
remote sensing  

Technical Note

A Task-Driven Invertible Projection Matrix Learning Algorithm
for Hyperspectral Compressed Sensing

Shaofei Dai 1,2,*, Wenbo Liu 1,2, Zhengyi Wang 1,2 and Kaiyu Li 1,2

����������
�������

Citation: Dai, S.; Liu, W.; Wang, Z.;

Li, K. A Task-Driven Invertible

Projection Matrix Learning Algorithm

for Hyperspectral Compressed

Sensing. Remote Sens. 2021, 13, 295.

https://doi.org/10.3390/rs13020295

Received: 8 December 2020

Accepted: 14 January 2021

Published: 15 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211006,
China; wenboliu@nuaa.edu.cn (W.L.); 13685111061@nuaa.edu.cn (Z.W.); LKY_401@nuaa.edu.cn (K.L.)

2 Non-Destructive Testing and Monitoring Technology for High-Speed Transport Facilities Key Laboratory of
Ministry of Industry and Information Technology, Nanjing 211006, China

* Correspondence: daishaofei@nuaa.edu.cn

Abstract: The high complexity of the reconstruction algorithm is the main bottleneck of the hyper-
spectral image (HSI) compression technology based on compressed sensing. Compressed sensing
technology is an important tool for retrieving the maximum number of HSI scenes on the ground.
However, the complexity of the compressed sensing algorithm is limited by the energy and hardware
of spaceborne equipment. Aiming at the high complexity of compressed sensing reconstruction
algorithm and low reconstruction accuracy, an equivalent model of the invertible transformation is
theoretically derived by us in the paper, which can convert the complex invertible projection training
model into the coupled dictionary training model. Besides, aiming at the invertible projection training
model, the most competitive task-driven invertible projection matrix learning algorithm (TIPML) is
proposed. In TIPML, we don’t need to directly train the complex invertible projection model, but
indirectly train the invertible projection model through the training of the coupled dictionary. In
order to improve the accuracy of reconstructed data, in the paper, the singular value transformation
is proposed. It has been verified that the concentration of the dictionary is increased and that the
expressive ability of the dictionary has not been reduced by the transformation. Besides, two-loop
iterative training is established to improve the accuracy of data reconstruction. Experiments show
that, compared with the traditional compressed sensing algorithm, the compressed sensing algorithm
based on TIPML has higher reconstruction accuracy, and the reconstruction time is shortened by
more than a hundred times. It is foreseeable that the TIPML algorithm will have a huge application
prospect in the field of HSI compression.

Keywords: compressed sensing; hyperspectral image; invertible projection; coupled dictionary;
singular value; task-driven learning

1. Introduction

Spectral images with a spectral resolution in the 10-2 order of magnitude are called
hyperspectral images (HSI). HSI is one of the main components of modern remote sens-
ing [1]. In recent decades, the popularity of hyperspectral technology has continued to
rise. One of the main reasons for the higher visibility of hyperspectral imaging is the
richness of the spectral information collected by this sensor. This function has positioned
the hyperspectral analysis technology as the mainstream solution for land area analysis
and the identification and differentiation of visually similar surface materials. Therefore,
hyperspectral technology has become more and more important and is widely used in
various applications, such as precision agriculture, environmental monitoring, geology,
urban surveillance and homeland security, food quality inspection, etc. However, hyper-
spectral image processing is accompanied by a large amount of data management, which
affects real-time performance on the one hand, and, on the other hand, the demand for
on-board storage resources. In addition, the latest technological advances are introducing
hyperspectral cameras with a higher spectrum and spatial resolution to the market. From
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the perspective of onboard processing, communication, and storage, all of these make
efficient data processing more challenging [2–5].

In order to solve the storage and transmission problems that need to be faced in
processing multi-dimensional hyperspectral image data, data compression technology is
usually selected. The original digital signal is refined and expressed, and its storage space
and transmission bandwidth requirements are reduced by data compression technology.
However, in traditional data compression technology, a large amount of redundant data
is collected, and then compression technology is used to remove these redundant data.
Although the redundant information of data is reduced, huge resources are wasted in this
process [6].

Compressed Sensing (CS) theory was proposed in 2006 [7], and was widely used
in wireless networks, imaging technology, target positioning, the direction of arrival
estimation, and other fields [8,9].

As shown in Figure 1, in the compressed sensing technology, data compression is set
up at the signal acquisition end, the information characteristics of the data are directly
collected, and the original signal is reconstructed with high precision at the reconstruction
end.

Figure 1. Block diagram of compressed sensing.

As shown in Equation (1), compressed sensing theory shows [7] that an over-complete
dictionary D∈Rm×s is used, so that the original signal x is sparse enough under dictionary D,
and its sparse coefficient is expressed as α∈Rs. Equation (2) is the mathematical expression
of compressed sensing. The original signal is observed by the observation matrix Φ∈Rd×m

to obtain the observation signal y∈Rd (d � m). In this process, signal compression is
realized. When the dimension d of the observation matrix is higher than a certain lower
limit, the original signal x can be uniquely reconstructed from the observation signal y [10].

x = Dα (1)

y = Φx (2)

In CS theory, the compressibility, sparsity, and incoherence of the signal are fused, and
in addition, compression and sampling are combined. The measurement signal is projected
into the observation space containing all the effective information of the signal so that the
sparse signal of limited dimensions can be sampled at a sampling frequency far less than
the Nyquist theorem requires, making it possible to sample less than twice the original
signal bandwidth [11].

The compression rate and reconstruction accuracy of the CS system mainly depend
on the following three aspects:
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(1) Sparse expression

To express the signal in a refined manner, the signal is usually transformed into a
new basis or framework, which is also called a dictionary. The more sparsely the data is
represented by the dictionary, the larger the compression ratio can be obtained under the
condition of ensuring the image reconstruction error. Therefore, dictionary learning plays
an important role in data compression based on sparse decomposition. At present, the
commonly used dictionaries in compressed sensing include the discrete cosine transform
(DCT) dictionary [12,13], the discrete wavelet transform (DWT) dictionary [9,14], and the
K-SVD dictionary [15–17], Gabor dictionary [15], CDL dictionary [18], etc.

(2) Establishment of measurement matrix

When the original signal is compressed by the observation matrix, it must obey
the Restricted Isometry Property (RIP). Under RIP conditions, the dimension d of the
observation matrix of the CS system must be higher than a certain limit value. At the
same time, the measurement matrix Φ and the sparse basis D meet incoherence, and the
observation signal y can be uniquely reconstructed [7]. At present, in compressed sensing,
the commonly used measurement matrices include random Gaussian matrix, random
Bernoulli matrix, random Fourier matrix, and random Hadamard matrix [19,20], etc.

(3) Sparse reconstruction

The signal reconstruction problem of compressed sensing is to solve the underdeter-
mined equations y = Φx to obtain the original signal x based on the known measurement
value y and measurement matrix Φ. In order to ensure that the original signal is efficiently
and stably reconstructed, many excellent sparse signals have been proposed. Commonly
used sparse reconstruction algorithms include Orthogonal Matching Pursuit (OMP), Stage-
wise Orthogonal Matching Pursuit (StOMP), Compressive sampling matching pursuit
(CoSaMP), Regularized Orthogonal Matching Pursuit (ROMP), Generalized Regularized
Orthogonal Matching Pursuit (GROMP), Smoothed Projected Landweber (SPL) [21–25],
etc.

Although compressed sensing technology has been proven to have great research
significance in data compression, however, the features of HSI are complex. In order
to improve the sparsity of the signal, the redundant dictionary with high redundancy
is used as its sparse domain. When HSI is reconstructed, a large number of iterative
calculations and inversion operations are required, and the traversal process of finding the
optimal atom in each iteration is very time-consuming. A lot of time will be wasted in the
sparse reconstruction process, which greatly limits the application of compressed sensing
technology in the field of HSI compression.

Aiming at the time-consuming and low reconstruction accuracy of the reconstruction
algorithm of compressed sensing technology, in the paper, we proposed a task-driven
invertible projection matrix learning algorithm. The problems of long reconstruction time
and insufficient reconstruction accuracy of HSI compression algorithm based on solving
compressed sensing are solved by our proposed algorithm.

In the algorithm proposed in this paper, prior knowledge of data is used to train
an invertible projection matrix U∈Rd×m. The projection matrix can project the original
signal x into the low-dimensional observation signal y, and the projection formula can be
expressed as y = Ux. Different from the traditional observation matrix Φ, the process in
which the original signal x is projected by the projection matrix U to the low-dimensional
observation signal y is invertible, and the inverse process can be expressed as x’ = UTy,
where UT represents the transposition of U, and x’ is the reconstruction signal. Compared
with the sparse reconstruction of traditional compressed sensing, when the algorithm
proposed in this paper is used to train the projection matrix U as the observation matrix of
the compressed sensing algorithm. In the signal reconstruction process, there is no need
to perform tedious iteration and inversion operations, which results in a lot of time being
saved and increases the real-time performance of the compressed sensing algorithm.
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On the basis of this algorithm, we study a hyperspectral compressed sensing algorithm
based on a task-driven invertible projection matrix learning algorithm. In order to prove
the effectiveness of the algorithm proposed in this paper, this algorithm was compared
with the most competitive compressed sensing algorithm based on DCT dictionary, CDL
dictionary, and K-SVD dictionary. Besides, in order to verify the real-time performance
of the signal reconstruction process of the compressed sensing algorithm based on the
algorithm proposed in this paper, in the experiment, this algorithm was compared with the
current best compressed sensing reconstruction algorithm, such as OMP, StOMP, CoSaMP,
GOMP, GROMP, and SPL, etc. [21–25].

2. Principles and Methods
2.1. Constraints on Invertible Projection Transformation

Assuming that the projection matrix U∈Rd×m, the original signal x∈Rm×1 can be
accurately reconstructed from the low-dimensional signal y by the projection transposed
matrix UT, and the solution to the projection matrix U can be described as

U = argmin
U

∥∥∥x−UTUx
∥∥∥2

F
(3)

Model (3) can be equivalent to

U = argmin
U

∥∥∥x−UTUx
∥∥∥2

F

= argmin
U

∥∥∥xTx− xTUTUx
∥∥∥2

F

= argmin
U

∥∥∥xTx− yTy
∥∥∥2

F

(4)

where x is the high-dimensional original signal, and y = Ux, y is the low-dimensional signal
of the high-dimensional original signal x.

The high-dimensional signal x and its low-dimensional signal y have the same or
similar sparse representation coefficients α∈Rs×1 [26]. It can be described as{

x = Dα
y = Pα

(5)

where D∈Rm×s is the high-dimensional dictionary of high-dimensional signal
x, P∈Rd×s(d<<m) is the low-dimensional dictionary of low-dimensional signal y, and
dictionary P is constructed by D through linear projection mapping U. The projection
formula is P = UD [26].

Therefore, model (3) can be described as

U = argmin
U

∥∥∥x−UTUx
∥∥∥2

F

= argmin
U

∥∥∥αTDTDα− αTPTPα
∥∥∥2

F

= argmin
U

∥∥∥DTD− PTP
∥∥∥2

F

= argmin
U

∥∥∥DTD− :UD)TUD
∥∥∥2

F

(6)

From the derivation process of model (6) we can know that the optimal projection
matrix U under model (3) is equivalent to the optimal value under model (6). Since the high-
dimensional dictionary D can be regarded as fixed when solving model (6), the optimal
projection matrix U in the solution model (6) can be regarded as the optimal P = UD, so
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that model (6) is obtained the minimum Frobenius norm. The problem of calculating the
projection matrix U can be converted to calculating the low-dimensional matrix P indirectly,
which can be described as

P = argmin
P

∥∥∥DTD− PTP
∥∥∥2

F
(7)

In model (7), P can be considered as a principal components analysis (PCA) dimen-
sionality reduction of dictionary D. Although PCA has the best performance in the sense of
mean square error, the PCA algorithm requires the covariance matrix of the signal to be
calculated in advance, and many covariance calculations are required. Different from the
idea of PCA, the low-dimensional dictionary P(P = UD) is trained by model (7) to make
model (7) obtain the optimal value. From the derivation process of model (6), we can know
that this projection matrix U is also the optimal value of model (3). Therefore, Equations (3)
and (7) have the same extreme points. In the process of training model (7), in order to
ensure sufficient reconstruction accuracy of the signal, we only need to ensure that model
(7) obtains the optimal value, then model (3) will also be optimal. Model (3), in order to
solve the invertible transformation problem, is converted to the problem of solving model
(7), that is, extracting principal components from dictionary D. In order to ensure that more
principal components of high-dimensional dictionary D are retained in low-dimensional
dictionary P, dictionary D is required to concentrate energy. We will give a solution in
Section 2.2.

2.2. Singularity Transformation

For a general dictionary after dimensionality reduction, more principal components
cannot be retained [16], so the singular value decomposition of dictionary D can be de-
scribed as

D = MΛVT =
[

Mh Ml
][ Λh 0

0 Λl

][
Vh Vl

]T (8)

where M is the left singular matrix of matrix D, Λ is the singular value of matrix D, V is
the right singular matrix of matrix D, and Λh is the first h rows and h columns of Λ.

Take U = Mh
T, then

DTD = VΛTΛVT = V(Λh
TΛh + Λl

TΛl)V
T (9)

PTP = (UD)TUD = VhΛT
h ΛhVT

h (10)

Therefore, the first h singular values Λh of the matrix D are larger (the last l singular
values Λl are smaller and not 0), and more principal components of the high-dimensional
dictionary D are retained in the low-dimensional dictionary P, in other words, || DTD –
PTP ||F

2 is smaller.
In order to make the first h dimension of dictionary D gather more energy, it should

satisfy:

(1) The expression coefficient of signal x under dictionary D is sparse enough;
(2) the first h singular values of dictionary D are large enough, and the last l singular

values are small enough, and the value is not 0 [16].

The singular values often correspond to the important information implicit in the
matrix, and the importance is positively related to the magnitude of the singular values.
The more “singular” the matrix is, the less singular value contains more matrix information,
and the smaller the information entropy of the matrix, and the more relevant its row
(or column) vectors are [27]. Aiming at the characteristics of matrix singular values, in
the paper, matrix singular transformation is proposed to increase the redundancy of the
dictionary without reducing the expressive ability of the dictionary and the rank of the
matrix.

The singular value transformation matrix Θ is defined as
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Θ(t, r) = Q(1, 0) . . . Q(n− t + 1, r) . . . Q(n, r)︸ ︷︷ ︸
t

=



1 0 . . . r . . . r
0 1 . . . 0 . . . 0
0 0 . . . 0 . . . 0
0 0 . . . 1− r . . . 0

. . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . 1− r


n×n

(11)

where, the variables t and r are transformation adjustment parameters, and Q(i, r) repre-
sents the values of the first row and the i-th row of the i-th column vector of the unit square
En×n are r and 1 − r, respectively.

Let the dictionary D = [d1 d2 d3 . . . dn] and the original data set be X = [x1, x2, . . . ,xn]
(xi∈Rm). Assuming data xi under dictionary D indicates that the sparse coefficient has four
non-zero terms, expressed as αi = [ . . . ao . . . am . . . ap . . . aq . . . ]T (αi∈Rs). The regulating
parameter of singular value transformation t = n − 1.

The result of dictionary D undergoing singular value Θ transformation is:

D̂ = DΘ(n− 1, r) =
[

d1 dw2 . . . dwn
]

(12)

and
dwk = rd1 + (1− r)dk (13)

Assuming that the data xi under the dictionary D̂ represents the sparsity coefficient
β = [b1 b2 b3 . . . bn]T, then:

Dαi = aodo + amdm + apdp + aqdq (14)

D̂β = b1d1 + b2dw2 + . . . + bndwn] (15)

xi = Dαi = D̂β (16)

According to Equations (14)–(16), it can be determined that the coefficient of data xi is
still sparse under dictionary D̂, and the sparse coefficient is:

b1 =
r(ao+am+ap+aq)

1−r
bo =

ao
(1−r)

bm = am
(1−r)

bp =
ap

(1−r)
bq =

aq
(1−r)

bi
i 6=1,o,m,p,q

= 0

(17)

Therefore, not only the redundancy of dictionary D can be increased by the singular
value Θ transformation, which makes the energy of dictionary D more concentrated, but it
also hardly affects the expression ability of dictionary D.

2.3. Task-Driven Invertible Projection Matrix Learning

In order to obtain a reversible projection transformation, we have to use prior knowl-
edge to solve the invertible projection matrix. However, as we all know, it is very difficult
to solve the low-dimensional invertible projection matrix U directly. Fortunately, it has
been proven in Section 2.1 that the low-dimensional invertible projection matrix U can be
solved indirectly by solving model (7). Model (7) is the problem of extracting principal
components from dictionary D. Based on the theory in Section 2.2, a task-driven invertible
projection matrix learning algorithm (TIPML) is proposed. In this algorithm, dictionary
learning and singular value Θ transformation are used as the core of the algorithm, and a
dual-loop iterative training mechanism is established based on the core.
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As shown in Figure 2, in order to ensure that more principal components of high-
dimensional dictionary D are retained in the low-dimensional dictionary P. In TIPML, the
singular value Θ transformation is first used to make the energy of the dictionary D more
concentrated. Next, the sparse representation coefficient A of the training data under the
low-dimensional dictionary P is used to train the high-dimensional dictionary D. In this
step, the low-dimensional dictionary P is used to train the high-dimensional dictionary D,
which further increases the coupling between the two dictionaries and lets the principal
components of the high-dimensional dictionary D be more retained in the low-dimensional
dictionary P.

Figure 2. Block diagram of TIPML (task-driven invertible projection matrix learning algorithm).

The specific implementation steps of the TIPML algorithm are shown in Algorithm 1.

Algorithm 1: TIPML

Input: Training data set X, number of iterations T, the singular value Θ transformation parameter
t,r, low-dimensional dictionary P dimension h, Signal sparsity K, and dimension of the data
column N.
Output: Projection matrix U.

1: Initialization: Split the data set X into data columns xi (N × 1), I = 1,2, . . . , i is the index of the
data column xi. Assuming X = [x1, x2, . . . , xn] (xi∈RN). The initial dictionary D is set as a DCT
dictionary, D = [d1, d2, . . . ,dn], (di∈RN).

2: Repeat
3: Do singular value Θ transformation to dictionary D: D = DΘ(t,r).
4: Singular value decomposition: D = MΛVT.
5: Calculate low-dimensional dictionary: P = Mh

TD.
6: Based on the low-dimensional dictionary P, the OMP algorithm is used to sparse the data set
X to obtain the sparse coefficient A = [a1, a2, . . . ,an], update the index j = 1 of the dictionary atom.
7: Repeat
8: The error is calculated: Ej = X− ∑

l 6=j
dlal

T.

9: The error is decomposed by SVD (rank-1 decomposition) into: Ej ≈ uλvT.
10: Update dictionary: dj= u, Update sparsity coefficient: aj= λv.
11: j = j + 1
12: Until j > n
13: Until ∑i Λh

∑i Λ is big enough, or reach the maximum number of iterations T.
14: Calculate the projection matrix: U = Mh

T.
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3. Simulation Experiment and Results

In order to verify the effectiveness of the algorithm proposed in this paper, the AVIRIS
hyperspectral data image Indian Pine dataset [28] was selected as the experimental dataset.
These hyperspectral data include 220 bands, and each pixel is stored in a 16-bit integer
format. In the experiment, the most competitive sparse expression dictionary and recon-
struction algorithm in compressed sensing were selected and compared with the algorithm
proposed in this paper. Sparse expression dictionaries included DCT dictionary, KSVD
dictionary, and CDL dictionary, and reconstruction algorithms included StOMP, OMP,
GOMP, GROMP, CoSaMP, and SPL. Besides, the data compression algorithm PCA [29] has
also been selected for comparison with the algorithm proposed in this paper. The average
peak signal-to-noise ratio (PSNR), Spectral Angle Mapper (SAM), and reconstruction time
T were selected as the evaluation indicators of the experiment, and the PSNR and recon-
struction time T of the reconstructed image was obtained by setting different sampling
rates (SR). The software and hardware environment of the test experiment are CPU: Intel(R)
Core (TM) i7-9750H 2.6GHz, 8GB memory, and Windows 10 and MatLab 2019a.

The PSNR calculation formula is

PSNR = 10log10

 MAX2

1
m•n

m,n
∑

i=1,j=1
[x(i, j)− x′(i, j)]2

 (18)

where x is the original image, x’ is the reconstructed image, m and n respectively represent
the length and width of the image, and MAX is the maximum value of image pixels.

The sampling rate calculation formula is

SR =
Mλ

Nλ
(19)

where Nλ is the dimension of the original data, and Mλ is the dimension of compressed
sensing sampling.

The SAM calculation formula is

SAM = cos−1 xTx′

(xTx)
1
2 (x′Tx′)

1
2

(20)

where x is the original image, x’ is the reconstructed image, xT and x’T are the transpose of
matrix x and x’, respectively, and cos−1 is the arc cosine function.

As shown in Figure 3, the simulation experiment mainly included three stages, namely
offline learning, data sampling (encoding), and data reconstruction (decoding). In the
experiment, the data of the Indian Pine data set was divided into two parts: The training
data set and the test data set. The transformation adjustment parameters of the TIPML
algorithm were set to ‘t = 255′ and ‘r = 0.3′. In addition, the data set was processed in blocks
with a block size of 16 × 16, and each small block was arranged into a column vector with
a size of 256 × 1. First, the training set Z was used as the TIPML training sample to obtain
the projection matrix U. Then, the projection matrix U was used as a reduced-dimensional
sampling matrix of the test data X to obtain the observation data Y. Finally, the transposed
UT of the projection matrix was used to back-project the low-dimensional sampling data Y
to obtain the reconstructed data.
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Figure 3. Flow chart of simulation experiment.

As shown in Figures 4–6, the PSNR of the reconstructed image of the algorithm
proposed in this paper, CDL-OMP algorithm, and KSVD-StOMP algorithm under different
sampling rates (SR) are respectively given. By comparing the reconstructed images, it can
be known that the KSVD-StOMP algorithm has the lowest image reconstruction accuracy
at the same sampling rate. The reconstruction accuracy of the algorithm proposed in
this paper is visually similar to that of the CDL-OMP algorithm. At low sampling rates
(SR = 0.1), there is still a good reconstruction effect.

Figure 4. The original image and reconstructed image with band number 180, the compressed sensing algorithm is based on
the TIPML algorithm, (a)The original images; (b) The sampling rate of the reconstructed image is SR = 0.1; (c) The sampling
rate of the reconstructed image is SR = 0.2; (d) The sampling rate of the reconstructed image is SR = 0.3; (e) The sampling
rate of the reconstructed image is SR = 0.4; (f) The sampling rate of the reconstructed image is SR = 0.5.

Figure 5. The Original image and reconstructed image with band number 180, the compressed sensing algorithm is based
on the CDL-OMP algorithm, (a) The original images; (b) The sampling rate of the reconstructed image is SR = 0.1; (c) The
sampling rate of the reconstructed image is SR = 0.2; (d) The sampling rate of the reconstructed image is SR = 0.3; (e) The
sampling rate of the reconstructed image is SR = 0.4; (f) The sampling rate of the reconstructed image is SR = 0.5.
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Figure 6. The Original image and reconstructed image with band number 180, the compressed sensing algorithm is based
on KSVD-StOMP algorithm, (a) The original image; (b) The sampling rate of the reconstructed image is SR = 0.1; (c) The
sampling rate of the reconstructed image is SR = 0.2; (d) The sampling rate of the reconstructed image is SR = 0.3; (e) The
sampling rate of the reconstructed image is SR = 0.4; (f) The sampling rate of the reconstructed image is SR = 0.5.

As shown in Figure 7, at different sampling rates, the original spectral line and
the reconstructed spectral line at the (256, 1) pixel point, the experimental comparison
methods are the algorithm proposed in this paper, CDL-OMP algorithm, and KSVD-StOMP
algorithm. Comparing the experimental results, it can be seen that when the sampling rate
SR = 0.2 in Figure 7b, the reconstructed spectrum line of the algorithm proposed in this
paper almost coincides with the original spectrum line. When the sampling rate is low, the
reconstructed spectrum of the proposed algorithm and the original spectrum have some
errors, but the reconstruction effect is still slightly better than the CDL-OMP algorithm,
and far better than the KSVD-StOMP algorithm. This is because when SR = 0.1 in Figure 7a,
the dimension of the projection matrix Mλ = 26, which is much smaller than the original
signal dimension Nλ = 256. When the original signal is projected into a low-dimensional
space, too much information is lost, resulting in reduced reconstruction accuracy.

Figure 7. The original and reconstructed spectral lines of the pixel at coordinates (256, 1). From top to bottom, they are
TIPML algorithm, CDL-OMP, and KSVD-StOMP. From the first column to the fourth column (a) The sampling rate SR = 0.1;
(b) The sampling rate SR = 0.2;(c) The sampling rate SR = 0.3;(d) The sampling rate SR = 0.4.

In order to further verify the superiority of the algorithm proposed in this paper, more
compressed sensing algorithms and PCA algorithm were selected. As shown in Table 1,
the PSNR under the same sampling rate in the table is the average of all PSNRs of 220-band
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images. The results in the comparison table show that the reconstructed image accuracy of
the compressed sensing method based on the algorithm proposed in this paper is better
than other algorithms, and it still has a higher reconstruction accuracy at low sampling
rates.

Table 1. The reconstructed average peak signal-to-noise ratio (PSNR) (dB) of hyperspectral images in
all bands under different sampling rates.

Methods
Sampling Rate

0.1 0.2 0.3 0.4 0.5

Ours 61.20 63.39 64.17 64.86 65.63
PCA 54.09 56.15 57.84 59.46 61.10

KSVD-StOMP 51.06 54.10 59.21 60.87 61.51
KSVD-OMP 31.37 28.30 26.93 27.08 27.20

KSVD-GOMP 33.85 30.31 29.02 28.61 28.74
KSVD-GROMP 34.39 33.59 33.57 35.04 35.72
KSVD-CoSaMP 48.70 49.61 50.30 50.18 50.26

DCT-SPL 38.27 46.83 54.10 58.81 60.70
DCT-StOMP 30.44 30.97 31.52 32.17 32.96
CDL-StOMP 60.67 63.06 63.33 63.33 63.33
CDL-OMP 60.67 63.06 63.33 63.33 63.33

CDL-CoSaMP 48.79 49.93 49.94 49.94 49.94
CDL-GROMP 14.83 22.90 28.39 33.27 37.21
CDL-GOMP 9.19 13.73 17.85 21.60 24.74

As shown in Table 2, the SAM under the same sampling rate in the table is the average
of all SAMs of 220-band images. For the convenience of comparison, the SAM data in the
table is displayed in the form of scientific notation. The results in the comparison table
show that the reconstructed image SAM still has a lower SAM at low sampling rates. In
other words, the reconstructed spectrum is more similar to the original spectrum.

Table 2. The reconstructed average Spectral Angle Mapper (SAM) (Scientific notation) of hyperspec-
tral images in all bands under different sampling rates.

Methods
Sampling Rate

0.1 0.2 0.3 0.4 0.5

Ours 1.17 × 10−8 1.16 × 10−8 1.18 × 10−8 1.18 × 10−8 1.14 × 10−8

PCA 1.20 × 10−8 1.19 × 10−8 1.22 × 10−8 1.21 × 10−8 1.18 × 10−8

KSVD-StOMP 8.39 × 10−4 1.16 × 10−8 1.19 × 10−8 1.18 × 10−8 1.15 × 10−8

KSVD-OMP 1.45 × 10−1 6.06 × 10−3 5.03 × 10−4 1.18 × 10−8 1.32 × 10−3

KSVD-GOMP 5.34 × 10−2 1.15 × 10−8 4.82 × 10−3 1.18 × 10−8 1.97 × 10−3

KSVD-GROMP 1.22 × 10−3 1.16 × 10−8 3.19 × 10−2 1.17 × 10−8 1.07 × 10−2

KSVD-CoSaMP 1.16 × 10−8 1.16 × 10−8 1.19 × 10−8 1.16 × 10−8 1.15 × 10−8

DCT-SPL 1.14 × 10−8 1.18 × 10−8 1.15 × 10−8 1.17 × 10−8 1.15 × 10−8

CDL-StOMP 1.17 × 10−8 1.16 × 10−8 1.19 × 10−8 1.17 × 10−8 1.15 × 10−8

CDL-OMP 1.17 × 10−8 1.16 × 10−8 1.19 × 10−8 1.17 × 10−8 1.15 × 10−8

CDL-CoSaMP 1.65 × 10−3 7.16 × 10−1 1.18 × 10−8 1.75 × 10−2 8.31 × 10−2

CDL-GROMP 4.55 × 10−4 1.20 × 10−4 1.32 × 10−3 9.83 × 10−4 2.88 × 10−4

CDL-GOMP 4.55 × 10−4 1.20 × 10−4 1.32 × 10−3 9.83 × 10−4 2.88 × 10−4

For compressed sensing algorithms, the running time T of the reconstruction algorithm
is a very important evaluation index. As shown in Table 3, the running time T under the
same sampling rate in the table is the mean value of the running time of 220-band image
reconstruction, and the time unit recorded in the table is milliseconds. By comparing the
experimental results, it can be seen that the running time T of the algorithm proposed in
this paper is much lower than that of the traditional compressed sensing algorithm, and the
running time is shortened by at least a hundred times. This is because the projection matrix
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U trained by the algorithm proposed in this paper is approximately invertible. In the
reconstruction process, only the low-dimensional sampling matrix Y is left multiplied by
UT. However, traditional compression sparse reconstruction algorithms require multiple
matrix inversion and iterative operations. These operations are very time-consuming.
Therefore, the real-time performance of the algorithm proposed in this paper is much
higher than other algorithms. Besides, compared to data compression algorithm PCA,
when we know the covariance matrix of the source in advance and find the eigenvalues, the
time consumption of the TIPML algorithm is similar to that of the PCA algorithm. However,
in practical applications, the covariance and eigenvalue of the source are unknown. We
need to calculate the covariance and eigenvalue of the source, which will cause a lot of time
to be consumed. Therefore, compared to traditional compressed sensing algorithms and
traditional PCA data compression algorithms, the TIPML algorithm is more competitive.

Table 3. The reconstructed average time (millisecond) of hyperspectral images in all bands under
different sampling rates.

Methods
Sampling Rate

0.1 0.2 0.3 0.4 0.5

Ours 0.3 0.3 0.4 0.4 0.4
PCA 0.3 0.4 0.4 0.4 0.4

KSVD-StOMP 210.8 443.7 667.1 934.6 1235.0
KSVD-OMP 264.9 401.8 545.3 594.0 613.5

KSVD-GOMP 101.7 170.4 206.2 246.8 252.3
KSVD-GROMP 84.6 131.7 181.0 186.7 189.3
KSVD-CoSaMP 302.7 527.7 597.3 829.7 877.4

DCT-SPL 354.8 355.1 354.8 357.0 359.1
DCT-StOMP 199.4 437.6 732.2 1085.2 1517.4
CDL-StOMP 228.2 503.3 763.0 1054.0 1384.2
CDL-OMP 209.5 462.7 696.1 955.6 1261.4

CDL-CoSaMP 341.3 553.0 635.0 895.7 943.9
CDL-GROMP 75.5 111.8 150.4 153.0 157.3
CDL-GOMP 167.7 253.3 317.4 365.8 375.5

4. Conclusions

HSI is the main tool for remote sensing and earth observation. The amount of valuable
industrial and scientific data retrieved on the ground can be greatly increased by data
compression technology. The resources of spaceborne equipment are very precious, and
compression is placed on the sampling end by compressed sensing technology, which
can save a lot of time and resources for hyperspectral imaging technology. Therefore,
compressed sensing technology has huge application prospects in the field of hyperspectral
compression. However, compressed sensing technology needs to solve underdetermined
equations. In traditional algorithms, a lot of time and storage resources are spent in the
sparse reconstruction process. Therefore, the high complexity of data reconstruction is also
the biggest drawback of compressed sensing technology.

Aiming at the high computational complexity of compressed sensing technology and
insufficient reconstruction accuracy, a task-driven invertible projection matrix learning
algorithm was proposed by us. Our main contribution:

(1) Derived the equivalent model of the invertible projection model theoretically, which
converts the complex invertible projection training model into a coupled dictionary
training model;

(2) proposed a task-driven invertible projection matrix learning algorithm for invertible
projection model training;

(3) based on a task-driven reversible projection matrix learning algorithm, established
a compressed sensing algorithm with strong real-time performance and high recon-
struction accuracy.
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Experimental verification has shown that the compressed sensing technology based
on the algorithm proposed in this paper not only has higher reconstruction accuracy than
traditional compressed sensing technology, but also has improved real-time performance
by more than a hundred times. It is foreseeable that the algorithm proposed in this paper
will have great application prospects in the field of hyperspectral image compression. In
addition, the algorithm proposed in this paper can’t only be used in the fields of one-
dimensional signal compression, two-dimensional image compression, and data denoising,
but it will also have greater research value on hardware platforms such as FPGA and
embedded devices due to its extremely low the complexity.
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