods mostly originate from rainfall and snowmelt in
the upper MRB [16], while the hydrology of the lower Mekong is controlled by the west-
ern North Pacific monsoon [17]. Moreover, a significant positive correlation was found
between discharge, precipitation and snow cover in the upper MRB, especially during the
dry season [18]. In contrast, in the lower MRB, changes in discharge are driven primarily
by the variation in the Asian summer monsoon [17]. In addition, rapid economic develop-
ment, population growth and widespread agricultural deforestation have created pressures
leading to competition for water [19]. Land-use changes, which manifest mainly as transfor-
mation into cropland, have increased the consumption of water through irrigation [20,21]
and affected the land surface roughness and albedo, thereby altering both the hydrologic
processes [22] and the energy balance at the surface [23,24]. Therefore, although the av-
erage variations in ET and runoff at the basin scale are relatively small, the changes in
these parameters in the highly irrigated areas of the lower MRB are significant due to
the expansion of cropland and additional irrigation [20,25].

According to the results of climate modeling, the monsoon patterns in the MRB will
change, resulting in significant increases in the average precipitation and temperature
over the basin [26]. However, it remains unclear how these climate changes and the over-
lapping effects of land-use change will alter the regional ET and available water supply.
In this study, the long-term actual ET (ETa) in the MRB was simulated by Remote Sensing-
Based Vegetation Interface Processes Model, and we aim to (1) explore the trends and
variability of ETa and the availability of water resources in recent decades and (2) quantify
the contributions of climate control and vegetation greening to ETa. This paper is orga-
nized as follows, Section 2 describes the datasets and attribution methods using VIP-RS
model, while Section 3 highlights the results for the ETa variation and identifies relative
contributions of climate variables and vegetation greening to ETa. Finally, Sections 4 and 5
delve into the discussions and conclusions of this work.

2. Materials and Methods
2.1. Study Region

As the longest river in Southeast Asia, the Mekong River (4800 km) passes through
six countries and boasts a drainage area of 805,604 km2. As a result of the Asian monsoon,
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the mean annual precipitation in the MRB shows significant spatiotemporal heterogeneity.
More than 90% of annual precipitation falls during the rainy season, which spans from
mid-May to early October. The highest annual rainfall occurs in the mountainous regions
of Laos, which receives mean annual precipitation of 3200 mm, whereas the lowest annual
rainfall reaches approximately 1000 mm in northeastern Thailand [27]. The land cover
types in the upper catchment are primarily tundra and grassland, whereas farther down-
stream, the natural vegetation is dominated by evergreen broadleaved forest; in the lower
catchment and Mekong Delta, cropland is the major land-use type (Figure 1).

Figure 1. (a) Location, (b) elevation, (c) land-use/cover type and (d) soil texture in the Mekong River
Basin (MRB) (WB: Water body, EBF: Evergreen broadleaf forest, MF: Mixed forest, SV: Savanna, GL:
Grassland, WL: Wetland, CL: Cropland, Urb: Urban and built-up, CL/NV: Cropland and natural
vegetation mosaic).

2.2. Data
2.2.1. Meteorological Data

Meteorological data, including temperature, surface air pressure, longwave radiation,
shortwave radiation, precipitation, relative humidity and wind speed, were collected on
a daily scale from 1980 to 2012. The meteorological data were provided by the Inter-
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Sectoral Impact Model Intercomparison Project (ISIMIP) [28,29], with a spatial resolution
of 0.5 × 0.5◦. The meteorological data used in this study were resampled to 5 × 5 km with
the bilinear resampling method. The air temperature, precipitation and wind speed data
were resampled at sea level, and then were corrected to the real elevation based on a digital
elevation model (DEM) with a 5 km resolution after bilinear resampling (Appendix A).

2.2.2. Land Surface Characterization Data

The land surface characterization data included topographic maps, land-use maps and
soil texture maps. DEM data were obtained from the GTOPO30 global DEM (https://lta.cr.
usgs.gov/GTOPO30) and resampled to a 5 km resolution with cubic Lagrange interpolation.
Land cover data (MOD12Q1) were downloaded from the Moderate Resolution Imaging
Spectroradiometer (MODIS) website (http://modis.gsfc.nasa.gov/data/) with a spatial
resolution of 500 m and a temporal resolution of one year. Land cover data from 2000 to
2012 were used in this study and were resampled to 5 × 5 km with the majority resampling
method [30]. The soil texture map was obtained from the Harmonized World Soil Database
v 1.2 provided by the Food and Agriculture Organization of the United Nations.

2.2.3. Remote Sensing Data

The remote sensing data included the Global Land Surface Satellite (GLASS) LAI
product, Global Land Evaporation Amsterdam Model (GLEAM) ET data and Gravity
Recovery and Climate Experiment (GRACE) data. Based on general regression neural
networks, the GLASS LAI product (http://glass-product.bnu.edu.cn/), which has a spatial
resolution of 0.05◦ and a temporal resolution of 8 days, was retrieved from MODIS and
Advanced Very-High-Resolution Radiometer (AVHRR) land surface data. Compared
with MODIS LAI and CYCLOPES LAI data, the GLASS LAI product is spatially more
complete and temporally more continuous [31]. Monthly actual ET data from GLEAM v3.2
(https://www.gleam.eu/), which have a spatial resolution of 0.25 × 0.25◦, were used to
validate the ETa results. Based on the function between the soil moisture stress and potential
evaporation calculated with the Priestley–Taylor equation, four evaporation components
can be obtained from GLEAM, namely, interception loss, bare soil evaporation, plant
transpiration and evaporation from water bodies and regions covered by ice and/or snow.
With the bilinear resampling method, the GLASS LAI data and actual ET data from GLEAM
from 2000 to 2012 were resampled to 5 × 5 km. In addition to the GLEAM ETa, monthly
ETa data calculated from the water balance equation were also used to validate the ETa
results at the basin scale:

ETa = P − R − ds
dt

(1)

where P and R are the precipitation and the runoff respectively, and ds/dt is the derivative
of the terrestrial water storage anomaly (TWSA) with respect to time.

The TWSA can be reflected by GRACE RL05 data, which can be retrieved from
the website of the Jet Propulsion Laboratory, California Institute of Technology (https://
grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/). After removing the effects
of the atmosphere, oceans and tides, monthly level-2 GRACE RL05 data from 2003 to
2012 were used in this study. To restore signal losses arising from the sampling and post
processing of GRACE data, the data were recorrected with a scaling factor approach [32],
and the data gaps were filled using cubic Lagrange interpolation.

The runoff data were provided by the Global Runoff Data Centre (https://www.bafg.
de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html).

2.3. Method
2.3.1. Model Introduction

ETa was simulated by the Remote Sensing-Based Vegetation Interface Processes
(VIP-RS) model [33,34]. The total ETa is composed of evaporation due to canopy in-
terception (Ei), transpiration from vegetation (Ec) and soil evaporation (Es). Transpiration

https://lta.cr.usgs.gov/GTOPO30
https://lta.cr.usgs.gov/GTOPO30
http://modis.gsfc.nasa.gov/data/
http://glass-product.bnu.edu.cn/
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https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html
https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html
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(Ec) is estimated based on potential transpiration (Ecp) and is limited by water conditions
(fw) and temperature (ft), as follows:

Ec = Ecp fw ft (2)

where fw is the stress function of the atmospheric water vapor pressure deficit calculated
using the algorithms proposed by Mu et al. [35] and ft is the stress function of the air
temperature calculated using the algorithms proposed by Zhang et al. [36]. Ecp is calculated
using the Penman-Monteith (PM) equation as follows:

Ecp =
1
λ

(
∆Rnc+ f cρcpD/ra

)
/
(

∆+γη f CO2

)
(3)

where Rnc is the net radiation absorbed by the canopy, ∆ represents the slope of the satu-
rated vapor pressure curve versus air temperature,γ, ρ, cp and D represent the psychro-
metric constant (hPa ◦C−1), air density (kg m−3), specific heat capacity of air (J kg−1 ◦C−1)
and vapor pressure deficit (hPa), respectively. Additionally, η is the ratio of the minimum
stomatal resistance of a natural functional plant type to that of a reference crop, λ is the la-
tent heat of the vaporization of water (J kg−1) and ra is the aerodynamic resistance between
the canopy and the reference height (s m−1). fc is the fractional vegetation cover, and fCO2
is the stress function of atmospheric CO2 [37]. These two factors are calculated as follows:

fCO2 =
1

(−0.001CO2 + 1.35)
(4)

fc = 1 −
(

VImax − VI
VImax − VImin

)β

(5)

VI = VImin +
fPAR (VI max − VImin)

fPARmax − f PARmin

(6)

fPAR = 1 − e[
LAI

LAImax ln(1 − f PARmax )] (7)

where CO2 is the atmospheric CO2 concentration (ppm), β is an empirical constant, being
0.6 to 1.2, taken here as 0.7 [38], and VImax and VImin represent the vegetation index values
under full vegetation cover and bare soil conditions, respectively (set to 0.95 and 0.01).
Additionally, fPARmax and fPARmax are the maximum and minimum fPAR corresponding to
VImax and VImin respectively, and are set to 0.95 and 0.001. LAImax is the maximum LAI dur-
ing the growing period (assumed to be 6.0) [39]; the LAI, which influences the partitioning
of energy between the soil and canopy, is retrieved from remote sensing data.

The evaporation due to canopy interception (Ei) equals the potential evaporation
from the wetted surface. Soil evaporation (Es) is the minimum value of surface potential
evaporation (Esp) and soil moisture exfiltration (Eex) [40]:

Es = min
(
Esp, Eex

)
(8)

Esp =
1
λ

(
∆(Rns − G) + (1 − f c)ρcpD/ras

)
/(∆ + γ) (9)

G = Rnc × [Γc + (1 − f c) × (Γs − Γc)] (10)

where Rns is the net radiation absorbed by the soil surface, G is the soil heat flux (MJ d−1) [41],
ras is the aerodynamic resistance between the reference height and the soil surface (s m−1),
Γc (set as 0.05) [42] and Γs (set as 0.315) [43] are the ratios of G to Rnc for full vegetation
canopy and bare soil, respectively.
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2.3.2. Model Implementation and Verification

Driven by the daily meteorological data (average, maximum and minimum air temper-
atures, atmospheric pressure, humidity, wind speed, precipitation, longwave downwelling
radiation and shortwave downwelling radiation), the daily ETa from 1980 to 2012 was
simulated by the VIP-RS model at a spatial resolution of 5 km. As the initial condition
of soil moisture was not available, the spatial pattern of soil moisture after one-year run
was used as the initial state [44], and daily ETa from 1981 to 2012 were used for the subse-
quent analysis. The tendency of annual ETa and its significances were explored based on
the Theil-Sen estimator and Mann–Kendall (M-K) test.

The simulated monthly ETa was consistent with the actual ET from GLEAM (Figure 2a)
and yielded an R2 value of 0.84. The mean bias and root mean square error (RMSE) between
the simulated and GLEAM ETa were 4.5 mm month−1 and 8.17 mm month−1, respectively.
At annual scale, the GRACE-derived ETa and simulated ETa showed acceptable consistency
with an R2 of 0.55. However, the GRACE-derived ETa was 25.72 mm year−1 lower than
the simulated ETa, indicating that the VIP-RS model slightly overestimated the yearly ETa
in the MRB.

Figure 2. Comparisons of the simulated ETa (actual evapotranspiration) with (a) the GLEAM ETa and (b) water balance-
derived ETa.

2.3.3. Attribution of ETa to Climate Change

The factor separation methodology [45] is a popular technique for evaluating the con-
tribution of each input factor to a chosen response variable. To quantitatively distinguish
the effects of climate change, carbon dioxide enhancement, vegetation greening and their
interactions on the ETa trend, thirty simulation experiments were designed based on the fac-
tor separation method. In each simulation experiment, one or more variables were varied
according to the observation records, while the other variables were varied according to
the control conditions [46]. The control simulation (f(con)) is driven by the mean climatol-
ogy, average atmospheric CO2 concentration and vegetation dynamics from 1982 to 1990.
The ETa result from the control simulation is the expected value under the average climate
and vegetation conditions of the 1980s. In the control simulation, the CO2 concentration
is the average CO2 value from 1982 to 1990. Except for precipitation, the climate drivers
and LAI in the control simulation are the multiyear means for individual days (expressed
as Julian days) from 1982 to 1990. To eliminate the impact of variation in rainfall patterns
on the resulting ETa, the precipitation in each year (1982–1990) is used in the control sim-
ulation, and the final ETa result from the control simulation is the average value of each
year. The thirty performed simulation experiments included one control simulation, seven
simulations (f(var1)), in which only one of the seven factors was varied each time, and
twenty-one simulations (f(var1_var2)), in which two of the seven factors were varied for
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each model run (Appendix B, Table A1). Simulation experiment f(var1) denotes the sim-
ulation driven by the variable var1, which was varied according to the ISIMIP records,
and the other variables were set to the control conditions. Similarly, simulation experiment
f(var1_var2) is the simulation driven by the variables var1 and var2, which were varied
according to the ISIMIP records, while the other variables were set to the control condi-
tions. The seven factors used in the simulation experiments are temperature, precipitation,
net radiation, vapor pressure, wind speed, LAI and atmospheric CO2 concentration.

The main effect of each factor on the ETa trend is the difference between the ETa result
from the simulation with only one variable factor and the result from the control simulation.
For example, the main effects of variable one (var1) and variable two (var2) on the ETa
trend are as follows:

E(var1) = f (var1) − f (con) (11)

E(var2) = f (var2) − f (con) (12)

The two-factor interactive effect of variables one (var1) and two (var2) is calculated
by subtracting the main effects of var1 and var2 from the combined effect of var1 plus var2.
For example, the two-factor interactive effect of var1 and var2 (E(var1_var2)) is expressed as:

E(var1_var2) = f (var1_var2) − f (con) − E(var1) − E(var2) (13)

where E(var1) and E(var2) are the effects of var1 and var2 on the ETa trend, respectively.
The land-use transfer matrix, which is used to analyze spatial-temporal changes

in land use, is built with land-use data (with a spatial resolution of 500 m) from 2000
and 2012. To assess the contributions of land-use changes to ETa, the control simula-
tion (f(land_con)) was driven by the land-use data from 2000. For certain land-use types,
simulation f(land_type1) was driven by one land-use type that was varied according to
the records from 2010, while the other land-use types remained unchanged according to
the year 2000. The effect of a change in a particular land-use type (land_type1) on the ETa
trend is the difference between f (land_type1) and f (land_con). Considering that ETa was
simulated at a 5 km resolution and that the land-use data have a spatial resolution of 500 m,
to assess the contributions of land-use changes to ETa, the ETa value in each sub-grid and
the contributions of different sub-grid-scale land-use types to the grid box average were
calculated (Equation (14)) to reduce the error in the ETa simulation:

ETa = ∑
i=1,9

(ET ai × Vi) (14)

where ETai is the ETa value in each sub-grid (5 km resolution) with land-use type i (Figure 1)
and Vi is the proportion of land-use type i in each sub-grid with a 5 km resolution. Vi is
obtained from land-use data with a spatial resolution of 500 m.

3. Results
3.1. Spatial-Temporal Variation of Actual ET

ETa is principally controlled by the AED (represented by ETp) and precipitation.
The annual ETa in the MRB showed remarkable spatial heterogeneity with an average
value of 896 ± 34 mm year−1 and increased gradually from north to south with a range of
300 to 2000 mm year−1. From 1982 to 2012, 70% of the study area showed an increasing
ETa trend with an average increase rate of 1.16 mm year−2.

In the upper basin, where the precipitation is less than 800 mm year−1 and the AED is
weak, the annual ETa is less than 400 mm year−1 (Figure 3). Due to rising temperatures,
glacial melting in the upper basin has accelerated, which has been accompanied by in-
creased precipitation, and the annual ETa has shown a significant increasing trend over
more than 13.7% of the study area (p < 0.01, Figure 4c).

In the central and lower reaches of the basin, the situation is relatively complex. In ever-
green broadleaf forest, which have abundant rainfall (annual precipitation > 1700 mm year−1),
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the spatial pattern of the average annual ETa is highly consistent with the average annual
ETp (Figure 3), whereas in cropland/natural vegetation mosaic areas, which have an aver-
age annual precipitation of less than 1200 mm year−1, approximately 75% of the rainfall
returns to the atmosphere through evaporation; as a result, the spatial pattern of ETa is
similar to that of precipitation. A significant positive temporal trend of ETa was found
in the Mekong Delta and the southeastern basin (Figure 4a), where precipitation and
LAI display increasing trends. Significant positive trends of ETa were found in 36.7%
of the MRB (p < 0.05), most of which corresponded to savanna and cropland with high
increasing rate of annual ETa (Figure 4c). The highest increasing rate was found in cropland
(2.53 mm year−2), followed by grassland (1.8 mm year−2), savanna (1.68 mm year−2) and
evergreen broadleaf forest (1.25 mm year−2) (Figure 4b). Approximately 16.7% of the area
of the MRB had significant negative ETa trends, and most of this area corresponded to
mixed forest (with an average decreasing rate of 1.15 mm year−2) and cropland/natural
vegetation mosaic, because solar radiation and precipitation both showed decreasing trends
in these regions (Appendix B, Figure A1).

Figure 3. Spatial patterns of annual average (a) actual evapotranspiration, (b) precipitation and (c)
potential evapotranspiration over Mekong River Basin for the period of 1981 to 2012.

Figure 4. (a) Spatial patterns of the temporal variations of average actual evapotranspiration,
(b) average change rate of actual evapotranspiration in different vegetation types, and (c) prob-
ability distribution function of significant levels in the actual evapotranspiration trend.
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The spatial pattern of annual available water resources (AWR, the difference between
precipitation and ETa) variation is highly consistent with that of precipitation, as shown in
Figure 5 and Appendix B, Figure A1. From 1981 to 2012, the annual AWR in approximately
23.6% of the grids throughout the MRB showed significant positive trends, whereas 6.4%
of the grids showed significantly negative trends. The grids with positive trends were
distributed mainly in the evergreen broadleaf forest of the central reach of the basin and the
savanna of the southeastern basin (Figure 5). For the entire basin, the average increasing
rate of AWR was about 0.32% year−1. The largest increasing rate was found in evergreen
broadleaf forest (approximately 0.88% year−1), followed by that in savanna (0.56% year−1),
cropland and natural vegetation mosaic (0.41% year−1) and grassland (0.23% year−1).
The grids with negative trends were distributed primarily in the mixed forest of the upper
basin and the cropland of the Mekong Delta. The precipitation decreased significantly in
the mixed forest, which resulted in a decrease in the AWR (Figure 5). Although the pre-
cipitation showed a minor increasing trend in the paddy fields of the Mekong Delta
(Appendix B, Figure A1), the ETa increased sharply (Figure 4), resulting in a significant
decrease in the AWR. This finding implies that additional water is needed for agricultural
development in the Mekong Delta. For the entire basin, the correlation coefficient between
the AWR anomaly and precipitation anomaly was 0.96, which is much higher than that
between the AWR anomaly and ETa anomaly (0.14) (Figure 6), demonstrating that water
consumption has a minor effect on the regional variation of AWR. Thus, the inter-annual
variation of AWR is affected mainly by the water supply (precipitation).

Figure 5. Spatial patterns of the temporal variation of annual average available water resources
(AWR) for the period of 1981 to 2012.
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Figure 6. Inter-annual variations of anomalies of (a) the actual ET (ETa) anomaly, potential ET (ETp)
anomaly and precipitation (P) anomaly, and (b) available water resources (AWR) anomaly from 1981
to 2012.

3.2. Attribution of Actual ET
3.2.1. Attribution of Actual ET Change to Climate Change and Vegetation Greening

The inter-annual variation of ETa was mainly influenced by changes in precipitation,
solar radiation, temperature, vapor pressure, atmospheric CO2 and the LAI (Figure 7).
Although increasing atmospheric CO2 concentrations reduced stomatal conductance,
which could have been responsible for the decreased ETa, the effect of CO2 fertilization
on ETa was very weak (0.0018% year−1), indicating that climate change and vegetation
greening were the dominant factors driving the terrestrial ETa variation.

From 1981 to 2012, except for net radiation, all the climate factors showed increas-
ing trends in the MRB. The air temperature showed a significant increasing trend in all
land-use types with an average increasing rate of 0.23 ◦C per decade. Accompanied by
precipitation increasing (Appendix B, Figure A1), a warming–wetting trend was found
throughout the MRB, which is beneficial to vegetation growth in most parts of the MRB.
Consequently, the LAI showed an increasing trend in all land-use types except mixed forest
(−0.17% year−1). The highest LAI increasing rate was found in farmland (1.42% year−1),
followed by grassland (0.96% year−1), savanna (0.68% year−1) and evergreen broadleaf
forest (0.49% year−1). Increases in precipitation, temperature and the LAI had positive
effects on the ETa trend that counteracted the negative effects caused by decreases in solar
radiation and increases in vapor pressure. For the entire basin, the relative contributions
of temperature, precipitation, solar radiation, vapor pressure and LAI to the ETa trend
were 43.7%, 21.8%, −16.8%, −2.8% and 54.1%, respectively (Figure 7). Precipitation was
the dominant driving factor affecting ETa in approximately 42% of the grids in the MRB,
and most of these grids were located in grassland, evergreen broadleaf forest and savanna
areas. The LAI had a significant positive effect on the ETa trend in the grassland of the up-
per basin, the savanna of the central basin and the cropland of the Mekong Delta. Solar
radiation and temperature were the dominant factors driving the ETa variation in approx-
imately 35% of the grids throughout the MRB, and most of these grids were located in
cropland, grassland and savanna (Figure 8).
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Figure 7. Contributions of changes in climate variables, the atmospheric CO2 concentration and
the leaf area index (LAI) to the ETa variation and their two-factor interactive effects (Net: total effect
of all the variables, C: atmospheric CO2 concentration, T: temperature, P: precipitation, R: radiation,
H: vapor pressure, W: wind speed, Sum_EF: sum of all the two-factor interactive effects of variables).

Figure 8. Spatial patterns of the relative contributions of the variation of (a) LAI, (b) temperature,
(c) precipitation, (d) radiation, (e) vapor pressure, (f) wind speed, (g) atmospheric CO2 concentration
variation to ETa and (h) probability distribution function of relative contributions of the main climatic
variables and LAI changes to ETa trends in Mekong River Basin.

Variations in actual ET are principally controlled by variations in the water sup-
ply and AED. McVicar [47] divided the environment into three types: energy-limited
areas (ETp/p < 0.76), “equitant” areas (0.76 < ETp/p < 1.35), and water-limited areas
(ETp/p > 1.35). In the grassland of the upper basin (ETp/p = 1.37), precipitation is the
dominant factor affecting the observed ETa variation, but increasing temperatures also play
an important role (Figure 9). Glacial meltwater is an important water source in the upper
basin. Temperature increasing not only improved the thermal conditions for vegetation
growth but also accelerated glacial melting, which may provide more water for vegetation
growth. The negative effect of ETa on runoff was offset by the positive effect of glacial
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meltwater in the Lancang River [48]. Therefore, although the grassland in the upper basin
is a water-limited region (precipitation and the LAI are the principal driving factors in
approximately 68% of grassland areas), the relative contribution of temperature varied
from 5% to about 25% in more than 65% of the grassland grids (Figure 9).

In the central and lower reaches of the basin, the positive effect of increasing tem-
perature on ETa was offset by the negative effect of reduced solar radiation, especially
in evergreen broadleaf forest (ETp/p = 0.68), mixed forest (ETp/p = 0.83) and savanna
(ETp/p = 0.76) (Figure 9). In more than 75% of grids of the abovementioned vegetation
types, the relative contributions of precipitation varied from 25% to about 70%, while the rel-
ative contribution of temperature and solar radiation varied from 5% to about 65% and
from −25% to about 5%, demonstrating that the water supply (precipitation) and energy
(temperature and solar radiation) have equivalent impacts on the ETa variation. Because
irrigation is a major source of water in cropland (ETp/p = 0.73) and cropland/natural
vegetation mosaic (ETp/p = 0.69), the relative contribution of precipitation to ETa variation
is weak (within a range of ±15% in more than 85% of the grids). Thus, temperature and
solar radiation are the principal driving factors in more than 80% of the grids, indicating
that cropland and cropland/natural vegetation mosaics are energy-limited regions.

Figure 9. Probability distribution function of relative contributions of climatic variables and LAI
changes to ETa trends in different vegetation types.

3.2.2. Contribution of Land-Use Changes to ETa

Since 2000, the MRB has been characterized by the expansion of cropland and crop-
land/natural vegetation mosaic. In the central basin, the increase in cropland was mainly
attributed to the conversion of cropland/natural vegetation mosaic, and the loss of crop-
land/natural vegetation mosaic was compensated by the conversion of savanna, which
resulted in a decrease in savanna (Table 1). In the Mekong Delta, the increase in cropland
benefited from the conversion of wetlands and water bodies. Another noticeable change
is that approximately 18.55% and 16.38% of mixed forest were converted into evergreen
broadleaf forest and savanna respectively, which resulted in a decrease in mixed forest.

For the entire basin, land-use change enhanced the increase of ETa by 0.014% year−1,
53.24% and 29.34% of which were attributed to the conversion of mixed forest and savanna
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respectively, into other land-use types (Figure 10). Compared with the effects of climate
change and vegetation greening on ETa variation (0.15% year−1), the relative contribution
of land-use change on ETa variation was only 9.3%, indicating that climate change and
vegetation greening are the principal factors affecting the regional ETa variation. However,
the expansion of cropland in the Mekong Delta enhanced the ETa increase by 15%, demon-
strating that land-use change notably affects the water balance in this region.

Table 1. Land-use transformation matrix (%).

WB EBF MF SV GL WL CL Urb CL/NV

WB 75.24 2.25 3.67 0.97 0.48 5.80 9.50 0.01 2.08
EBF 0.04 86.81 0.68 7.73 0.13 0.34 0.30 0.00 3.95
MF 0.27 18.55 55.67 16.38 3.30 0.81 1.27 0.00 3.76
SV 0.12 8.37 6.46 53.99 2.23 0.68 2.29 0.00 25.85
GL 0.19 0.16 1.53 2.30 88.25 1.28 2.14 0.00 4.14
WL 1.70 11.14 4.97 4.78 0.62 60.26 11.82 0.11 4.60
CL 0.10 1.18 1.30 2.75 3.45 3.84 54.67 0.00 32.71
Urb 0.06 0.00 0.00 0.00 0.00 0.66 0.00 99.28 0.00

CL/NV 0.08 5.42 0.94 6.85 1.52 0.70 13.41 0.00 71.07

WB: Water body, EBF: Evergreen broadleaf forest, MF: Mixed forest, SV: Savanna, WL: Wetland, GL: Grassland, CL: Cropland, Urb: Urban
and built-up, CL/NV: Cropland and natural vegetation mosaic.

Figure 10. Effects of land-use changes on the ETa trend (Net: total effect of all the land-use changes).

4. Discussion
4.1. Impact of Climate Change and Vegetation Greening on ETa

In the upper MRB, ETa is limited by the soil moisture supply. Although the increased
rate of precipitation in the upper basin is lower than that in the lower basin (Figure A1),
ETa is sensitive to small changes in precipitation in water-limited regions. In equitant
regions, such as evergreen broadleaf forest, the annual precipitation is larger than that
in water-limited regions. ETa is not totally limited by the soil moisture supply; thus,
the sensitivity and relative contribution of precipitation decline. Similarly, because soil
moisture in the cropland of the Mekong Delta is supplied by both precipitation and
irrigation (Figure 9), ETa is insensitive to variations in precipitation, while variations in air
temperature and solar radiation constitute the predominant driving forces for potential ET,
and hence ETa. Therefore, precipitation is responsible for the observed variation in ETa
over arid and semiarid regions, whereas air temperature and incident solar radiation are
more important over humid regions [6,49,50].

For the entire basin, vegetation greening provides a greater contribution (54.1%) to
the variation in ETa than climate change does. Under enhanced CO2 concentrations, leaf
stomatal conductance will decrease, and increasing atmospheric CO2 concentrations could
be responsible for decreases in ETa. Although the direct effect of CO2 fertilization on ETa
is weak (0.02 mm year−1 in MRB and 0.05 mm year−1 at the global scale) [4], it must be
noted that CO2 fertilization explains 70% of the global observed greening trend [51], and its
negative effect may be entirely compensated by increases in leaf area. From 1981 to 2011,
approximately 55% ± 25% of the observed global terrestrial ETa increase was caused by
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vegetation greening [52]. The same phenomenon was also found in MRB, increases in
the LAI are associated with the intensification of terrestrial ETa (Figure 7). Considering
that the greening of the Earth is projected to continue worldwide during the 21st century
in most Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth system models
involved in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment
Report (AR5) [53], the water cycle will continue to be accelerated by greening-induced
variations in ETa.

4.2. Variation in Available Water Resources

As the Mekong River crosses several international boundaries, the water resources
of the downstream countries are strongly connected with those of the upstream countries.
The upper basin flows are affected mainly by snowmelt and precipitation [17], the negative
effect of ETa on runoff was offset by the positive effect of glacial meltwater in the upper
basin (Lancang River in China) [54]. Because the AWR are calculated herein as the dif-
ference between precipitation and ETa, which ignores the contribution from snowmelt,
the AWR in the upper basin were found to exhibit a minor increasing trend (Figure 5).
Although the AWR increased in the upper basin, the maximum flows at the Chiang Saen
gauging station, which is located in the upper MRB, showed a decreasing trend, and the de-
creasing rate of flow was accelerated due to the completion of dams in the upstream
region [55]. Other studies have further argued that climate change is not the main mecha-
nism responsible for the variation in AWR in the Mekong River; instead, the development
of dams on the Lancang River may be the major influencing factor, especially in the dry
season and upstream region [55,56]. Therefore, although the AWR increased in the upper
basin, the conditions of the actual water resources both upstream and downstream remain
somewhat unclear.

In the central basin and Mekong Delta, cropland expansion has placed great pressure
on the AWR; for example, a dramatic increase in ETa and a significant decrease in AWR were
found in the Mekong Delta and southeastern Thailand (Figures 4 and 5). In the Mekong
Delta, the regional population grew by nearly 45% from 1980 to 2000 [57]. Additionally,
rice cropping systems have undergone remarkable changes from single-cropping to double-
or triple-cropping systems [58]. Rapid population growth and agricultural development
have placed additional pressures on cropland and water for food production. In Lao,
Thailand, Cambodia and the central highlands of Vietnam, rain-fed rice is the primary
crop [25], and irrigation is intended mainly for rice during the rainy season due to its low
water requirements [59]. Due to changes in the climate and dam construction, changes
in seasonal flow patterns have strongly influenced land-use patterns [1]. Fortunately,
a significant increase in dry-season flows and a decrease in wet-season flows occurred
when the Xiaowan dam (constructed in 2010) and Nuozhadu dam (constructed in 2014)
were erected in the upper reaches of the Mekong River (Lancang River) [54]. Increased dry-
season flows may benefit agricultural irrigation downstream, and decreased wet-season
flows may benefit downstream flood and drought management.

5. Conclusions

The spatial-temporal patterns of ETa and AWR in the MRB were estimated from
1981 to 2012 using the VIP-RS model. The contributions of climate change and vegetation
greening to the ETa trends were quantitatively determined with 30 model experiments.
Due to vegetation greening and increasing temperature and precipitation, ETa showed
an increasing trend at a rate of 1.16 mm year−2 from 1981 to 2012. In most of the basin,
the water and energy had equivalent impacts on the ETa trends. Although the AED
increased, the AWR showed an increasing trend due to increasing precipitation. In the
paddy fields of the Mekong Delta region, the ETa increased significantly, resulting in
additional pressure on agricultural development. In the central basin where rain-fed rice is
planted, the AWR is decreasing following the reduced precipitation. Therefore, the MRB
may face water shortages in the dry season.



Remote Sens. 2021, 13, 303 15 of 18

Author Contributions: Conceptualization, X.M. and S.H.; methodology, X.M.; writing—original
draft preparation, S.H.; writing—review and editing, X.M. and S.H.; project administration, X.M.;
funding acquisition, X.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key R&D Program of China, grant number
2017YFA0603702, and National Natural Science Foundation of China, grant number 41971232.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The air temperature was corrected to sea level as follows:

Tsl = T + 22 +
0.68 × (DEM − 5000)

100
(DEM > 5000) (A1)

Tsl = T +
0.44 × DEM

100
(DEM ≤ 5000) (A2)

where Tsl (◦C) is the air temperature at sea level, and T (◦C) is the air temperature at real
elevation. If the precipitation is higher than 3 mm day−1, it was corrected to sea level
as follows. If the precipitation is lower than 3 mm day−1, it was directly resampled to
5 × 5 km with the bilinear resampling method.

Ps l = P − 0.055 × DEM
100

(P ≥ 3) (A3)

where Psl (mm day−1) is the precipitation at sea level, and P (mm/day) is the precipitation
at real elevation. The wind speed was corrected to the value at the 2 m level as follows:

Wsl = W × 4.87
log10(67.8 × DEM−5.42)

(A4)

where Wsl (m s−1) is the wind speed at 2 m, and W (m s−1) is the wind speed at real elevation.

Appendix B

Table A1. Summary of simulation experiments.

Treatment Description

f(con) Simulation with the 1982–1990 mean climatology, atmospheric CO2 concentration and vegetation dynamics
f(T) Temperature varies according to the ISIMIP records; other variables vary according to control conditions
f(P) Precipitation varies according to the ISIMIP records; other variables vary according to control conditions
f(H) Relative humidity varies according to the ISIMIP records; other variables vary according to control conditions

f(R) Longwave downwelling radiation and shortwave downwelling radiation vary according to the ISIMIP records;
other variables vary according to control conditions

f(W) Wind speed varies according to the ISIMIP records; other variables vary according to control conditions
f(LAI) The LAI varies according to the GLASS records; other variables vary according to control conditions

f(C) Atmospheric CO2 concentration varies according to the NOAA ESRL records; other variables vary according to
control conditions

f(C_T) CO2 concentration and temperatures vary; other variables vary according to control conditions
f(C_P) CO2 concentration and precipitation vary; other variables vary according to control conditions
f(C_H) CO2 concentration and relative humidity vary; other variables vary according to control conditions
f(C_R) CO2 concentration and radiation vary; other variables vary according to control conditions
f(C_W) CO2 concentration and wind speed vary; other variables vary according to control conditions
f(C_V) CO2 concentration and the LAI vary; other variables vary according to control conditions
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Table A1. Cont.

Treatment Description

f(LAI_T) LAI and temperatures vary; other variables vary according to control conditions
f(LAI_P) LAI and precipitation vary; other variables vary according to control conditions
f(LAI_H) LAI and temperatures vary; other variables vary according to control conditions
f(LAI_R) LAI and radiation vary; other variables vary according to control conditions
f(LAI_W) LAI and wind speed vary; other variables vary according to control conditions

f(T_P) Temperature and precipitation vary; other variables vary according to control conditions
f(T_H) Temperature and relative humidity vary; other variables vary according to control conditions
f(T_R) Temperature and radiation vary; other variables vary according to control conditions
f(T_W) Temperature and wind speed vary; other variables vary according to control conditions
f(P_H) Precipitation and relative humidity vary; other variables vary according to control conditions
f(P_R) Precipitation and radiation vary; other variables vary according to control conditions
f(P_W) Precipitation and wind speed vary; other variables vary according to control conditions
f(H_R) Relative humidity and radiation vary; other variables vary according to control conditions
f(H_W) Relative humidity and wind speed vary; other variables vary according to control conditions
f(R_W) Radiation and wind speed vary; other variables vary according to control conditions

f(all) All variables vary

Figure A1. Spatial patterns of the temporal variations of the annual (a) leaf area index (LAI), (b) precipitation, (c) temperature
and (d) radiation from 1981 to 1012.
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